FATA2025

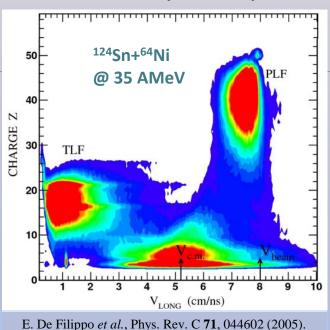
FAst Timing Applications for Nuclear Physics and Medical Imaging Catania - Italy, 8th - 10th October 2025

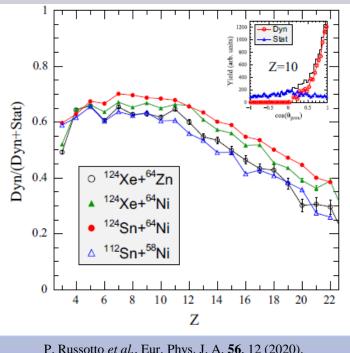
The second edition of FATA will be held in memory of Angelo Pagano, chair of the previous editions.

The "pixelation technique" in the Timing Analysis of the data collected by the FARCOS correlator in the CHIFAR experiment

<u>C. Zagami</u>⁽¹⁾⁽²⁾⁽³⁾, E.V. Pagano⁽²⁾, P. Russotto⁽²⁾, E. De Filippo⁽⁴⁾, L. Acosta⁽⁵⁾⁽⁶⁾, T. Cap⁽⁷⁾, G. Cardella⁽⁴⁾, F. Fichera⁽⁴⁾, E. Geraci⁽¹⁾⁽⁴⁾⁽³⁾, B. Gnoffo⁽¹⁾⁽⁴⁾, C. Guazzoni⁽⁸⁾⁽⁹⁾, G. Lanzalone⁽¹⁰⁾⁽²⁾, C. Maiolino⁽²⁾, N.S. Martorana⁽⁴⁾, T. Matulewicz⁽¹¹⁾, A. Pagano^{(†)(4)}, M. Papa⁽⁴⁾, K. Piasecki⁽¹¹⁾, S. Pirrone⁽⁴⁾, M. Piscopo⁽²⁾, R. Planeta⁽¹²⁾, G. Politi⁽¹⁾⁽⁴⁾, F. Risitano⁽¹³⁾⁽⁴⁾, F. Rizzo⁽¹⁾⁽²⁾⁽³⁾, G. Saccà⁽⁴⁾, K. Siwek-Wilczynska⁽¹¹⁾, I. Skwira-Chalot⁽¹¹⁾ e M. Trimarchi⁽¹³⁾⁽⁴⁾

(1) Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Italy (2) INFN, Laboratori Nazionali del Sud - Catania, Italy (3) CSFNSM-Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania, Italy (4) INFN, Sezione di Catania, Italy (5) Instituto de Física. Universidad Nacional Autónoma de México, Mexico (6) Instituto de Estructura de la Materia, CSIC, Spain (7) National centre for Nuclear Research, Poland (8) Dip. di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy (9) INFN, Sezione di Milano, Italy (10) Facoltà di Ingegneria e Architettura, Università Kore, Italy (11) Faculty of Physics, University of Warsaw, Warsaw, Poland (12) M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland (13) Dipartimento di Scienze MIFT, Univ. di Messina, Messina, Italy

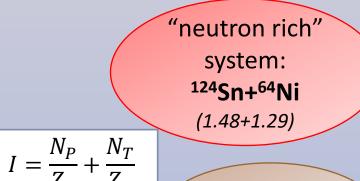

Heavy Ion collisions at Fermi energy regime


 $[10 \, MeV/A < E/A < 100 \, MeV/A]$

Ternary events detected with CHIMERA:

PLF + TLF + IMF

P. Russotto et al., Eur. Phys. J. A. 56, 12 (2020).


Dynamical emission of IMFs:

- Light IMFs ($Z \lesssim 8$) are emitted in fast neck emission process within $100 - 120 \, fm/c$ after reseparation between PLF and TLF;
- Heavier IMFs ($Z \gtrsim 9$) are emitted in a fast-dynamical splitting (fissionlike) of the PLF in a time ($\lesssim 500 \ fm/c$) shorter than the one typical of statistical emission;

Enhancement of dynamical emission probability in neutron rich system:

influence of isospin content (N/Z) on dynamical effects!

CHIFAR experiment @ LNS-INFN

124Sn+64Zn

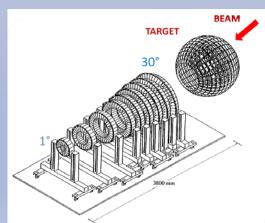
(1.48+1.13)

"neutron poor system: ¹¹²Sn+⁵⁸Ni (1.24+1.07)

> ¹¹²Sn+⁶⁴Ni (1.24+1.29)

"isobaric" system: 124Xe+64Zn (1.30+1.13)

> ¹²⁴Xe+⁶⁴Ni (1.30+1.29)

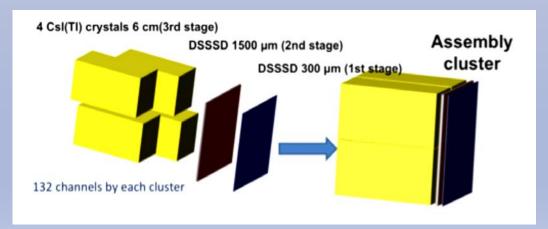

Experimental goals at lower energy [20 AMeV] with respect to the previous experiments:

- > Study of emission mechanism: dynamical/statistical;
- > IMFs production;
- Isospin role in HI collisions;

CHIFAR experiment @ LNS-INFN: experimental setup

CHIMERA

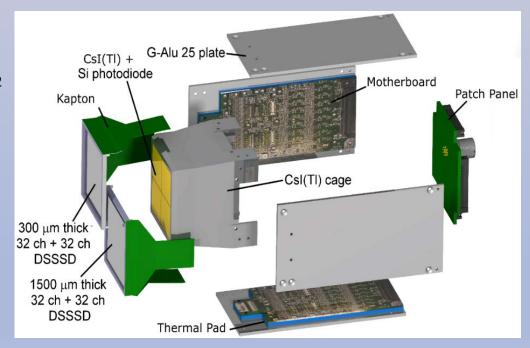
- Charged Heavy Ion Mass and Energy Resolving Array;
- 4π multi-detector;
- 1192 telescopes (35 rings): each one has Si-detector and CsI(Tl) scintillator.



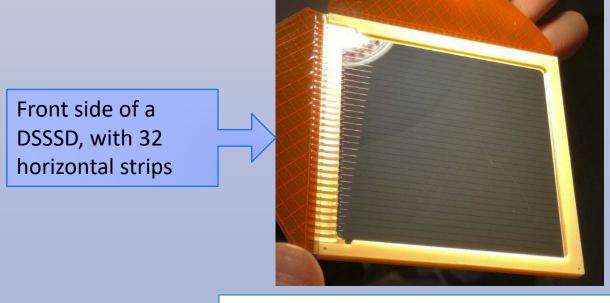
Pagano A. et al., Eur. Phys. J. A 56, 102 (2020)

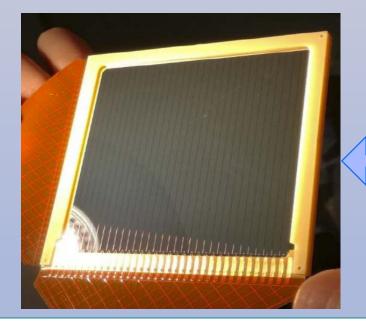
FARCOS

- Femtoscope ARray for COrrelation and Spectroscopy;
- High energy and angular resolution;
- Modular array of 20 telescopes: each one has 6 detectors: 2 DSSSDs + 4CsI(Tl).
- Angular range: 13°-30° (lab. system)

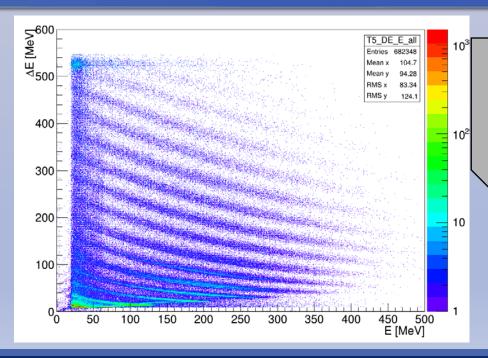


Pagano E.V. et al., EPJ Web of Conferences (2016) 117:10008


CHIFAR experimental setup: array structure of each FARCOS correlator telescope


- 10 telescopes employed in the CHIFAR experiment;
- modular structure of each telescope, with 3 detection stages:
 - > DSSSD (32 x 32 strips), 300 μm thick, active area of 6.4 x 6.4 cm²
 - \triangleright DSSSD (32 x 32 strips), 1500 µm thick, active area of 6.4 x 6.4 cm²
 - ➤ 4 CsI(TI) scintillators, 6 cm thick, active area of 3.2 x 3.2 cm²

Double Sided Silicon Strip Detector (DSSSD), featuring strips on both sides, enables precise particle positioning while significantly reducing the required number of readout electronics channels.



Back side of a DSSSD, with 32 vertical strips

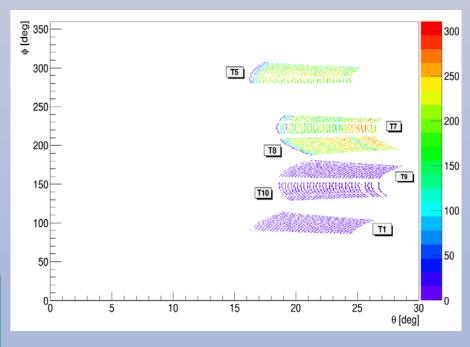
DSSSDs have become excellent instruments capable of collecting particles with very high energy and angular resolution, thanks to their segmentation into strips.

the assignment of the **position** to **each particle** detected by FARCOS, in terms of its coordinates:

from the crossing of a fired strip of the front side and the one of the back side of the first DSSSD (300 μ m thick), the pair of the **polar angle** θ and the **azimuthal angle** ϕ determine a unique spatial position for the particle

For each FARCOS telescope, the ΔE -E matrices include all experimental events, without discrimination about noise, electronic inductions, interstrip events...

A selection of the events was mandatory!


The procedure works step by step...

assignment for each detected particle of its position in the DSSSD (300 µm thick)

```
Experimental constraints to select only "true particles":

\begin{array}{l} & = 1 \text{ for Si-300 } \mu\text{m, front and back;} \\ & = 1 \text{ for Si-1500 } \mu\text{m, front;} \\ & < 4 \text{ for Si-1500 } \mu\text{m, back;} \\ & = 0 \text{ for CsI(TI)} \\ & \geqslant 85\% \ \Delta E_{back} < \Delta E_{front} < 115\% \ \Delta E_{back} \ (7\sigma) \\ & \geqslant N_{strip} \ (300 \ \mu\text{m}) = N_{strip} \ (1500 \ \mu\text{m}) \ \text{or} \ N_{strip} \ (300 \ \mu\text{m}) = N_{strip} \ (1500 \ \mu\text{m}) \pm 1 \\ & = 1 \text{ for Si-300 } \mu\text{m, front;} \\ & = 1 \text{ for Si-1500 } \mu\text{m, front;} \\ & = 0 \text{ for CsI(TI)} \\ & \geqslant 85\% \ \Delta E_{back} < \Delta E_{front} < 115\% \ \Delta E_{back} \ (7\sigma) \\ & \geqslant N_{strip} \ (300 \ \mu\text{m}) = N_{strip} \ (1500 \ \mu\text{m}) \ \text{or} \ N_{strip} \ (300 \ \mu\text{m}) = N_{strip} \ (1500 \ \mu\text{m}) \pm 1 \\ & = 1 \text{ for Si-1500 } \mu\text{m, front;} \\ & = 1 \text{ for Si-1500 } \mu\text{m, front;} \\ & = 0 \text{ for CsI(TI)} \\ & \geqslant 85\% \ \Delta E_{back} < \Delta E_{front} < 115\% \ \Delta E_{back} \ (7\sigma) \\ & \geqslant N_{strip} \ (300 \ \mu\text{m}) = N_{strip} \ (1500 \ \mu\text{m}) \ \text{or} \ N_{strip} \ (300 \ \mu\text{m}) = N_{strip} \ (1500 \ \mu\text{m}) \pm 1 \\ & = 1 \text{ for Si-1500 } \mu\text{m, front;} \\ & = 1 \text{ for Si-1500 } \mu\text{m, front;} \\ & = 1 \text{ for Si-1500 } \mu\text{m, front;} \\ & = 0 \text{ for CsI(TI)} \\ & \geqslant 0 \text{ for CsI(T
```

For a **single** particle detected by a FARCOS telescope, a **good assignment** of its position was achieved without ambiguity...

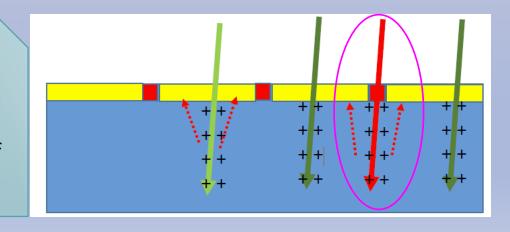
assignment for each detected particle of its position in the DSSSD (300 µm thick)

Experimental constraints to select only "true particles":

- \triangleright 85% $\Delta E_{back} < \Delta E_{front} < 115% \Delta E_{back}$ (7 σ)

	ΔE_front [MeV]	ΔE_back [MeV]	E_front [MeV]	Nstrip_300_front	Nstrip_300_back	Nstrip_1500_front
#1	51,6344	51,8097	79,8859	- 29	13	29
			148,723			30
			228,6089	Position ambiguity resolved: this is an interstrip event in DSSSD_1500µm (ambiguity in energy only)		
#2	12,9576	12,9558	22,1211	4	0	4
	118,8961	120,4121	180,1131	13	25	13
	Unresolved ambiguity: are these 2 particles? Could we assign their position using the TIME VARIABLE?					
#3	12,0703	12,3186	24,9049	29	29	30
	114,9052	116,9252		30	18	
	126,9753			Unresolved ambiguity: this is an interstrip event in DSSSD_300μm; Could we assign its position using the TIME VARIABLE?		

Unfortunately, simply comparing the energies lost was no longer enough to classify all the events: it cannot discriminate between interstrip, electronic induction or spurious events...

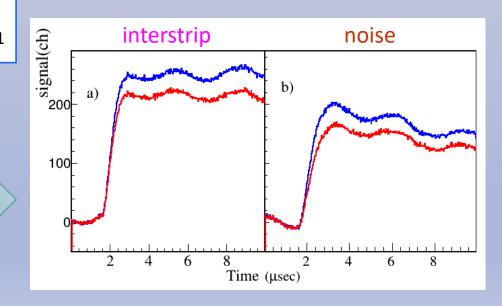

Some ambiguities have been observed...

assignment for each detected particle of its position in the DSSSD (300 µm thick)

INTERSTRIP event:

If a particle is collected into the very slight region between 2 adjacent strips, its energy is shared between them

the real reconstruction of the event is given by the sum of the two values of the energy released in each strip

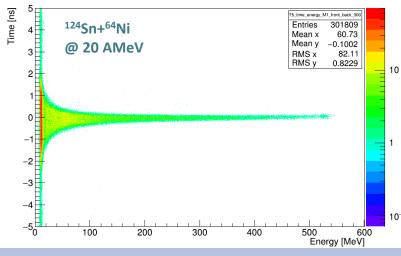

assignment for each detected particle of its position in the DSSSD (300 µm thick)

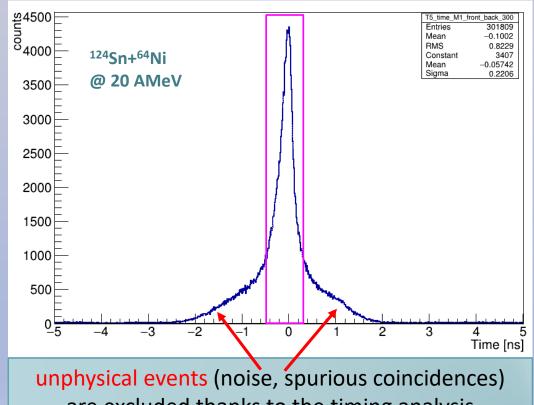
Experimental constraints to select only "true particles":

- \triangleright 85% $\Delta E_{back} < \Delta E_{front} < 115% \Delta E_{back}$ (7 σ)

«DETECTION TIME» variable:

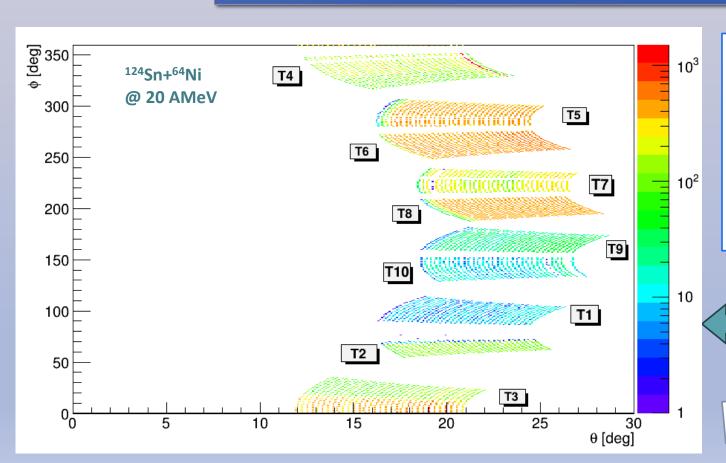
time in which the signal reaches 10% of its amplitude, after the subtraction of the baseline


th STEP


assignment for each detected particle of its position in the DSSSD (300 µm thick)

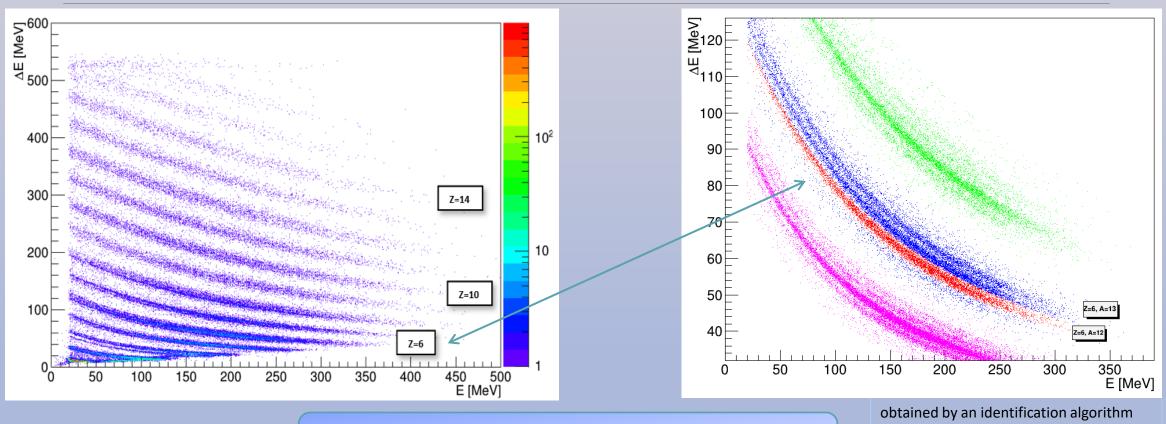
```
Experimental constraints to select only "true particles":
                                                                           = 2 for Si-300 µm, front and back;
                                                                                 = 2 for Si-1500 \mum, front;
                                         particle multiplicity
                                                                                 < 4 for Si-1500 μm, back;
                                                                                           = 0 for CsI(TI)
                                        85% \Delta E_{\text{back}} < \Delta E_{\text{front}} < 115\% \Delta E_{\text{back}} (7\sigma)
th STEP

ightharpoonup N_{\text{strip}} (300 \, \mu\text{m}) = N_{\text{strip}} (1500 \, \mu\text{m}) \mid \mid N_{\text{strip}} (300 \, \mu\text{m}) = N_{\text{strip}} (1500 \, \mu\text{m}) \pm 1
```


«DETECTION TIME» variable:

are excluded thanks to the timing analysis

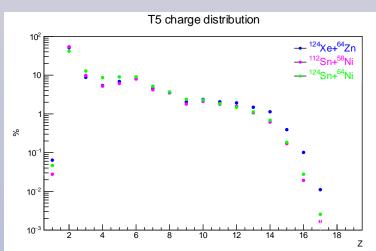
assignment for each detected particle of its position in the DSSSD (300 µm thick)


Experimental constraints to select only "true particles":

- \triangleright 85% $\Delta E_{\text{back}} < \Delta E_{\text{front}} < 115\% \Delta E_{\text{back}}$ (7 σ)
- N_{strip} (300 μ m) = N_{strip} (1500 μ m) or N_{strip} (300 μ m) = N_{strip} (1500 μ m) ±1
- particle multiplicity = 2 { interstrip events reconstructed unphysical events excluded (timing analysis)

FARCOS telescopes covered polar angles between 13° and 30° (azimuthal coverage of 2π)

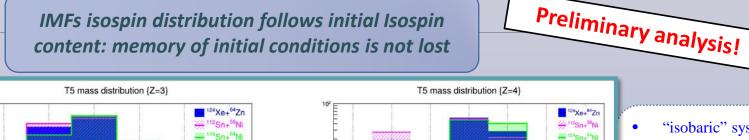
There is no ambiguity in the assignment of the position!


FARCOS correlator in CHIFAR experiment: particle identification

- Identification in charge up to $Z \approx 16$;
- Isotopic identification of IMFs up to $Z \approx 9$ and A ≈ 20 ;

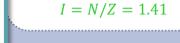
developed by the CHIMERA collaboration

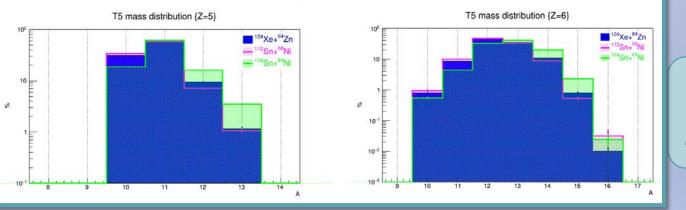
> FARCOS correlator in CHIFAR experiment: Isospin role in HI collisions



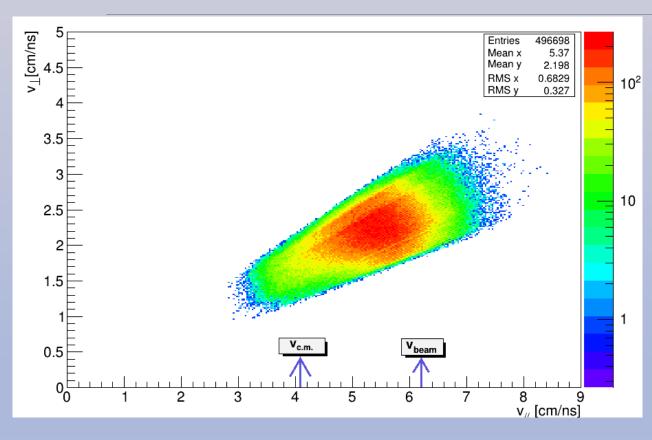
preliminary observations:

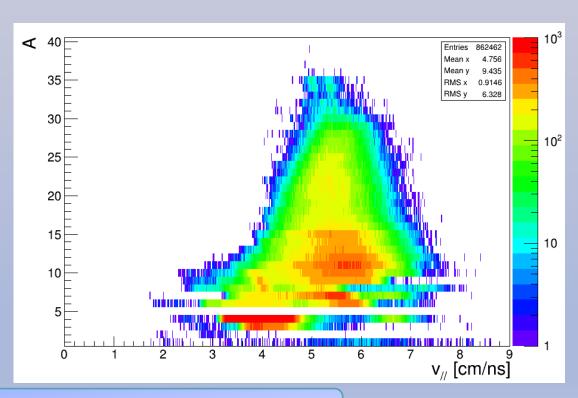
- 1)Enhanced light IMFs emission in the neutron rich reaction
- 2)The isobaric system (high-fissility) presents a stronger emission of heavier IMFs


Preliminary analysis from FARCOS data, without CHIMERA data!


IMFs isospin distribution follows initial Isospin

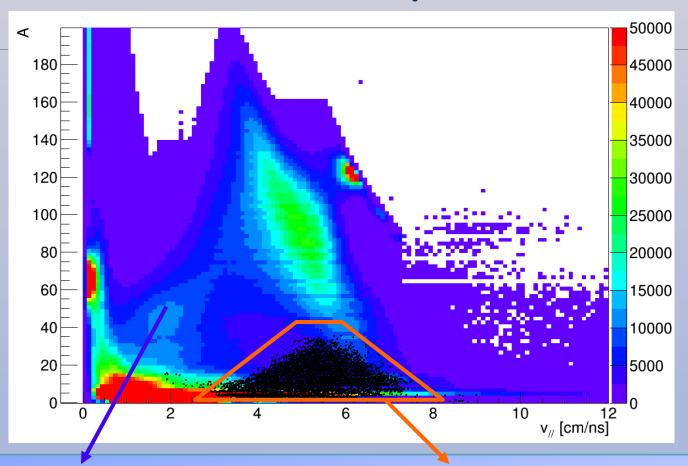
- "neutron poor" system: I = N/Z = 1.18
- "neutron rich" system:

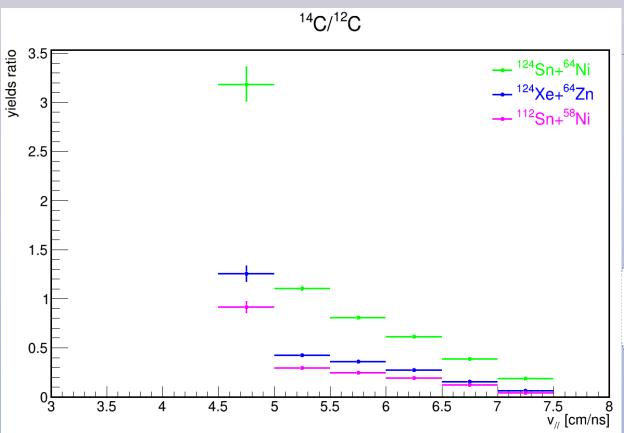




effect of neutrons enrichment for neutron rich system!

Preliminary results about physics cases of the experiment


From FARCOS data analysis, on the identified IMFs having 2<Z<16:

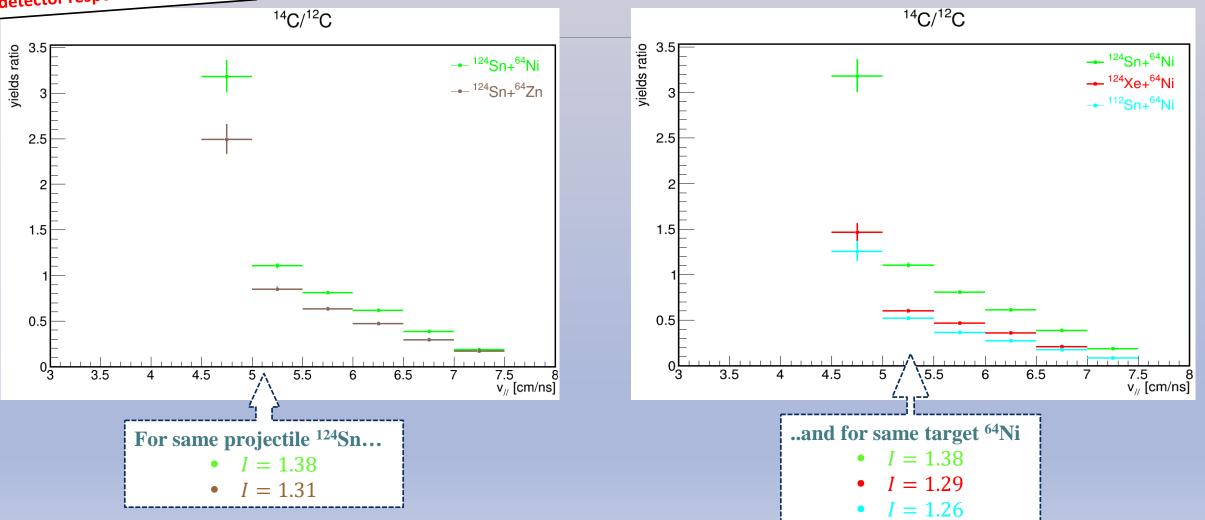

❖ Velocity distribution is centred on v_{PLF}, towards the midvelocity (lab. system).

➤ Preliminary results about physics cases of the experiment

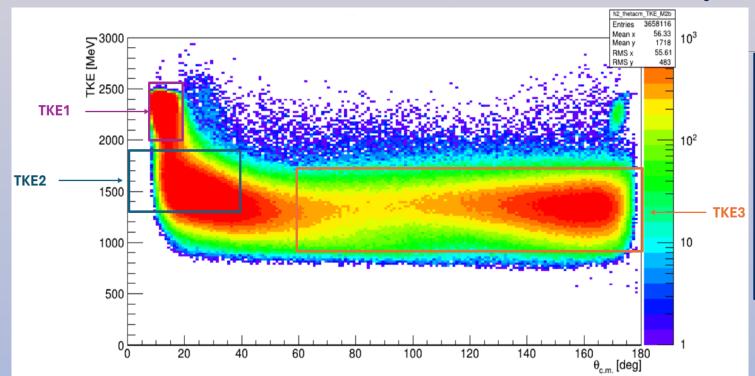
- **CHIMERA** data (colour scale) and events identified by **FARCOS** (black dots):
 - \triangleright good identification of the phase space up to $A \lesssim 35$.

Preliminary results about physics cases of the experiment

I PRELIMINARY RESULTS from raw data:


detector response is not included, high thresholds for detected particles within the two stages for DSSSDs (ΔE -E method);

- "neutron rich" system: I = N/Z = 1.38
- "isobaric" system: I = N/Z = 1.21
- "neutron poor" system: I = N/Z = 1.16


- \wedge N/Z distributions as a function of $v_{I/I}$ follow initial Isospin content:
 - > punctual memory of initial conditions is not lost;
 - > effect of neutron enrichment, according to the isospin ratio of each reaction.

Preliminary results about physics cases of the experiment

raw data
(detector response not included)

Preliminary results about physics cases of the experiment

TKE1: quasi-elastic emission;

TKE2: deep-inelastic mechanism with the possible rupture of the PLF;

TKE3: fission/fusion

The ranges of the TKE vs. $\theta_{c.m.}$ variables will be useful to impose constraints in future data analyses...

- Merging of FARCOS and CHIMERA data is mandatory to select some global variables (i.e. total charged particles multiplicity, reaction plane, impact parameter, etc.) for the characterization of the reaction mechanism and the IMFs emission process;
- $\triangleright N/Z$ distributions with specific constraints (TKE $\theta_{c.m.}$, global variables using the CHIMERA multi-detector);
- > Results will be compared with some theoretical models...

Thanks for your attention!