

LSO/LYSO Crystal Development

Ren-yuan Zhu

California Institute of Technology

Why Crystal Calorimeter

- Enhance physics discovery potential since photons and electrons are fundamental particles for the standard model physics and new physics.
- Performance of a crystal calorimeter is well understood:
 - The best possible energy resolution, good position and photon angular resolution;
 - Good e/photon identification and reconstruction efficiency;
 - Good missing energy resolutions;
 - Good jet energy resolution.

Physics with Crystal Calorimeters

Charmonium system observed by CB through Inclusive photons

Charmed Meson in Z Decay

$$\chi_{c1} \to J/\psi \gamma$$

L₃ BGO

CB Nal(TI)

H→γγ Search Needs Precision ECAL

σm / m = 0.5 [σE₁/E₁ ⊕ σE₂/E₂ ⊕ σθ /tan(θ/2)], where σE / E = a / $\sqrt{$ E ⊕ b ⊕ c/E and E in GeV

KTeV Csl Position Resolution

BaBar CsI(TI) Energy Resolution

BaBar CsI(TI)

Good light yield of CsI(TI) provides excellent energy resolution at low energies

L3 BGO Energy Resolution

Contribution	"Radiative"+Intrinsic	Temperature	Calibration	Overall
Barrel	0.8%	0.5%	0.5%	1.07%
Endcaps	0.6%	0.5%	0.4%	0.88%

CMS PWO Energy Resolution

Bright Fast Dense LSO Crystal

Crystal	Nal(TI)	CsI(TI)	CsI(Na)	Csl	CeF ₃	BaF ₂	BGO	PWO(Y)	LSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.51	6.16	4.89	7.13	8.3	7.40
Melting Point (°C)	651	621	621	621	1460	1280	1050	1123	2050
Radiation Length (cm)	2.59	1.86	1.86	1.86	1.65	2.03	1.12	0.89	1.14
Molière Radius (cm)	4.13	3.57	3.57	3.57	3.38	3.10	2.23	2.00	2.07
Interaction Length (cm)	42.9	39.3	39.3	39.3	23.17	30.7	22.8	20.7	20.9
Refractive Index ^a	1.85	1.79		1.95	1.62	1.50	2.15	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420	420 310	340 300	300 220	480	425 420	402
Decay Time ^b (ns)	245	1220	690	30 6	30	650 0.9	300	30 10	40
Light Yield ^{b,c} (%)	100	165	88	3.6 1.1	7.3	36 4.1	21	0.3 0.1	85
d(LY)/dT ^b (%/ ºC)	-0.2	0.4	0.4	-1.4	0	-1.9 0.1	-0.9	-2.5	-0.2

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.

Crystal Density: Radiation Length

1.5 X₀ Cubic Samples:

Hygroscopic Halides

Non-hygroscopic

Full Size Crystals:

BaBar CsI(TI): 16 X₀

L3 BGO: 22 X₀

CMS PWO(Y): 25 X_0

Excitation, Emission, Transmission

$$T_s = (1 - R)^2 + R^2(1 - R)^2 + ... = (1 - R)/(1 + R)$$
, with

$$R = rac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$$

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM **A333** (1993) 422

LSO/LYSO Refractive Index

Wavelength dependent measurement by a V-prism

- ◆ Cubic sample placed inside a V-prism
- Incident light shooting perpendicularly to one side of the prism
- ◆ The refractive index is calculated according to the following the equation:

$$n = (N^2 + \sin \theta \sqrt{N^2 - \sin^2 \theta})^{\frac{1}{2}}$$

λ (nm)	405	420	436	461	486	516	546
R. I.	1.833	1.827	1.822	1.818	1.813	1.810	1.806

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Slow Scintillators

Emission Weighted Quantum Efficiency

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

Light Output Temperature Coefficient

Temperature Range: 15°C ~ 25°C

BaF₂: Fast and Slow Components

Two filters used to select scintillation component

Transmittance for filter BPF-214 (fast component)

Transmittance for filter BPF-300 (slow component)

- Scintillation of BaF₂ has two components: the fast one peaked at 220 nm while the slow one peaked at 300 nm.
- Special band pass filters were used to measure the light output temperature coefficients for individual component.

Comparison of BGO, LSO & LYSO

2.5 x 2.5 x 20 cm (18 X₀) Bar

Excitation, Emission, Transmission

Identical transmittance, emission & excitation spectra Part of emitted light may be self-absorbed in long samples

1.7 cm Cube

2.5 x 2.5 x 20 cm Bar

CTI LSO: Longitudinal Uniformity

No longitudinal variation in optical properties Transverse transmittance approaches theoretical limit

PMT Based Readout with Coincidence

Systematic error with repeated mounts & measurements: < 1%

LSO/LYSO Resolution with PMT

~10% FWHM resolution for ²²Na source (0.51 MeV)

1.7 cm Cube

2.5 x 2.5 x 20 cm Bar

Channel number

LSO/LYSO Light Output with PMT

1,200 p.e./MeV, 5/230 times of BGO/PWO

1.7 cm Cube

2.5 x 2.5 x 20 cm Bar

APD Based Readout with Coincidence

Two Hamamatsu S6664-55 APD, Canberra 2003 BT preamplifier and ORTEC 673 shaping amplifier with shaping time 250 ns

Calibration of the APD Readout

Pedestal: 34 ADC, corresponding to 57 electrons Corrections for 5.9 keV X-ray: 78%; Good linearity

LSO/LYSO Light Output with APD

1,500 p.e./MeV, 4/200 times of BGO/PWO, Noise < 40 keV

Discrepancy reported in NSS05: LSO has more light output, which disappeared after irradiation to 1 Mrad and thermal annealing.

LSO Emission Spectra

All emission spectra are similar to that of LYSO, except that γ -ray excited emission has a "red shift", which disappeared after irradiations with γ -ray.

γ -Ray Irradiation on Sample's ID End

SG-LYSO-L3

ID End received ~5,000 rad

LSO: γ -Ray Excited Emission Spectra

The emission peak of sample's irradiated ID end has a ~15 nm "blue" shift

JLYSO: γ -Ray Excited Emission Spectra

The emission peak of sample's ID (irradiated) end has NO "blue" shift

UV Excited Emission Spectra of Two Halves of the LSO Sample

The γ -ray irradiated half shows less long wavelength emission when excited at 325 nm and 380 nm.

Ce³⁺ Luminescence Centers in LSO

J.D. Naud et. al., IEEE Trans. Nuclear Sci., Vol.43, p1324, June 1996

Ce1: two regular Lu³⁺ crystallographic sites, ex: 360 nm, em: 430 nm Ce2: irregular sites, proposed "interstitial site", ex: 325 nm, em: 500 nm

γ-Rays Induced Damage in LSO/LYSO

No damage in Photo-Luminescence

LT recovery very slow

Transmittance Damage

300°C thermal annealing effective

LT damage: 8% @ 1 Mrad

Light Output Damage with PMT

Light output loss: about 12% to 14% @ 1 Mrad

Light Output Damage with APD

Light output loss: about 10% to 12% @ 1 Mrad

LRU Damage with PMT

Uniformity depends on end coupled to the PMT No damage in the light response uniformity

LRU Damage with APD

Uniformity depends on end coupled to the APD Some change in the light response uniformity

B end Coupling

Radiation Induced Phosphorescence

Phosphorescence peaked at 430 nm with decay time constant of 2.5 h observed

γ-ray Induced Readout Noise

Sample	L.Y.	F	Q _{15 rad/h}	Q _{500 rad/h}	σ _{15 rad/h}	Ο _{500 rad/h}
ID	p.e./MeV	μ A/rad/h	p.e.	p.e.	MeV	MeV
CPI	1,480	41	6.98x10 ⁴	2.33x10 ⁶	0.18	1.03
SG	1,580	42	7.15x10 ⁴	2.38x10 ⁶	0.17	0.97

 γ -ray induced PMT anode current can be converted to the photoelectron numbers (Q) integrated in 100 ns gate. Its statistical fluctuation contributes to the readout noise (σ).

LSO/LYSO ECAL Performance

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0
$$\% / \sqrt{E} \oplus 0.5 \% \oplus .001/E$$

LYSO Development for SuperB

LSO/LYSO Mass Production

CTI: LSO

CPI: LYSO

Saint-Gobain LYSO

Additional Capability: SIPAT @ Sichuan, China

Six LSO & LYSO Samples

2.5 x 2.5 x 20 cm (18 X₀) Bar

Three CTI LSO samples are provided by Chuck Melcher.

Three LYSO samples are purchased from Saint-Gobain.

Statistical Comparison

Recent LYSO crystals are better than LSO

Sichuan Institute of Piezoelectric and Acousto-optic Technology (SIPAT)

China Electronics Technology Corporation (CETC)
No. 26 Research Institute, www.sipat.com

SIPAT R&D Building

SIPAT: Furnace & R&D Issues

Raw material:

Lu₂O₃: 99.995%

SO₂: 99.999%

- Stoichiometry
- Temperature Gradient
- Growth Parameter Optimization
- Thermal Annealing
- Iridium Crucible Maintenance
- Power Supply Stability
- Chilled Water Stability

LYSO Growth Progress at SIPAT

Started 2001, invested >\$1M, Significant Progress in last year

SIPAT Ø 60 x 250 mm LYSO Boles

SIPAT Czochralski Furnaces

First SIPAT LYSO Sample for HEP

- Received in the middle of August with dimension of 25 x
 25 x 200 mm and good visual inspection.
- It was first annealed at 300°C for 10 hours and with its initial optical and scintillation properties measured.
- Together with SG-L3, two samples were irradiated with integrated doses of 10, 10², 10³, 10⁴ 10⁵ and 10⁶.
- Samples were kept in dark after irradiation for 48 hours before optical and scintillation property measurement.
- Damage to transmittance, light output and uniformity are compared with samples from CTI, CPI and Saint-Gobain.

Initial Optical Properties

Excitation: emission @ 402 nm Emission: excitation @ 358 nm

The cutoff of SG-L3 has ~5 nm blue shift compared to SIAPT-L1

Light Output & Decay Kinetics

Compatible with the first batch large size samples from CTI and Saint-Gobain, and is 86% of the 'best' samples

γ-Ray Induced Radiation Damage

Scintillation spectrum not affected by irradiation

~8% damage @ 420 nm after 10⁶ rad irradiation

Comparison of L.O. Damage

All samples show consistent radiation resistance

9% - 14% loss by APD

Possible Origin of Non Uniformity

C. Melcher: LO in LSO is a function of Ce concentration B. Chai: LO in LYSO is a function of Yttrium fraction

FWHM

First SIPAT LYSO Bole for HEP

R&D aiming at producing crystals for HEP experiments

Broken after 1st attempt cutting two 2.5 x 2.5 x 20 cm samples

11 Samples from the 1st Ingot

Excitation & Photo-Luminescence

No variation in excitation and emission

Transmittance

Transmittance degrades after 5 cm from the seed

Light Output

Light output degrades after 10 cm from the seed

Counts

Energy Resolution

Resolution degrades after 10 cm from the seed

Excellent Correlations

Between light output and resolution/transmittance

Ce & Y Concentrations by GDMS

ID	Ce (ppmw)	Y (W%)
SIAPT-A	205	1.11
SIAPT-B	230	1.05
SIAPT-C	375	1.42
SIAPT-D	290	1.32
SIAPT-E	290	1.09
SIAPT-F	310	1.33
SIAPT-G	345	1.43
SIAPT-H	340	1.28
SIAPT-I	380	1.33
SIAPT-J	380	1.24
SIAPT-K	435	1.45

Cerium Segregation in LSO

Ce is not easy to enter LSO lattice. It may be important to make it uniform.

Yttrium Segregation in LSO

Yttrium is more uniform in LSO. Its distribution seems not a concern.

Correlation: Ce and EWLT/L.O./Phors.

Summary

- LSO/LYSO crystals are a good candidate for future precision crystal calorimeters.
- Progress has been made in understanding LSO and LYSO crystals.
- Development of cost effective LYSO crystals for SuperB experiments is being pursued.
- Thanks to the DOE ADR program for supporting this work.