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PDF Factorization

• Scale separation


• perturbative hard-scattering  at scale  

• non-perturbative PDFs  at scale  

• No low-energy interactions between incoming hadrons 
• cancellation of soft and Glauber physics CSS ’85 (for DY) 

• Purely collinear, single logarithmic DGLAP evolution 
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Figure 2: A hard scattering process described in the parton model. [2]

The cross section of hard scattering processes initiated by two hadrons with momenta P1 and P2 are

�(P1, P2) =
X

i,j=q,q̄,g

Z
dx1dx2 fi(x1, µ)fj(x2, µ) �̂ij(p1, p2,↵s(µ), µ), (2.10)

where p1 = x1P1 and p2 = x2P2 [2]. On parton level, it also now becomes evident that

ŝ = x1x2s, (2.11)

where s is the center of mass energy squared for the incoming beams, and ŝ only involves the
momentum of the particles that actually participate in the hard scattering process we’re looking
at. f1(x1, µ) and f2(x2, µ) are the parton distributions functions of the incoming partons. We then
sum over all channels that contribute to a certain process. This gives us the fully inclusive jet cross
section.

2.4. Gap Between Jets

A gap between jets cross section refers to the cross section of an event where there are two jets are
emitted in roughly opposite directions in the center of mass frame, and there is a „gap” between
them without particle emission. The jets occur at energies ⇠ Q. One then introduces a veto scale
Q0 for the gap region , which is much lower. Any event that involves a jet with pT > Q0 in the gap
region is vetoed [3].

Technically, when one eventually would like to integrate over the rapidity (or the angle ✓), one would
have to include everything that is not part of the jets. However, to simplify, we will only consider
a rectangular region that cuts off at the outer radius of the jets [3]. Figure 3 shows a schematic of
what that looks like. The gap lies between y1 and y2, so the rapidities of jet 1 and 2 (or, in the
simplified case we will be using, the outer limits of the jets). If we use the center of mass frame, then
y1 = �y2. Generally, we can define a gap via �Y = |y2 � y1|.
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Collinear Factorization Violation

For space-like collinear limit  the splitting amplitude  Sp 
depends on the colors and directions of the partons not 
involved in the splitting! 

• Related to non-cancellation of soft phases
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Catani, de Florian, Rodrigo ’11;  Forshaw, Seymour, Siodmok ’12; 
→ talk by Prasanna Kumar Dhani on Friday

Implications for PDF factorization?

New results for Sp 
Henn, Ma,Xu, Yan, Zhang, Zhu ’24 
Guan, Herzog, Ma, Mistlberger, 
Suresh ’24



Super-Leading Logs (SLLs)
Consider gap between jets at hadron collider, cone 
around beam direction 

  

Large logarithms           with 

• e+e− :  m ≤ n, leading logs m = n 

• p p : 
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Super-Leading Logs (SLLs)

Double logarithms due to Glauber phases in amplitudes 
which spoil cancellations of soft+collinear terms in cross 
section 

• directly related to collinear factorization breaking 
Effect first arises at four-loop order; need 

• two phase-factors, a collinear emission, and an 
emission into gap
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Forshaw, Kyrieleis, Seymour ’06 ’08

Soft+collinear double logarithms 

vs. single-log evolution of PDFs?



Have modern EFT framework to analyze and 
resum observables with SLLs. TB, Neubert, Shao 
’21; + Stillger ’23; Böer, Hager, Neubert, Stillger, Xu 
’24 → talk by Philipp Böer 

Questions about PDF factorization on previous 
slides can be formulated concisely and answered 
using the RG and the method of regions. 

Will present an analysis of 4-loop SLLs and 
demonstrate that Glauber gluon exchanges at the 
scale Q0 restore the single-logarithmic evolution 
relevant for PDFs TB, Hager, Jaskiewicz, Neubert, 
Schwienbacher 2408.10308 
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Upshot of the talk
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Collinear factorization  
breaking at μ = Q

soft-collinear factorization  
breaking by Glaubers modes  

at μ = Q0
x

= PDF factorization 
for μ < Q0

“factorization restoration”



Outline
• EFT framework for SLLs 

• Factorization theorem 
• SLLs from RG evolution 

• Low-energy analysis 
• Renormalization consistency conditions 

• Region analysis of pentagon integrals 
• Glauber contribution to low-E matrix 

elements  
• Consistency with PDF factorization
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collinear fields

Factorization for gaps between jets
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Hard functions
m hard partons along  

fixed directions {n1, …, nm} 

σ =
∑
a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑
(ij)

∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑
(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm〉〈Mm| (4)

Soft + collinear function 
squared amplitude  
for m Wilson lines 
+collinear fields

integration over directions 

Wilson lines
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V G

⌘
+

↵s

4⇡
�+ �C , (1)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising

from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (1) [13], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r V G �⌦ 1
↵
. (2)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (2),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (1) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V GV G �

3"3
�

�cV G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (3)

We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (4)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].
We now compute the perturbative part of Wbare

m
or-

der by order in ↵s and check whether it matches the

gap



Renormalized hard functions fulfill RG equation 

One-loop hard anomalous dimension:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V G

⌘
+

↵s

4⇡
�+ �C , (1)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising

from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (1) [13], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r V G �⌦ 1
↵
. (2)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (2),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (1) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V G �

2"2
+ . . .
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+
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�
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ln
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (4)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].
We now compute the perturbative part of Wbare

m
or-

der by order in ↵s and check whether it matches the

RG evolution
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V G

⌘
+

↵s

4⇡
�+ �C , (1)

d

d lnµ
Hm = �

mX

l=m0

Hl �
H

lm
. (2)

where �cusp = ↵s/⇡+ . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (1) [13], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r V G �⌦ 1
↵
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (2),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (1) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V G �

2"2
+ . . .

◆

+
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4⇡

⌘3
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�
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ln

Q2
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].

purely soft

purely 
collinear

cusp-piece 
soft+collinear

 
Glauber
∝ iπ

generates SLLs

matrix in multiplicity 
and color space

generates NGLs 
→ talk by Jürg Haag



SLLs from RG evolution
Evolve hard function from  to    

Resummed cross section 

• Independence of  from  leads to 
consistency conditions for 

μh ∼ Q μs ∼ Q0

σ(Q0) μs
𝒲l(μs)
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H(µh)P exp

 Z
µh

µs

dµ

µ
�H

�
= H(µh) +

Z
µh

µs

dµ1

µ1
H(µh)�
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+

Z
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dµ1

µ1

Z
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µ1

dµ2

µ2
H(µh)�

H(µ2)�
H(µ1) + . . . ,
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P exp

 Z
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µs

dµ

µ
�H

�
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Z
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dµ1

µ1
�H(µ1) +

Z
µh

µs

dµ1

µ1
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wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]
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lous dimension. The soft piece consists of �c and V G,

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
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⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]
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where �cusp = ↵s/⇡+ . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
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� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (??) [? ], one finds
that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (??),
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are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
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. The renormalization factor Z is related to
the anomalous dimension (??) [? ], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [? ], e.g.
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2 T
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This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [? ].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (??). The one-loop term / � is the divergence
associated with a soft emission between hard legs and

can be obtained from the product of tree-level soft cur-

rents Ja(0)
µ . The ↵2

s
term / V G � arises from real-virtual

corrections to the soft emission. The complex phase in
V G is directly related to the imaginary part of the one-

loop soft current Ja(1)
µ [? ]. To isolate the structure

V GV G �, we have analyzed the product Jµ,a(1)Ja(1)†
µ as

well the product of Ja(2)
µ (including the tripole terms)

[? ? ] with a tree-level current, comparing the results
for space-like and time-like kinematics. From these com-
putations, we conclude that all terms in (??) other than
the structure �cV G � are correctly reproduced through
soft physics alone. This final term involves a logarithm
of the hard scale Q, but the purely soft matrix elements
are independent of Q.

A Q dependence in the low-energy theory can arise i)
if it contains low-energy modes with virtualities below
Q2

0 (ultra-soft modes in SCETI and soft-collinear modes
in SCETII are examples of this), or ii) via a collinear
anomaly [? ? ], which breaks a classical rescaling invari-
ance of SCET and leads to rapidity divergences. These
divergences cancel among the di↵erent sectors but leave
behind a logarithmic Q dependence. However, in our
case the purely collinear matrix elements are scaleless
even with a rapidity regulator because they correspond
to “partonic PDFs”. So even in scenario ii) the theory
necessarily involves low-energy interactions between the
soft and the two collinear sectors. Such an interaction
can be mediated by Glauber gluons. A final scenario
iii) would be that the �cV G � term is not reproduced
by perturbative physics, but by non-perturbative inter-
actions between soft and collinear particles. This option
is incompatible with PDF factorization and would require
a generalization involving non-perturbative two-nucleon
matrix elements.

To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. ??. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop inte-
gral over k, which can be mapped onto box and pentagon
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
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This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [? ].
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[? ? ] with a tree-level current, comparing the results
for space-like and time-like kinematics. From these com-
putations, we conclude that all terms in (??) other than
the structure �cV G � are correctly reproduced through
soft physics alone. This final term involves a logarithm
of the hard scale Q, but the purely soft matrix elements
are independent of Q.

A Q dependence in the low-energy theory can arise i)
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even with a rapidity regulator because they correspond
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necessarily involves low-energy interactions between the
soft and the two collinear sectors. Such an interaction
can be mediated by Glauber gluons. A final scenario
iii) would be that the �cV G � term is not reproduced
by perturbative physics, but by non-perturbative inter-
actions between soft and collinear particles. This option
is incompatible with PDF factorization and would require
a generalization involving non-perturbative two-nucleon
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To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. ??. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop inte-
gral over k, which can be mapped onto box and pentagon
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rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3
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perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (??),
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are the Born-level hard functions and we use that
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [? ], e.g.
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This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [? ].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (??). The one-loop term / � is the divergence
associated with a soft emission between hard legs and

can be obtained from the product of tree-level soft cur-
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term / V G � arises from real-virtual

corrections to the soft emission. The complex phase in
V G is directly related to the imaginary part of the one-

loop soft current Ja(1)
µ [? ]. To isolate the structure
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µ as

well the product of Ja(2)
µ (including the tripole terms)

[? ? ] with a tree-level current, comparing the results
for space-like and time-like kinematics. From these com-
putations, we conclude that all terms in (??) other than
the structure �cV G � are correctly reproduced through
soft physics alone. This final term involves a logarithm
of the hard scale Q, but the purely soft matrix elements
are independent of Q.

A Q dependence in the low-energy theory can arise i)
if it contains low-energy modes with virtualities below
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0 (ultra-soft modes in SCETI and soft-collinear modes
in SCETII are examples of this), or ii) via a collinear
anomaly [? ? ], which breaks a classical rescaling invari-
ance of SCET and leads to rapidity divergences. These
divergences cancel among the di↵erent sectors but leave
behind a logarithmic Q dependence. However, in our
case the purely collinear matrix elements are scaleless
even with a rapidity regulator because they correspond
to “partonic PDFs”. So even in scenario ii) the theory
necessarily involves low-energy interactions between the
soft and the two collinear sectors. Such an interaction
can be mediated by Glauber gluons. A final scenario
iii) would be that the �cV G � term is not reproduced
by perturbative physics, but by non-perturbative inter-
actions between soft and collinear particles. This option
is incompatible with PDF factorization and would require
a generalization involving non-perturbative two-nucleon
matrix elements.

To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. ??. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop inte-
gral over k, which can be mapped onto box and pentagon
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loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (10)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the

structure (10). The one-loop term / � is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ↵2

s
term / V G � arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G �, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (10) other than the structure
�cV G � are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

A Q dependence in the low-energy theory can arise i)
if it contains low-energy modes with virtualities below
Q2

0 (ultra-soft modes in SCETI and soft-collinear modes
in SCETII are examples of this), or ii) via a collinear
anomaly [37, 38], which breaks a classical rescaling invari-
ance of SCET and leads to rapidity divergences. These
divergences cancel among the di↵erent sectors but leave
behind a logarithmic Q dependence. However, in our
case the purely collinear matrix elements are scaleless
even with a rapidity regulator because they correspond
to “partonic PDFs”. So even in scenario ii) the theory
necessarily involves low-energy interactions between the
soft and the two collinear sectors. Such an interaction
can be mediated by Glauber gluons. A final scenario
iii) would be that the �cV G � term is not reproduced
by perturbative physics, but by non-perturbative inter-
actions between soft and collinear particles. This option
is incompatible with PDF factorization and would require
a generalization involving non-perturbative two-nucleon
matrix elements.

To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted



RG invariance imposes a constraint on the form 
of the bare low-E matrix element 

Leading poles in Z-factor from one-loop Γ 

Now verify this structure order by order… 
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� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (4) [13], one finds
that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (6),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.

Wm(µs) = ZW
bare
m

The fact that the cross section �(Q0) must be indepen-
dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (4) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (9)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (9). The one-loop term / � is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ↵2

s
term / V G � arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G �, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we

conclude that all terms in (9) other than the structure
�cV G � are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
A Q dependence in the low-energy theory can arise i)

if it contains low-energy modes with virtualities below
Q2

0 (ultra-soft modes in SCETI and soft-collinear modes
in SCETII are examples of this), or ii) via a collinear
anomaly [37, 38], which breaks a classical rescaling invari-
ance of SCET and leads to rapidity divergences. These
divergences cancel among the di↵erent sectors but leave
behind a logarithmic Q dependence. However, in our
case the purely collinear matrix elements are scaleless
even with a rapidity regulator because they correspond
to “partonic PDFs”. So even in scenario ii) the theory
necessarily involves low-energy interactions between the
soft and the two collinear sectors. Such an interaction
can be mediated by Glauber gluons. A final scenario
iii) would be that the �cV G � term is not reproduced
by perturbative physics, but by non-perturbative inter-
actions between soft and collinear particles. This option
is incompatible with PDF factorization and would require
a generalization involving non-perturbative two-nucleon
matrix elements.

3

� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (4) [13], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r V G �⌦ 1
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. (6)

C01 =
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. (8)
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⌦ 1i = 0 ,

⌦
. . . V G
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= 0 .

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (6),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.

The fact that the cross section �(Q0) must be indepen-
dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (4) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
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= 1+
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (9)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (9). The one-loop term / � is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ↵2

s
term / V G � arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G �, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we

conclude that all terms in (9) other than the structure
�cV G � are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
A Q dependence in the low-energy theory can arise i)

if it contains low-energy modes with virtualities below
Q2

0 (ultra-soft modes in SCETI and soft-collinear modes
in SCETII are examples of this), or ii) via a collinear
anomaly [37, 38], which breaks a classical rescaling invari-
ance of SCET and leads to rapidity divergences. These
divergences cancel among the di↵erent sectors but leave
behind a logarithmic Q dependence. However, in our
case the purely collinear matrix elements are scaleless
even with a rapidity regulator because they correspond
to “partonic PDFs”. So even in scenario ii) the theory
necessarily involves low-energy interactions between the
soft and the two collinear sectors. Such an interaction
can be mediated by Glauber gluons. A final scenario
iii) would be that the �cV G � term is not reproduced
by perturbative physics, but by non-perturbative inter-
actions between soft and collinear particles. This option
is incompatible with PDF factorization and would require
a generalization involving non-perturbative two-nucleon
matrix elements.

dependence on  
hard scale !!(only show terms for SLLs)



 at NLO is obtained by computing soft Wilson 
line matrix element or, equivalently, from product of 
soft currents .

𝒲m

Ja
μ(q)
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Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.

P
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µ

?i
(tn̄i)A?iµ(0) .

(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)

– 8 –

q



•  in  from real-virtual soft corrections, from 
imaginary part of one-loop soft current Catani, Grazzini ‘00. 

•  in  from two-loop soft current (including 
tripole terms!) comparing space-like and time-like case Duhr,  
Gehrmann ’13; Dixon, Herrmann,Yan, Zhu ‘19

VG Γ 𝒲(2)
m

VG VG Γ 𝒲(3)
m
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• All terms except last are reproduced by soft matrix 
elements. 

• purely soft matrix elements are Q-independent 

• Purely collinear matrix elements are scaleless 

• unrestricted phase-space integrals since collinear 
emissions never enter gap 

➡ Term with Q-dependence can only arise through soft-
collinear interactions!
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� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
identities among the various terms in (4) [13], one finds
that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (6),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

/ 1 at lowest order.

The fact that the cross section �(Q0) must be indepen-
dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elementsWm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (4) [33], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (??) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

�cV G � ! 16i⇡Nc if
abc

X

j>2

Jj T
a

1 T b

2 T
c

j
. (9)

This sum extends over all final-state partons j > 2 in the
Born-level process, and the angular integral Jj has been
given in (16) of [13].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (9). The one-loop term / � is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ↵2

s
term / V G � arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G �, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we

conclude that all terms in (9) other than the structure
�cV G � are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
A Q dependence in the low-energy theory can arise i)

if it contains low-energy modes with virtualities below
Q2

0 (ultra-soft modes in SCETI and soft-collinear modes
in SCETII are examples of this), or ii) via a collinear
anomaly [37, 38], which breaks a classical rescaling invari-
ance of SCET and leads to rapidity divergences. These
divergences cancel among the di↵erent sectors but leave
behind a logarithmic Q dependence. However, in our
case the purely collinear matrix elements are scaleless
even with a rapidity regulator because they correspond
to “partonic PDFs”. So even in scenario ii) the theory
necessarily involves low-energy interactions between the
soft and the two collinear sectors. Such an interaction
can be mediated by Glauber gluons. A final scenario
iii) would be that the �cV G � term is not reproduced
by perturbative physics, but by non-perturbative inter-
actions between soft and collinear particles. This option
is incompatible with PDF factorization and would require
a generalization involving non-perturbative two-nucleon
matrix elements.

✓ ✓

✓ ?



Soft-collinear interactions
Three options for ln(Q)-dependent term 

1.  Perturbative on-shell modes with virtuality below 
soft scale Q0 mediating soft-collinear interactions 

• e.g. ultra-soft mode in SCETI , soft-collinear 
mode in SCETII 

2. Collinear anomaly inducing rapidity logs + off-
shell modes (e.g. Glaubers) at scale Q0 

3. Non-perturbative low-energy interactions among 
incoming hadrons 

• Breaks PDF factorization! Non-perturbative 
two-nucleon matrix elements.

17



Consider diagrams with soft and collinear emission and 
exchange between soft and collinear. 

Perform method-of-region analysis to find possible 
scalings of loop momentum k.  

Perturbative analysis can uncover scenarios 1.) and 2.) at 
scale Q0. If it fails, this would imply scenario 3.).
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wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.
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where �cusp = ↵s/⇡+ . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
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wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
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The leading logarithms were obtained by iterating the
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hard function Hm, while the remainder is part of Wm. The
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where �cusp = ↵s/⇡+ . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.

(n ⋅ pc, n̄ ⋅ pc, pc⊥) ≡ (p+
c , p−

c , pc⊥) ∼ Q(λ2,1,λ)

p̄c̄ ∼ Q(1,λ2, λ) ls ∼ Q(λ, λ, λ)qc ∼ Q(λ2,1,λ)



Reduces to analysis of scalar pentagon integrals. Can 
check against full result Bern, Dixon, Kosover ’93. 

Region finder in Asy2.1, pySecDec identify single region: 

On-shell mode with small transverse momentum, 
compatible with soft and collinear scaling (scenario 1).
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To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop integral
over k, which can be mapped onto box and pentagon
structures, as depicted in Fig. 2 for the latter case. This
allows for a direct comparison of the regions results and
the known full expressions, thus ascertaining that all re-
gions are correctly identified. To perform the analysis, we
introduce a small power-counting parameter � = Q0/Q
and two light-cone vectors n and n̄ (with n2 = n̄2 = 0 and
n · n̄ = 2) along the directions of pc and p̄c̄. The external
legs carry collinear momenta pc, qc, whose components
scale as (n · pc, n̄ · pc, pc?) ⌘ (p+

c
, p�

c
, pc?) ⇠ Q(�2, 1,�),

an anti-collinear momentum p̄c̄ ⇠ Q(1,�2,�), and a soft
momentum ls ⇠ Q(�,�,�). In the following, we focus on
the two pentagon structures, for which a complete set of
invariants is given by si,i+1 = (pi + pi+1)

2 and m2 = p25
for inflowing external momenta pi associated with the
external lines. At leading power in �, they are given by
(choosing pc? = p̄c̄? = 0)

s12 = �p�
c
q+
c
, s23 = q�

c
l+
s
, s45 = �(p�

c
� q�

c
)l+
s
,

s34 = �p̄+
c̄
l�
s
, s51 = �q�

c
p̄+
c̄
, m2 = (p�

c
� q�

c
)p̄+

c̄

(10)

for the upper graph in Fig. 2. For the lower graph
s23 = �p�

c
l+
s

and s51 = p�
c
p̄+
c̄ , while all other invariants

remain the same. Before studying the physical case, we
consider Euclidean kinematics, where all si,i+1 < 0 and
m2 < 0. To identify the contributing regions, we utilize
pySecDec [39] and translate the parameter-space output
into momentum regions. At leading power in �, the only
non-zero contribution for both pentagon integrals stems
from the soft-collinear region k ⇠ Q(�,�2,�3/2) [40]. For
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

example, the upper diagram in Fig. 2 corresponds to

Isc = i(4⇡)2�"

Z
ddk

(2⇡)d
1

k2 + i0

1

�l+s k� + i0

1
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�
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with sij ⌘ sij + i0 and m2
⌘ m2+ i0. Expressed in these

variables, the result also holds for the lower diagram.
After expanding in ", it agrees with the � expansion of
the full expression for this pentagon integral given in (5.8)
of [41], confirming that the leading-power contribution is
fully captured by the soft-collinear region. The diagram
where the virtual gluon is attached to the quark line after
the collinear emission (not shown in Fig. 2) corresponds
to a box with two massive adjacent legs. We find that
two regions, the soft and the soft-collinear, fully account
for the entire contribution in Euclidean kinematics.
We now analytically continue to the physical region,

in which all the light-cone components are positive and
p�
c

> q�
c
. An interesting feature of the expressions for

the diagrams in Fig. 2 are combinations that entail the
cancellation of two O(�) terms, resulting in an O(�2)
contribution, e.g. for the kinematics (10) belonging to
the upper diagram in Fig. 2, with p2

T
⌘ �p2? > 0,

s45s51| {z }
�

�m2s23| {z }
�

= p�
c
p̄+
c̄

�
qcT + lsT

�2
| {z }

�2

> 0 . (12)

k ∼ ksc ∼ (λ2, λ, λ3/2) “soft-collinear”



In Euclidean kinematics ,  

soft-collinear mode fully reproduces pentagon 
integral, but for physical kinematics 

extra terms are present.  

Related to cancellation

sij = (pi + pj)2 < 0 p2
5 < 0
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To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop integral
over k, which can be mapped onto box and pentagon
structures, as depicted in Fig. 2 for the latter case. This
allows for a direct comparison of the regions results and
the known full expressions, thus ascertaining that all re-
gions are correctly identified. To perform the analysis, we
introduce a small power-counting parameter � = Q0/Q
and two light-cone vectors n and n̄ (with n2 = n̄2 = 0 and
n · n̄ = 2) along the directions of pc and p̄c̄. The external
legs carry collinear momenta pc, qc, whose components
scale as (n · pc, n̄ · pc, pc?) ⌘ (p+
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, p�
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, pc?) ⇠ Q(�2, 1,�),

an anti-collinear momentum p̄c̄ ⇠ Q(1,�2,�), and a soft
momentum ls ⇠ Q(�,�,�). In the following, we focus on
the two pentagon structures, for which a complete set of
invariants is given by si,i+1 = (pi + pi+1)

2 and m2 = p25
for inflowing external momenta pi associated with the
external lines. At leading power in �, they are given by
(choosing pc? = p̄c̄? = 0)
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for the upper graph in Fig. 2. For the lower graph
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and s51 = p�
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p̄+
c̄ , while all other invariants

remain the same. Before studying the physical case, we
consider Euclidean kinematics, where all si,i+1 < 0 and
m2 < 0. To identify the contributing regions, we utilize
pySecDec [39] and translate the parameter-space output
into momentum regions. At leading power in �, the only
non-zero contribution for both pentagon integrals stems
from the soft-collinear region k ⇠ Q(�,�2,�3/2) [40]. For
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

example, the upper diagram in Fig. 2 corresponds to
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with sij ⌘ sij + i0 and m2
⌘ m2+ i0. Expressed in these

variables, the result also holds for the lower diagram.
After expanding in ", it agrees with the � expansion of
the full expression for this pentagon integral given in (5.8)
of [41], confirming that the leading-power contribution is
fully captured by the soft-collinear region. The diagram
where the virtual gluon is attached to the quark line after
the collinear emission (not shown in Fig. 2) corresponds
to a box with two massive adjacent legs. We find that
two regions, the soft and the soft-collinear, fully account
for the entire contribution in Euclidean kinematics.
We now analytically continue to the physical region,

in which all the light-cone components are positive and
p�
c

> q�
c
. An interesting feature of the expressions for

the diagrams in Fig. 2 are combinations that entail the
cancellation of two O(�) terms, resulting in an O(�2)
contribution, e.g. for the kinematics (??) belonging to
the upper diagram in Fig. 2, with p2
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⌘ �p2? > 0,
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To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop integral
over k, which can be mapped onto box and pentagon
structures, as depicted in Fig. 2 for the latter case. This
allows for a direct comparison of the regions results and
the known full expressions, thus ascertaining that all re-
gions are correctly identified. To perform the analysis, we
introduce a small power-counting parameter � = Q0/Q
and two light-cone vectors n and n̄ (with n2 = n̄2 = 0 and
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⌘ m2+ i0. Expressed in these

variables, the result also holds for the lower diagram.
After expanding in ", it agrees with the � expansion of
the full expression for this pentagon integral given in (5.8)
of [41], confirming that the leading-power contribution is
fully captured by the soft-collinear region. The diagram
where the virtual gluon is attached to the quark line after
the collinear emission (not shown in Fig. 2) corresponds
to a box with two massive adjacent legs. We find that
two regions, the soft and the soft-collinear, fully account
for the entire contribution in Euclidean kinematics.
We now analytically continue to the physical region,
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Extra terms power suppressed in Euclidean 
kinematics and proportional to a prefactor 

with 

Power enhancement due to complex phases!
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While this has no non-trivial consequences in Euclidean
kinematics, a subtlety arises upon performing the ana-
lytic continuation to physical kinematics. To illustrate
this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor

P =
s45s51

s45s51 � p25s23| {z }
��1


1�ei⇡"⇥

✓
1+

p25s23 � s45s51
s45s51| {z }

�

◆�"�
,

⇥ ⌘ ✓(p25) + ✓(s23)� ✓(s45)� ✓(s51)

This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)
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T
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(12)

and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [42]
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with sT = lsT + qcT [43].
It is interesting to understand the appearance of this

“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more

precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
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For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (14) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by
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While this has no non-trivial consequences in Euclidean
kinematics, a subtlety arises upon performing the ana-
lytic continuation to physical kinematics. To illustrate
this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)
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propagators, e.g. x1 is linked to the propagator be-
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the hidden Glauber pinch appears when both brackets
in (14) vanish individually, in accordance with the Lan-
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unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].
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Glauber region in the context of the scalar example, we
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explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
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gration over qc is not well-defined on its own, and follow-
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phase-space integrals and therefore does not contribute
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sociated low-energy scale �Q2

0 would be parametrically
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0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
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jugate amplitude. The leading UV poles of these four
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)
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with sT = lsT + qcT [43].

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
associated F polynomial factorizes to leading power,
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For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (13) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].

With this understanding of the appearance of the
Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by
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reason why we were unable to find this region using
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explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
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of diagrams that need to be evaluated to those involving
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sectors such as the ones shown in Fig. 2. We thus evaluate
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to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
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where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-
tion in (??), we can move the color generators TiL to the
right, which leads to

W
bare
m

3 �
iNc↵3

s

12⇡2"3
ifabc

X

j>2

Jj T
a

1 T b

2 T
c

j
ln

p�
c
p̄+c̄

Q2
0

. (15)

The divergences in ⌘ have canceled but the associated
hard logarithm remains and has the structure required
by (9) to remove the double-logarithmic part of the evo-
lution below the scale Q0.

The same result can be obtained directly in SCET
using the Glauber Lagrangian of [47]. In this frame-
work, one additionally encounters diagrams with Glauber
scaling on both internal lines connecting to the soft-
emission vertex. After regularizing their contribution
with a Glauber regulator |kz

g
|
⌘
0
[48], distinct from the

rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (14). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[47]) Glauber contributions vanish from the beginning.

In this Letter, we have uncovered a new mechanism
that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [49–51] and the development of finite-Nc parton
showers [52–55]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-

tion in (??), we can move the color generators TiL to the
right, which leads to
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The divergences in ⌘ have canceled but the associated
hard logarithm remains and has the structure required
by (9) to remove the double-logarithmic part of the evo-
lution below the scale Q0.

The same result can be obtained directly in SCET
using the Glauber Lagrangian of [47]. In this frame-
work, one additionally encounters diagrams with Glauber
scaling on both internal lines connecting to the soft-
emission vertex. After regularizing their contribution
with a Glauber regulator |kz

g
|
⌘
0
[48], distinct from the

rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (14). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[47]) Glauber contributions vanish from the beginning.

In this Letter, we have uncovered a new mechanism
that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [49–51] and the development of finite-Nc parton
showers [52–55]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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Outlook
• Demonstrated consistency of 4-loop SLL with PDF 

evolution 

• Remarkable since all ingredients for the breaking 
of PDF factorization are present at this order. 

• To do list 

• Compute non-log(Q) collinear pieces, show that 
they indeed reproduce DGLAP 

• Consistency for matrix element  ? 

• All order structure of Glauber terms? 
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While this has no non-trivial consequences in Euclidean
kinematics, a subtlety arises upon performing the ana-
lytic continuation to physical kinematics. To illustrate
this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor

P =
s45s51

s45s51 � p25s23| {z }
��1
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)

Ig = i(4⇡)2�"

Z
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and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [42]
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with sT = lsT + qcT [43].

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
associated F polynomial factorizes to leading power,

F =
�
�q�

c
x1 + (p�

c
� q�

c
)x5

�
| {z }

��2

�
l+
s
x3 � p̄+

c̄
x4

�
| {z }

��1

. (13)

For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (13) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].

With this understanding of the appearance of the
Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
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and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [40]
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.
It is interesting to understand the appearance of this

“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
(x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). For the
associated F polynomial, one finds

F = �x1x3s23| {z }
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The first four terms constitute the leading power contri-
bution, which using (8) can be factorized in the form
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For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
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Figure 4: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m+ 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 5: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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Vm = 2
∑

(ij)

(

Ti,L · Tj,L + Ti,R · Tj,R

)

∫

dΩ(nk)

4π
W

k
ij ,

Rm = −4
∑

(ij)

Ti,L ◦ Tj,R W
m+1
ij Θhard(nm+1) , (1)

the Glauber terms are given by

V
G = −8 iπ

(

T1,L · T2,L − T1,R · T2,R
)

, (2)

and the coefficients of the cusp logarithms are

V
c
i = Γ0Ci 1 ,

R
c
i = −Γ0Ti,L ◦ Ti,R δ(nm+1 − ni) .

3

paper [16]. A nontrivial phase can arise if the initial state carries color, as is the case for

the partonic amplitudes relevant for hadronic collisions.

In e
+
e
� the collinear contributions in the cross section cancel, but the individual hard

functions do su↵er from collinear singularities and as a consequence also the entries Vm

and Rm of the anomalous dimension matrix. In the case of Vm and Rm the collinear

singularities arise when the emitted parton becomes collinear to the directions of one of

the m hard partons. Of course the presence of the collinear singularities also means that

the anomalous dimensions (3) are not well defined as they stand. To make them well

defined, one can introduce an angular cuto↵ into the expressions for Vm and Rm. In [10]

we have instead extracted the collinear singular terms in (3) in dimensional regularization

and have demonstrated that they cancel when the anomalous dimension is applied to the

soft functions. The remaining anomalous dimension can be obtained by replacing the dipole

W
q

ij
with the collinearily subtracted function

W
q

ij = W
q

ij
�

1

ni · nq

�(ni � nq) �
1

nj · nq

�(nj � nq) . (3.8)

where it is understood that the angular delta distribution �(ni � nq) only acts on the test

function, not on the coe�cient multiplying it.

Due to the presence of Glauber phases, the collinear singularities associated with the

initial state will not cancel for hadron collider processes. Furthermore, in addition to

the soft anomalous dimension (3), we will also need a purely collinear anomalous dimen-

sion which corresponds, up to the color structure, to the usual DGLAP evolution of the

PDFs. To extract the collinear pieces of the anomalous dimension, we will now first con-

sider collinear singularities in the virtual corrections and then collinear limits of the hard

function.

3.1 Collinear singularities in virtual corrections

The soft and collinear divergences of massless scattering amplitudes |Mm({p})i are very

well known [17–22] and encoded in an anomalous dimension matrix, which up to two-loop

order takes the form [17]

�({s}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij

+
X

i

�
i(↵s)1 . (3.9)

The hard function Hm is given by squared amplitudes with particles along fixed directions

so that the anomalous is relevant. However, according to the definition (3.10) the hard

function is integrated over the energies of the outgoing partons in the presence of the phase

space constraints. Since the collinear part of the anomalous dimension logarithmically

depends on the energies through the cusp logarithms, the result (3.13) does not immediately

translate into a result for the anomalous dimension of the hard function.

We will now prove that the collinear pieces of the anomalous dimension (3.13) asso-

ciated with final state partons cancel against collinear singularities of real-emission cor-

rections present in hard functions with additional collinear legs. This cancellation can be
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R
C
i→P (ξ) = 4δ(nk − ni)P i→P (ξi)Ci→P,L C

†
i→P,R

V
C
i→P (ξ) = −2γi

0 δiP δ(1 − ξ)
(55)

Γc =
∑

i=1,2

4
[

Ci 1− Ti,L ◦ Ti,R δ(nk − ni)
]

ΓG = −8iπ (T1,L · T2,L − T1,R · T2,R)

Γ = 2
∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫

dΩ(nq)

4π
W

q

ij − 4
∑

(ij)

Ti,L ◦ Tj,R W
k

ij Θin(nk)

(56)

extra hard parton!



Used color conservation                to simplify Glauber 
terms in 1 + 2 → 3 + … + m

Glauber term    .VG
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∑
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ŝ
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∑
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δ(nk − ni) ln
µ
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+ δ(nk − nj) ln

µ

2Ej

]
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m+1
ij Θhard(nm+1)
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∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

{

− ln
µ2

2Ei2Ej
+

∫

dΩ(nk)

4π
W

k

ij

}

− 8 iπ
∑

(ij)

(T1,L · T2,L − T1,R · T2,R)Πij (13)

(14)

∑

(ij)

Ti,L · Tj,L ln
µ

2Ei
= −

∑

i

Ti,L · Ti,L ln
µ

2Ei
= −

∑

i

Ci ln
µ

2Ei
(15)

−
∑

(ij)

Ti,L ◦ Tj,R δ(nk − ni) ln
µ

2Ei
= +

∑

i

Ti,L ◦ Ti,R δ(nk − ni) ln
µ
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c ln
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ŝ

σ(Q0) =
∑

a1,a2=q,q̄,g
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dx1dx2

∞
∑

m=4

〈

Hm({n}, Q, µ)⊗Wm({n}, Q0, x1, x2, µ)
〉

. (17)

Wm({n}, Q0, x1, x2, µs) = fa1
(x1) fa2

(x2)1 . (18)

ΛNP !
√
s ! pTJet ! Eout ! mproton ∼ ΛQCD

R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) 〈0| 1 |0〉+ Cqq̄(s) 〈0|mq q̄q |0〉+ CGG(s) 〈0|G2 |0〉+ . . .

αn
s ln

m

(

q2T
M2

)

R(Q0) = σveto
t̄t (Q0)/σ

tot
t̄t

L(2)
SM = −µ2H†H = −C(2) Λ2 H†H

q2T
Q2

, τ = (1− T ), . . .

2mt !
√
ŝ ! pX ! ΛQCD

∫ Ω

0
dω lnω × δ(ω)

σ(Q,Q0) =
∞
∑

l=2

〈

Hl({n′}, Q, µh)⊗
∞
∑

m≥l

Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)
〉

, (1)

U({n}, µs, µh) = P exp

[
∫ µh

µs

dµ

µ
Γ({n}, µ)

]

U({n}, µs, µh) = 1 +

∫ µh

µs

dµ

µ
Γ+

∫ µh

µs

dµ

µ

∫ µh

µ

dµ′

µ′
ΓΓ+ . . .

∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij = 4 (T1,L · T2,L − T1,R · T2,R)

Πij = 1 if both inc./out.  

contain both amplitudes |Mm({p})〉 and their conjugate. The color matrices Ti,L act on

the amplitude while Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (1.4)

The color matrices in the virtual part act on the color indices of the m partons of the

amplitude and Ti · Tj =
∑

a T
a
i · T a

j . This is the usual color-space notation. While we

do not indicate this notationally, the color matrices in the real emission matrix Rm are

different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T
a
i Hm T

a
j . (1.5)

[Better notation? Standard color-space notation not very well suited to add

new colored partons.] and the index a is the color of the emitted gluon. Note that there

is no sum over the color a. The color sum will only be taken at the end after multiplying

with the soft function. We nevertheless like to keep the scalar product notation Ti,L · Tj,R

since it allows us to suppress the color index, which is one of the advantages of the color-

space formalism. However, when applying the matrix Rm one needs to keep in mind that

one changes into new color space and that subsequent applications of color matrices can

act on the new color index.

Note that the terms in the second line of (1.2) are purely imaginary. An imaginary

part is present whenever i and j are both incoming or both outgoing partons and the

prefactor is Πij = 1 in these cases and zero otherwise. The presence of this phase-factor

can be understood by analyzing the UV divergences of the soft loop integral
∫

ddk
1

k2 + i0

ni · nj

(ni · k + η + i0)(−ni · k + η + i0)
, (1.6)

where η regularizes the collinear and soft singularities. This integral gets two contributions.

Cutting the gluon propagator, one obtains a phase-space integral whose divergence gives

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ ≈ kµ
⊥
.

The imaginary part can be simplified using color conservation
∑

i Ti = 0. For con-

creteness, consider the process 1 + 2 → 3 + · · ·+m. We then have

∑

(ij)

Ti · Tj Πij = 2T1 · T2 +
m
∑

i=3

Ti · (−T1 − T2 − Ti) (1.7)

= 2T1 · T2 + (T1 + T2) · (T1 + T2)−
m
∑

i=3

Ci (1.8)

= 4T1 · T2 + C1 + C2 −
m
∑

i=3

Ci (1.9)

The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the

– 2 –



(Soft+)Collinear Cusp Term   .

• Only present for initial-state partons i=1,2. 
Final state terms cancel! 

• Multiplied by          → double logarithms!
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Γb2a2

)

d

d lnµ
fa(x, µ) =

∑

b∈q,q̄,g

Γab % fb

W q
ij =

ni · nj

ni · nq nj · nq
(53)

|Mn+1〉 → Sp({pi, pj}) |Mn〉+ . . . . (54)

R
C
i→P (ξ) = 4δ(nk − ni)P i→P (ξi)Ci→P,L C

†
i→P,R

V
C
i→P (ξ) = −2γi

0 δiP δ(1 − ξ)
(55)

Γc =
∑

i=1,2

4
[

Ci 1− Ti,L ◦ Ti,R δ(nk − ni)
]

ΓG = −8iπ (T1,L · T2,L − T1,R · T2,R)

Γ = 2
∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫

dΩ(nq)

4π
W

q

ij − 4
∑

(ij)

Ti,L ◦ Tj,R W
k

ij Θin(nk)

(56)
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Then we perform analytic continuation on the coproduct
following the path � and compare with [31]. This allows
us to determine the two-loop factorization breaking terms
(see Eq. (23)) up to potential ⇡3

⇥O(z � 1) corrections.
We find agreement with the explicit computation of two-
loop five-point master integrals.

TWO-LOOP GENERALIZED SPLITTING
AMPLITUDES

As a result of the analysis in the previous sections, we
arrive at the main result of this Letter. We find that full-

color two-loop amplitudes have the following generalized
factorization form in the collinear limit where pa ⇠= (1 �

z)P , pb ⇠= zP ,

A5(pa, pb, pi, pj , pk)
akb
��! Sp⇥A4(P, pi, pj , pk) . (21)

Here Sp are the generalized splitting amplitudes pro-
posed by Catani et al. [28]. We present the one- and
two-loop splitting amplitudes explicitly through O(✏0).
The divergent terms at two loops were already known,
but the finite terms are new.
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We adopt the color space formalism for the color charge
operators [58]. The subscript ’in’ labels an incoming hard
particle, and ’I’ labels any of the outgoing hard particle.
(zI , z̄I) are the short-hand notation for the collinear limit
of the cross ratios,

zI =
habihin Ii

hin aihbIi
, z̄I =

[ab][in I]

[in a][bI]
, a k b . (24)

In the physical scattering regime, zI and z̄I are a complex
conjugate pair. In the collinear limit, zI , z̄I ! 0, but the
ratio zI/z̄I is kept finite.

The remaining terms in eq. (23) are best explained
by considering, without loss of generality, the five-point
kinematics specified in eq. (3) where b = 2, a = 3, in =
1, I 2 {4, 5}. In that case, the magnitudes of {z4, z5}

are given in terms of the kinematic variables {s, �, z, x}
introduced in Eq. (5) as follows

|z4|
2 =

4�2 (1 + x)

sz(1 � z) x
, |z5|

2 =
4�2 x

sz(1 � z) (1 + x)
(25)

The phases of {z4, z5} are parametrized by the variable
y introduced in Eq. (10). Their values di↵er by a factor

of ⇡, which can be specified in terms of GPLs

1
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⇡

2
,

1

2i
ln
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In addition, the constants cL(✏)’s that appear in
Eq. (22) and (23) are specified in the following,

c1(✏) = �e�E✏�(1 + ✏)�2(1 � ✏)

�(1 � 2✏)

c2(✏) = [c1(✏)]
2 ⇡✏

tan(⇡✏)
+ ✏2f(✏) c1(2✏). (27)

where f(✏) = ( (1 � ✏) �  (1))/✏ with  the digamma
function.

The generalized splitting amplitudes Sp apply to the
case of space-like splitting, where an incoming particle b
emits an outgoing collinear particle a. Setting Ta = 0,
Sp reduces to the color-singlet timelike splitting ampli-
tude, which is strictly factorized. Up to two-loop or-
der, the factorization violating e↵ects are associated with
a color dipole Ta · Tin, as well as two types of color
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case of space-like splitting, where an incoming particle b
emits an outgoing collinear particle a. Setting Ta = 0,
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