EUPRAXIA PREPARATORY PHASE PROJECT

WP10 - Plasma Components & Systems French possible contributions

K. Cassou (CNRS/IJClab) on behalf of LOA (C. Thaury, J. Faure), LPGP (B. Cros) and S. Dobosz (CEA/Lydil)

kevin.cassou@ijclab.in2p3.fr

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

Multi-scale gas jet target

R&D objectives

- Development of multi-scale gas jet targets: from 100 µm to 10 cm
- Development of techniques for structuring plasma density (shocks, precursors, multi-jets, etc.)
- plasma and plasma damage)

Long gas jet, >50 TW laser guiding

European Union

EUPRAXIA-PP WP10 | 15/03/2023 | WP10 | K. Cassou

- Development of jets for high rate (continuous or pulsed flow, pumping issues) and high medium power (resistance to laser and

kHz high density micro gas jet

Multi-scale gas jet target

Available facilities

Currently: laser 80TW Salle Jaune and Apollon laser for centimetric gas jets. Laser Salle Noir for kHz and micro-jet developments

From 2024: the LAPLACE-HC platform for high speed / high medium power 100 Hz, 50W

Beam time :

substantial beam time as development is integrated with current activities

Resources :

2 research teams ~10 FTE Collaboration with LTS-FMS Center for physical sciences (Lt)

Funding :

IFAST MILPAT (very modest) and important regional public funding for **LAPLACE** project

Page 3

Gas cell target development

R&D objectives

- Inline integrated target
- continuous gas flow operation
- Power dissipation
- Density out ramp control
- transverse optical access for diagnostic

Gas cell type

- Channel type
- Gas slab type
- Variable length cell (ELISA LPGP)
- Waveguide structure (LPGP)

Page 4

Gas cell target test bench & test facilities

Currently : dedicated test bench for inline plasma target

2.5 TW 10Hz, 50 fs laser with synchronized probe [- 50;+ 150 ps] Plasma diags :

- density measurement (SID4-HR),
- visible spectroscopy (2D imaging spectrometer)
- target lifetime diagnostics / aperture imaging

+ national (LOA) and European collaboration in EuPRAXIA framework (LNF)

By 2024 : PALLAS test facility

50 TW 10Hz laser driver with advanced control inline target positionner

With complete characterization e- beamline (beam transport focusing, spectra, charge, position, ...) emittance, collimation studies

Beam time : 22 weeks / year + extra on test bench

Resources : one team ~ 10 FTE

Funding: ANR-PACIFICS, IN2P3-PALLAS

Developing industrial collaboration for target manufacturing

EuPRAXIA-PP contribution

French groups can address various key development for EuPRAXIA plasma component • Available facilities and test bench for *laser-driven components*

- Scientific and industrial network
- Current development and expertise on simulation workflow for target design :
 - CFD for target design
 - Fast PIC simulations
 - Multi physics
- Development of micro mechanic of ceramic, gas flow management and heat dissipation optimized components
- Willing to settle coordinated work on plasma target at the national level and with EuPRAXIA European partner
- Limited funds to address more advanced specific EuPRAXIA needs on plasma target
 - Funds for post or engineer of 24 month at least.
 - Funds for 2 pHD

Page 6