$\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Factorization Restoration Through Glauber Gluons

Thomas Becher University of Bern

2408.10308 with Patrick Hager, Sebastian Jaskiewicz, Matthias Neubert, and Dominik Schwienbacher

High Precision for Hard Processes (HP² 2024) September 10-13 2024, University of Turin and INFN

PDF Factorization

- Scale separation
 - perturbative hard-scattering $\hat{\sigma}_{ii}$ at scale Q
 - non-perturbative PDFs $f_i(x)$ at scale Λ_{QCD}
- No low-energy interactions between incoming hadrons
 - cancellation of soft and Glauber physics CSS '85 (for DY)
- Purely collinear, single logarithmic DGLAP evolution

Collinear Factorization Violation

Catani, de Florian, Rodrigo '11; Forshaw, Seymour, Siodmok '12; \rightarrow talk by Prasanna Kumar Dhani on Friday

New results for **Sp** Henn, Ma,Xu, Yan, Zhang, Zhu '24 Guan, Herzog, Ma, Mistlberger, Suresh '24

For space-like collinear limit $1 \parallel j$ the splitting amplitude Sp depends on the colors and directions of the partons not involved in the splitting!

• Related to non-cancellation of soft phases

Implications for PDF factorization?

Super-Leading Logs (SLLs)

Forshaw, Kyrieleis, Seymour '06 '08

Consider gap between jets at hadron collider, cone around beam direction

Large logarithms $\alpha_s^n L^m$ with $L = \ln(Q/Q_0)$

- e^+e^- : $m \le n$, leading logs m = n
- $pp: \alpha_s L, \alpha_s^2 L^2, \alpha_s^3 L^3, \alpha_s^4 L^5 \dots, \alpha_s^{3+n} L^{3+2n}$

Super-Leading Logs (SLLs)

Forshaw, Kyrieleis, Seymour '06 '08

Double logarithms due to Glauber phases in amplitudes which spoil cancellations of soft+collinear terms in cross section

• directly related to collinear factorization breaking

Effect first arises at four-loop order; need

two phase-factors, a collinear emission, and an emission into gap

Soft+collinear double logarithms vs. single-log evolution of PDFs?

Have modern EFT framework to analyze and resum observables with SLLs. TB, Neubert, Shao '21; + Stillger '23; Böer, Hager, Neubert, Stillger, Xu '24 → talk by Philipp Böer

Questions about PDF factorization on previous slides can be formulated concisely and answered using the **RG and the method of regions**.

Will present an analysis of 4-loop SLLs and demonstrate that Glauber gluon exchanges at the scale Q_0 restore the single-logarithmic evolution relevant for PDFs TB, Hager, Jaskiewicz, Neubert, Schwienbacher 2408.10308

Upshot of the talk

Collinear factorization breaking at $\mu = Q$

soft-collinear factorization breaking by Glaubers modes at $\mu = Q_0$

PDF factorization for $\mu < Q_0$

"factorization restoration"

Outline

- EFT framework for SLLs
 - Factorization theorem
 - SLLs from RG evolution
- Low-energy analysis
 - Renormalization consistency conditions
- Region analysis of pentagon integrals
 - Glauber contribution to low-*E* matrix elements
- Consistency with PDF factorization

Factorization for gaps between jets

Hard functions *m* hard partons along fixed directions $\{n_1, ..., n_m\}$ $\mathcal{H}_m \propto \mathcal{M}_m \rangle \langle \mathcal{M}_m |$

Soft + collinear function squared amplitude for *m* Wilson lines +collinear fields

9

RG evolution

Renormalized hard functions fulfill RG equation

and color space

One-loop hard anomalous dimension:

$$\Gamma^{H} = \gamma_{\text{cusp}}(\alpha_{s}) \left(\frac{\Gamma^{c} \ln \frac{\mu^{2}}{Q^{2}}}{\sqrt{\Gamma^{c} \ln \frac{\mu^{2}}{Q^{2}}}} + \frac{V^{G}}{\sqrt{\Gamma^{c} \ln \frac{\mu^{2}}{Q^{2}}}} + \frac{V^{G}}{\sqrt{\Gamma^{c} \ln \frac{\alpha_{s}}{4\pi}}} + \frac{\Gamma^{C}}{\Gamma^{c}} \right)$$

$$\int_{\text{generates SLLs}} \propto i\pi \int_{\text{generates NGLs}} purely \text{collinear}} \int_{\text{generates NGLs}} \int_{\text{talk by Jürg Haag}} \frac{10}{\sqrt{\Gamma^{c} \ln \frac{\mu^{2}}{Q^{2}}}} + \frac{1}{\sqrt{\Gamma^{c}}}$$

SLLs from RG evolution

Evolve hard function from $\mu_h \sim Q$ to $\mu_s \sim Q_0$

$$\boldsymbol{U}(\mu_h,\mu_s) = \mathbf{P} \exp\left[\int_{\mu_s}^{\mu_h} \frac{d\mu}{\mu} \boldsymbol{\Gamma}^H(\mu)\right]$$
$$= \mathbf{1} + \int_{\mu_s}^{\mu_h} \frac{d\mu_1}{\mu_1} \boldsymbol{\Gamma}^H(\mu_1) + \int_{\mu_s}^{\mu_h} \frac{d\mu_1}{\mu_1} \int_{\mu_1}^{\mu_h} \frac{d\mu_2}{\mu_2} \boldsymbol{\Gamma}^H(\mu_2) \boldsymbol{\Gamma}^H(\mu_1) + \dots$$

Resummed cross section

Leading SLLs

Anomalous dimension fulfills simple identities

$$[\mathbf{\Gamma}^c, \overline{\mathbf{\Gamma}}] = 0, \quad \langle \dots \, \mathbf{\Gamma}^c \otimes \mathbf{1} \rangle = 0, \quad \langle \dots \, \mathbf{V}^G \otimes \mathbf{1} \rangle = 0.$$

Only very specific combinations contribute to leading SLLs. At four loops

$$C_{01} = \left\langle \mathcal{H}_{m_0}^{(0)} \, \mathbf{V}^G \mathbf{\Gamma}^c \mathbf{V}^G \, \overline{\mathbf{\Gamma}} \otimes \mathbf{1} \right\rangle$$
$$C_{11} = \left\langle \mathcal{H}_{m_0}^{(0)} \, \mathbf{\Gamma}^c \mathbf{V}^G \, \mathbf{V}^G \, \overline{\mathbf{\Gamma}} \otimes \mathbf{1} \right\rangle$$

Born-level ${\mathscr H}$

RG invariance imposes a constraint on the form of the bare low-E matrix element $\mathcal{W}_m(\mu_s) = Z \mathcal{W}_m^{\text{bare}}$

Leading poles in Z-factor from one-loop Γ

$$\begin{split} \boldsymbol{\mathcal{W}}_{m}^{\text{bare}} &= \mathbf{1} + \frac{\alpha_{s}}{4\pi} \, \frac{\overline{\Gamma}}{2\varepsilon} + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \left(\frac{\boldsymbol{V}^{G} \, \overline{\Gamma}}{2\varepsilon^{2}} + \dots\right) \\ &+ \left(\frac{\alpha_{s}}{4\pi}\right)^{3} \left(\frac{\boldsymbol{V}^{G} \, \boldsymbol{V}^{G} \, \overline{\Gamma}}{3\varepsilon^{3}} - \frac{\Gamma^{c} \, \boldsymbol{V}^{G} \, \overline{\Gamma}}{3\varepsilon^{3}} \ln \frac{Q^{2}}{\mu_{s}^{2}} + \dots\right) + \mathcal{O}(\alpha_{s}^{4}) \end{split}$$
(only show terms for SLLs)
dependence on hard scale !!

Now verify this structure order by order...

 \mathscr{W}_m at NLO is obtained by computing soft Wilson line matrix element or, equivalently, from product of soft currents $J^a_\mu(q)$.

- $\mathbf{V}^G \overline{\Gamma}$ in $\mathcal{W}_m^{(2)}$ from real-virtual soft corrections, from imaginary part of one-loop soft current Catani, Grazzini '00.
- $\mathbf{V}^{G}\mathbf{V}^{G}\overline{\mathbf{\Gamma}}$ in $\mathscr{W}_{m}^{(3)}$ from two-loop soft current (including tripole terms!) comparing space-like and time-like case Duhr, Gehrmann '13; Dixon, Herrmann, Yan, Zhu '19

$$\mathcal{W}_{m}^{\text{bare}} = \mathbf{1} + \frac{\alpha_{s}}{4\pi} \frac{\overline{\Gamma}}{2\varepsilon} + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \left(\frac{V^{G} \overline{\Gamma}}{2\varepsilon^{2}} + \dots\right) + \left(\frac{\alpha_{s}}{4\pi}\right)^{3} \left(\frac{V^{G} V^{G} \overline{\Gamma}}{3\varepsilon^{3}} - \frac{\Gamma^{c} V^{G} \overline{\Gamma}}{3\varepsilon^{3}} \ln \frac{Q^{2}}{\mu_{s}^{2}} + \dots\right) + \mathcal{O}(\alpha_{s}^{4})$$

- All terms except last are reproduced by soft matrix elements.
 - purely soft matrix elements are *Q*-independent
- Purely collinear matrix elements are scaleless
 - unrestricted phase-space integrals since collinear emissions never enter gap
- Term with Q-dependence can only arise through softcollinear interactions!

Soft-collinear interactions

Three options for $\ln(Q)$ -dependent term

- 1. Perturbative on-shell modes with virtuality below soft scale Q_0 mediating soft-collinear interactions
 - e.g. ultra-soft mode in SCET_I , soft-collinear mode in SCET_I
- 2. Collinear anomaly inducing rapidity logs + offshell modes (e.g. Glaubers) at scale Q_0
- 3. Non-perturbative low-energy interactions among incoming hadrons
 - Breaks PDF factorization! Non-perturbative two-nucleon matrix elements.

Consider diagrams with soft and collinear emission and exchange between soft and collinear.

Perform method-of-region analysis to find possible scalings of loop momentum k.

Perturbative analysis can uncover scenarios 1.) and 2.) at scale Q_0 . If it fails, this would imply scenario 3.).

Light cone reference vectors n_{μ} , \bar{n}_{μ} and expansion parameter $\lambda = Q_0/Q$. External momenta

$$(n \cdot p_c, \bar{n} \cdot p_c, p_{c\perp}) \equiv (p_c^+, p_c^-, p_{c\perp}) \sim Q(\lambda^2, 1, \lambda)$$
$$q_c \sim Q(\lambda^2, 1, \lambda) \quad \bar{p}_{\bar{c}} \sim Q(1, \lambda^2, \lambda) \quad l_s \sim Q(\lambda, \lambda, \lambda)$$

Consider all possible scalings for loop momentum k

Reduces to analysis of scalar pentagon integrals. Can check against full result Bern, Dixon, Kosover '93.

Region finder in Asy2.1, pySecDec identify single region:

$$k \sim k_{sc} \sim (\lambda^2, \lambda, \lambda^{3/2})$$
 "soft-collinear"

On-shell mode with small transverse momentum, compatible with soft and collinear scaling (scenario 1).

In Euclidean kinematics $s_{ij} = (p_i + p_j)^2 < 0, p_5^2 < 0$ soft-collinear mode fully reproduces pentagon integral, but for physical kinematics

$$s_{12} = -p_c^- q_c^+, \quad s_{23} = q_c^- l_s^+, \quad s_{45} = -(p_c^- - q_c^-) l_s^+,$$

$$s_{34} = -\bar{p}_{\bar{c}}^+ l_s^-, \quad s_{51} = -q_c^- \bar{p}_{\bar{c}}^+, \quad p_5^2 = (p_c^- - q_c^-) \bar{p}_{\bar{c}}^+$$

extra terms are present.

Related to cancellation

$$\underbrace{s_{45}s_{51}}_{\lambda} - \underbrace{p_5^2s_{23}}_{\lambda} = \underbrace{p_c^- \bar{p}_{\bar{c}}^+ (q_{cT} + l_{sT})^2}_{\lambda^2} > 0$$

Extra terms power suppressed in Euclidean kinematics and proportional to a prefactor

$$P = \underbrace{\frac{s_{45}s_{51}}{\underbrace{s_{45}s_{51} - p_5^2s_{23}}}_{\lambda^{-1}} \left[1 - e^{i\pi\varepsilon\Theta} \left(1 + \underbrace{\frac{p_5^2s_{23} - s_{45}s_{51}}{\underbrace{s_{45}s_{51}}}_{\lambda} \right)^{-\varepsilon} \right]$$

with
$$\Theta \equiv \theta(p_5^2) + \theta(s_{23}) - \theta(s_{45}) - \theta(s_{51})$$

$$P \sim \begin{cases} 1 & \text{for } \Theta = 0\\ \lambda^{-1} & \text{for } \Theta \neq 0 \end{cases}$$

Power enhancement due to complex phases!

Glauber contribution

Hidden region (see backup) not present in Euclidean case: $k \sim (\lambda^2, \lambda, \lambda)$ "Glauber"

Expanded loop integral

$$I^{g} = i(4\pi)^{2-\varepsilon} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{-k_{T}^{2}} \frac{1}{k^{+}q_{c}^{-} - k_{T}^{2} - 2k_{T} \cdot q_{cT}}$$

$$\times \frac{1}{\left[-k^{+}(p_{c}^{-} - q_{c}^{-}) - q_{c}^{+}p_{c}^{-} - k_{T}^{2} - 2k_{T} \cdot q_{cT}\right]}$$

$$\times \frac{1}{\bar{p}_{c}^{+}(k^{-} - l_{s}^{-})} \frac{1}{-l_{s}^{+}k^{-} - k_{T}^{2} + 2k_{T} \cdot l_{sT}}$$

well-defined in dim.reg. Perform k_+ and k_- integrals using residues. What remains is Euclidean off-shell triangle in $d = 2 - 2\varepsilon$.

- Soft-collinear + Glauber modes correctly reproduce leading power result for scalar pentagon in physical region.
- Soft-collinear part has scaleless integration over collinear emission. No contribution to cross section.
- Glauber contribution only from diagram shown above + mirrored counterparts!
 - Result is also obtained using Glauber-SCET Rothstein, Stewart '16 (additional diagrams due to $|k_z|^{\eta'}$ regulator cancel against zero-bin subtractions)

Compute QCD diagram + mirrored counterparts

$$\begin{split} \boldsymbol{\mathcal{W}}_{m}^{\text{bare}} &\ni \frac{i\alpha_{s}^{3}}{12\pi^{2}\varepsilon^{3}} f^{abc} f^{ade} \sum_{j>2} J_{j} \times \left[\boldsymbol{T}_{1L}^{d} \boldsymbol{T}_{1R}^{e} \boldsymbol{T}_{2L}^{b} \boldsymbol{T}_{jR}^{c} \left(-\frac{1}{2\eta} - \ln \frac{\nu}{p_{c}^{-}} \right) + \boldsymbol{T}_{2L}^{d} \boldsymbol{T}_{2R}^{e} \boldsymbol{T}_{1L}^{b} \boldsymbol{T}_{jR}^{c} \left(\frac{1}{2\eta} + \ln \frac{\nu \bar{p}_{c}^{+}}{Q_{0}^{2}} \right) \right] \\ &- \left(L \leftrightarrow R \right), \end{split}$$

where J_i is angular integral over gap. Need regulator $(k_+/\nu)^{\eta}$ for collinear phase space integral. Divergences drop out, leave logarithm of $Q^2 = p_c^- \bar{p}_{\bar{c}}^+$.

Under color trace expression simplifies to

$$\boldsymbol{\mathcal{W}}_{m}^{\text{bare}} \ni -\frac{iN_{c}\alpha_{s}^{3}}{12\pi^{2}\varepsilon^{3}} if^{abc} \sum_{j>2} J_{j} \boldsymbol{T}_{1}^{a} \boldsymbol{T}_{2}^{b} \boldsymbol{T}_{j}^{c} \ln \frac{p_{c}^{-} \bar{p}_{\bar{c}}^{+}}{Q_{0}^{2}} = -\frac{\boldsymbol{\Gamma}^{c} \boldsymbol{V}^{G} \, \overline{\boldsymbol{\Gamma}}}{3\varepsilon^{3}} \ln \frac{Q^{2}}{\mu_{s}^{2}} + \dots$$

Perturbative Glauber contribution yields $\ln(Q)$ term! Matrix element of $\mathscr{W}_m^{(3)}$ consistent with DGLAP and SLL evolution.

Conclusion

Long live PDF factorization!

Outlook

- Demonstrated consistency of 4-loop SLL with PDF evolution
 - Remarkable since all ingredients for the breaking of PDF factorization are present at this order.
- To do list
 - Compute non-log(Q) collinear pieces, show that they indeed reproduce DGLAP
 - Consistency for matrix element $\mathscr{W}_m^{(4)}$?
 - All order structure of Glauber terms?
 - Factorization proof?

Extra slides

Glauber region in parameter space

Can perform region analysis in Schwinger or Lee-Pomeransky parameter space (like Asy and PySecDec)

$$(\overline{x}_{1}, x_{2}, x_{3}, x_{4}, x_{5}) \sim (\lambda^{-2}, \lambda^{-2}, \lambda^{-2}, \lambda^{-1}, \lambda^{-2})$$
$$\mathcal{F} = -\underbrace{x_{1}x_{3}s_{23}}_{\lambda^{-3}} - \underbrace{x_{1}x_{4}s_{51}}_{\lambda^{-3}} - \underbrace{x_{3}x_{5}s_{45}}_{\lambda^{-3}} - \underbrace{x_{4}x_{5}m^{2}}_{\lambda^{-3}} - \underbrace{x_{2}x_{4}s_{34}}_{\lambda^{-2}} - \underbrace{x_{2}x_{5}s_{12}}_{\lambda^{-2}} - \underbrace$$

The Glauber region corresponds to a pinch due to cancellations in the \mathcal{F} polynomial

$$\mathcal{F} = \underbrace{\left(-q_c^- x_1 + (p_c^- - q_c^-) x_5\right)}_{\lambda^{-2}} \underbrace{\left(l_s^+ x_3 - \bar{p}_{\bar{c}}^+ x_4\right)}_{\lambda^{-1}}$$

Action of anomalous dimensions on \mathcal{H}_m

Soft wide-angle emissions $\overline{\Gamma}$

$$\mathcal{H}_{m}\overline{R}_{m} = \sum_{(ij)}^{1} \mathcal{M}_{j}^{i} \mathcal{M}_{j}^{i} \mathcal{M}_{j}^{i}$$

$$\overline{R}_{m} = -4 \sum_{(ij)}^{1} T_{i,L} \circ T_{j,R} \mathcal{W}_{ij}^{n+1} \Theta_{hard} \mathcal{M}_{m+1}$$
extra hard parton!
$$\mathcal{H}_{m}\overline{V}_{m} = \sum_{(ij)} \mathcal{M}_{j}^{i} \mathcal{M}_{j}^{i} \mathcal{M}_{j}^{i} + \mathcal{M}_{j}^{i} \mathcal{M}_{j}^{i}$$

$$\overline{V}_{m} = 2 \sum_{(ij)}^{1} (T_{i,L} \cdot T_{j,L} + T_{i,R} \cdot T_{j,R}) \int \frac{d\Omega(n_{k})}{4\pi} \mathcal{W}_{ij}^{k}$$

soft dipolesoft dipole with collinear subtraction $W_{ij}^q = \frac{n_i \cdot n_j}{n_i \cdot n_q n_j \cdot n_q}$ $\overline{W}_{ij}^q = W_{ij}^q - \frac{1}{n_i \cdot n_q} \delta(n_i - n_q) - \frac{1}{n_j \cdot n_q} \delta(n_j - n_q)$

$$\mathcal{H}_{m} \mathbf{V}^{G} = \frac{1}{2} \mathcal{M} \mathcal{H} \mathcal{H}^{T} + \frac{1}{2} \mathcal{H} \mathcal{H}^{T} \mathcal{H}^{T} + \frac{1}{2} \mathcal{H}^{T} \mathcal$$

$$\boldsymbol{V}^{\boldsymbol{G}} = -8i\pi\left(\boldsymbol{T}_{1,L}\cdot\boldsymbol{T}_{2,L}-\boldsymbol{T}_{1,R}\cdot\boldsymbol{T}_{2,R}
ight)$$

Used color conservation $\sum_{i} T_{i} = 0$ to simplify Glauber terms in $1 + 2 \rightarrow 3 + ... + m$ $\prod_{ij} = 1$ if both inc./out.

$$\sum_{(ij)} \left(\boldsymbol{T}_{i,L} \cdot \boldsymbol{T}_{j,L} - \boldsymbol{T}_{i,R} \cdot \boldsymbol{T}_{j,R} \right) \Pi_{ij} = 4 \left(\boldsymbol{T}_{1,L} \cdot \boldsymbol{T}_{2,L} - \boldsymbol{T}_{1,R} \cdot \boldsymbol{T}_{2,R} \right)$$

(Soft+)Collinear Cusp Term Γ^c

$$\begin{aligned} \mathbf{R}_{i}^{c} &= -4\mathbf{T}_{i,L} \circ \mathbf{T}_{i,R} \,\delta(n_{m+1} - n_{i}) \\ \mathbf{V}_{i}^{c} &= 4C_{i} \,\mathbf{1} \end{aligned}$$

Only present for initial-state partons i=1,2.
 Final state terms cancel!

• Multiplied by
$$\ln \frac{\mu^2}{\hat{s}} \rightarrow \text{double logarithms!}$$

N=4 SYM space-like Sp

From 2406.14604 by Henn, Ma, Xu, Yan, Zhang, Zhu for process $\mathcal{A}_5(p_a, p_b, p_i, p_j, p_k) \xrightarrow{a \parallel b} \mathbf{Sp} \times \mathcal{A}_4(P, p_i, p_j, p_k)$

$$\mathbf{Sp}^{(1)} = \left[\frac{\mu^2 z}{s_{ab} (1-z)}\right]^{\epsilon} \left\{ 2N_c \,\overline{r}_S^{(1)}(z+i0) + \mathbf{T}_a \cdot \mathbf{T}_{in} (2\pi i) \,c_1(\epsilon) \frac{1}{\epsilon} \right\} \mathbf{Sp}^{(0)} \,,$$

$$\begin{split} \mathbf{Sp}^{(2)} &= \left[\frac{\mu^2 z}{s_{ab} (1-z)}\right]^{2\epsilon} \left\{ 4N_c^2 \,\overline{r}_S^{(2)}(z+i0) \\ &+ N_c \,\mathbf{T}_a \cdot \mathbf{T}_{\rm in} \left(2\pi i\right) \left[c_2(\epsilon) \,\frac{1}{\epsilon^3} + c_1^2(\epsilon) \left(-\frac{2}{\epsilon^2} \ln z + \frac{2}{\epsilon} \ln z \ln \left(\frac{z}{z-1}\right) \, -2 \,\mathrm{Li}_3 \left(1-\frac{1}{z}\right) - \ln(z) \ln^2 \left(\frac{z}{z-1}\right) \right) \right] \\ &+ \sum_{I \in \mathrm{outgoing}} \left[\mathbf{T}_a \cdot \mathbf{T}_{\rm in}, \mathbf{T}_a \cdot \mathbf{T}_I \right] (2\pi i) \left[\left(\frac{1}{2\epsilon^2} - \frac{1}{2}\zeta_2 \right) \left(\ln |z_I|^2 + i\pi \right) + \frac{1}{6} \left(\ln^2 \frac{z_I}{\overline{z}_I} + 4\pi^2 \right) \ln \frac{z_I}{\overline{z}_I} + 2\zeta_3 \right] \\ &+ \sum_{I \in \mathrm{outgoing}} \left\{ \mathbf{T}_a \cdot \mathbf{T}_{\rm in}, \mathbf{T}_a \cdot \mathbf{T}_I \right\} (2\pi^2) \left[\frac{1}{2\epsilon^2} - \frac{1}{2}\zeta_2 \right] \right\} \mathbf{Sp}^{(0)} \,. \end{split}$$

b: incoming, a: outgoing