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FPDF Factorization
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* Scale separation
o perturbative hard-scattering 6;; at scale O
e non-perturbative PDFs f;(x) at scale Ay cp

e No low-energy interactions between incoming hadrons
e cancellation of soft and Glauber physics CSS '85 (for DY)

e Purely collinear, single logarithmic
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Collinear Factorization Violation

Catani, de Florian, Rodrigo '11; Forshaw, Seymour, Siodmok ’12;
— talk by Prasanna Kumar Dhani on Friday
L (s
New results for Sp
Henn, Ma,Xu, Yan, Zhang, Zhu '24
./\/l Guan, Herzog, Ma, Mistlberger,
m Suresh 24
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For space-like collinear limit 1 || j the splitting amplitude Sp
depends on the colors and directions of the partons not
involved in the splitting!

e Related to non-cancellation of soft phases

Implications for PDF factorization?
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Super-Leading Logs (SLLs)

Consider gap between jets at hadron collider, cone
around beam direction

Large logarithms o[ L™ with L = In(Q/Qo)
e cte~: m<n,leadinglogsm=n

o pp: asL, o’L? o’L? atL’ ... ot LT



Super-Leading Logs (SLLs)

Forshaw, Kyrieleis, Seymour '06 08

Double logarithms due to Glauber phases in amplitudes
which spoll cancellations of soft+collinear terms in cross

section

e directly related to collinea

r factorization breaking

Effect first arises at four-loop oro

er; need

e two phase-factors, a collinear emission, and an

emission into gap

Soft+collinear double logarithms
vS. single-log evolution of PDFs?
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Have modern EFT framework to analyze and
resum observables with SLLs. TB, Neubert, Shao
'21; + Stillger '23; BoOer, Hager, Neubert, Stillger, Xu
24 — talk by Philipp Boer

Questions about PDF factorization on previous
slides can be formulated concisely and answered
using the RG and the method of regions.

Will present an analysis of 4-loop SLLs and
demonstrate that Glauber gluon exchanges at the
scale Qg restore the single-logarithmic evolution
relevant for PDFs 1B, Hager, Jaskiewicz, Neubert,
Schwienbacher 2408.10308
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Upshot of the talk

I X

“factorization restoration”




Outline

EFT framework for SLLs

e [actorization theorem

e SlLs from RG evolution

Low-energy analysis

e Renormalization consistency conditions
Region analysis of pentagon integrals

e Glauber contribution to low-E matrix
elements

Consistency with PDF factorization



Factorization for gaps between jets

Z /d§1d€2 {n} Q fl 52, ) m({ﬂ}aQ07£17€27M)>

m=1mnyo

Hard functions Soft + collinear function
m hard partons along squared amplitude
fixed directions {n1, ..., Nm} for m Wilson lines

H.p < M) (M, +collinear fields



RG evolution

Renormalized hard functions fulfill RG equation

d m
m — FH
dlnuH 2 Hili, ~

l:mo

matrix in multiplicity
and color space

One-loop hard anomalous dimension:

purely soft
2
H C K | G | As = C
r —%usp(ozs)(I‘ anQ -V ) | 47TI‘—|—I‘
/‘ T ourely
collinear

generates SLLs
generates NGLs

10 — talk by Jurg Haag



SLLs from RG evolution

=volve hard function from p, ~ Q to u, ~ Q,

Erod
U(pn, ps) = PeXp[/ s | ]
Mhd d .uhd
=1+ - T (1) +/ ﬂ/ ﬁI‘H(Nz)I‘H(Nl)Jﬂ--
us M1 M1 Sy, M2

Resummed cross section

o

o(@) = Y [ ddea(Hn(Q. ) Unilins ) © Wil @0 1)

m,l=mg

e |Independence of o(Q,) from u, leads to
consistency conditions for #,(u,)
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| eading SLLs

Anomalous dimension fulfills simple identities

T =0, (.. T°®1)=0, (...V°®1)=0.

Only very specific combinations contribute to
leading SLLs. At four loops

Cor = (HOVETvVEeT ©1)

C11 = <7‘L§2()) FCVG VGF(X) 1>

Born-level Z w9 1
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RG Invariance Imposes a constraint on the form
of the bare low-E matrix element W, (us) = Zw!ae

Leading poles in Z-factor from one-loop I

r N2 /VETD
Wbafe—1+——+(a—) ( +>

47 2¢e 47 2e?
VEeVer rever. Q2
In < O(a
i (47’(') ( 3e3 33 2 T )+ (@)
dependence on

(only show terms for SLLs) beel mrae Il

Now verity this structure order by order...
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......... / \s,

7, at NLO is obtained by computing soft Wilson
ine matrix element or, equivalently, from product of
soft currents J,,(g).
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e VOT in 72 from real-virtual soft corrections, from
imaginary part of one-loop soft current Catani, Grazzini ‘00.

e V°VOTin W,(qf) from two-loop soft current (including

tripole terms!) comparing space-like and time-like case Duhr,
Gehrmann '13; Dixon, Herrmann,Yan, Zhu ‘19
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4 4

bare a;, I (043)2 VET
=1 - — — —
Win _|_47T 2e U A7 ( 2e? U

_|_(ozs)3 (VGVGT r‘ver @2

— In = +... | + O(a;
47 3e3 33 w2 i >—|— ()

4 ?

e All terms except last are reproduced by soft matrix
elements.

e purely soft matrix elements are O-independent
e Purely collinear matrix elements are scaleless

e unrestricted phase-space integrals since collinear
emissions never enter gap

= Term with O-dependence can only arise through soft-

collinear interactions!
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Soft-collinear interactions

Three options for In(Q)-dependent term

1. Perturbative on-shell modes with virtuality below
soft scale 0o mediating soft-collinear interactions

e ¢c.g. ultra-soft mode in SCET,, soft-collinear
mode in SCET,

2. Collinear anomaly inducing rapidity logs + off-
shell modes (e.g. Glaubers) at scale Qo

3. Non-perturbative low-energy interactions among
iIncoming hadrons

e Breaks PDF factorization! Non-perturbative

two-nucleon matrix elements.
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Pc lk

Consider diagrams with soft and collinear emission and
exchange between soft and collinear.

Perform method-of-region analysis to find possible
scalings of loop momentum k.

Perturbative analysis can uncover scenarios 1.) and 2.) at
scale Q. If it fails, this would imply scenario 3.).
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Light cone reference vectors n,,, n,, and expansion

7
parameter A = O,/ Q. External momenta

(N~ Pes i+ PrPey) = (PF, P75 Pey) ~ Q(A7,1,0)
g.~ 01,0 pa~ Q4% [~ 0, 4,4)
Consider all possible scalings for loop momentum &
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Reduces to analysis of scalar pentagon integrals. Can
check against full result Bern, Dixon, Kosover "93.

Region finder in Asy2.1, pySecDec identify single region:
k ~ kSC ~ (/12, A, /13/2) “soft-collinear”

On-shell mode with small transverse momentum,
compatible with soft and collinear scaling (scenario 1).
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In Euclidean kinematics s;; = (p; + p)* < 0, ps < 0

soft-collinear mode fully reproduces pentagon
integral, but for physical kinematics

512 —

S34 =

— + _
c4. 5 S523 =
+7— _
Els 9 851_

a; 1T, sis=—(ps —qo)lT,
—q. p, pi=(p. —q. )P

exira terms are present.

2
S45S851 — P5S23 = P
v

Y

Related to cancellation

"0 (qer +1or)? > 0

SN —— ——

A

>\2

21



—Xxtra terms power suppressed in Euclidean
Kinematics and proportional to a prefactor

_ 5 e
S$45 551 : P55 S23 — S45 551
P — . 1_627T8@ <1 | 5
$45S851 — P5S23 | S$45 S51
N ———— ——
\—1 A

with © = 9(}??) -+ 9(823) — 9(545) — 9(551)

P 1 for® =0
At for © # 0

Cower enhancement due to complex phases!
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Glauber contribution

Hidden region (see backup) not present in Euclidean

case:
k~ (A%,4,2) “Glauber”
Expanded loop integral

I8 = i(4n)?~ / dk 1 1
(2m)d —k7 ktqe — k2 — 2ky - qer
1
—kt (pe —qc ) — ad pe — k& — 2kr - ger]
1 1
pF (k= —15) —l§ k= — k% +2kr - lor

X

X

well-defined in dim.reg. Perform &+ and k- integrals
using residues. What remains is Euclidean off-shell
triangle in d = 2 — 2e.

23



N’ W
N

J

o Soft-collinear + Glauber modes correctly reproduce leading
power result for scalar pentagon in physical region.

o Soft-collinear part has scaleless integration over collinear
emission. No contribution to cross section.

e (Glauber contribution only from diagram shown above +
mirrored counterparts!

e Result is also obtained using Glauber-SCET Rothstein,
Stewart '16 (additional diagrams due to | k. |" regulator
cancel against zero-bin subtractions)
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Compute QCD diagram + mirrored counterparts

Wbare 5 iai fabCfadeZJ, > Td e Tb e _i —IHL —|—Td e Tb e i 4 n Vﬁ;—i_
m 127123 ~ J 1L*1R-"2L*jR 277 Do 2L"2R*1L*jR 277 Q(Q)

_(LHR)a

where J; is angular integral over gap. Need regulator (k, /v)" for
collinear phase space integral. Divergences drop out, leave
logarithm of Q% = p. p?.

Under color trace expression simplifies to

iN.a?
12723

— chGf 2 J
ifeNT L TP T TS In e = - me

W2 5
2 3 2

Perturbative Glauber contribution yields In(Q) term!
Matrix element of W,(,,f) consistent with DGLAP and SLL evolution.
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Conclusion

0
1

A

SLL evolution

!
o

AQCD B

phase factors
soft+collinear contributions

double-log evolution

Glauber contribution
soft-collinear interactions

“factorization restoration”

single-log evolution

Long live PDF factorization!



Outlook

e Demonstrated consistency of 4-loop SLL with PDF
evolution

e Remarkable since all ingredients for the breaking
of PDF factorization are present at this order.

e Jo dolist

e (Compute non-log(Q) collinear pieces, show that
they indeed reproduce DGLAP

e (Consistency for matrix element W,(,,f) 7

e All order structure of Glauber terms”?

e [actorization proof”



Extra slides



Glauber region in parameter space

Can perform region analysis in Schwinger or Lee-
Pomeransky parameter space (like Asy and PySecDec)

(1, 2, T3, Tg,X5) ~ ()\_27)\_27)\_27)\_17)\_2)

J = —X1X3823 — T1T4 851 — T3T5 545
A—3 A—3 A—3

2
— L4X5M — X9X4834 — L2XL5S12
A—3 A2 A2

The Glauber region corresponds to a pinch due to
cancellations in the & polynomial

F=(—q 21+ (pc —a:)zs) (I3 23 — D 4)
T e a5
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Action of anomalous
dimensions on Z



Soft wide-angle emissions T

1 3 1
,Hml_zm — Z Z.
(47) J

2 m 2

R, = —4 Z T, oT;R Werl Onard (Mma1) extra hard parton!
(i5)

_22 T, -Tir+T,r-Tjr)

4 Wy
(@) "
soft dipole soft dipole with collinear subtraction
NG - Nj — 1 1
Wz.q. — J ng = Wiq. — 5(7%- — nq) — 5(nj — nq)

I ngn; - nyg I n; - ng nj - Ng
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Glauber term V¢

V& = _8in (T1,L Ao =T R T2,R)

Jsed color conservation ) ; T; = 0 to simplify Glauber
termsin1+2—=3+...+m I1;; = 1 if both inc./out.

» (Tip-Tjo—Tir Tir) iy =4(T1L - Top — Tir - Tor)
(27)
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(Soft+)Collinear Cusp Term I'

2

R; = —AT, 1, o T; r6(nm+1 — N4)
Ve =401

e Only present for initial-state partons i=1,2.

Final state terms cancel!
2

e Multiplied by In % — double logarithms!
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N=4 SYM space-like Sp

-rom 2406.14604 by Henn, Ma, Xu, Yan, Zhang, Zhu
for process As(pa,py, pi, Pj; Dk ) I% Sp x A4(P,pi;0j, Dk)

¢ 1
SptH = L b’u © ] {2NC 7¢) (2 4 0) + Ty - Tin (273) Cl(e)—} sp”,

€

2e
Sp? — Q-2 AN2 72 0
P lsab (1_2) CTS (Z+7’ )

+ N.T, - Tin (2mi) [(52(6) — +ci(e) (—zlnz—i— glnzln( < 1) —2Lig(1 - %) — In(2) In” (zi1)>]

€2 € & —

1
Cg) (In |z7|? + i) + 5 (ln2 T 47T2> In 2L ¢ 2§3]

2 <1 2T
1

I coutgoing

b: Incoming, a: outgoing
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