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Introduction

▶ Next-to-leading order electroweak corrections now needed for many
observables at the LHC

▶ EW Sudakov high-energy resummation (of log (s/m2
W )) already used

Denner, Pozzorini ’00, Bothmann, Napoletano ’20

▶ QED resummation effects also need to be included for any leptonic
final state

▶ Either YFS matched to higher orders Yennie, Frautschi, Suura ’61, Krauss,

Schönherr ’08, Krauss, Price, Schönherr ’22, LF, Schönherr ’22 or NLO-matched
QED parton showers

▶ Use well-tested methods developed for QCD: MC@NLO Frixione,

Webber ’02, POWHEG Nason ’04, Frixione, Nason, Oleari ’07
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NLO matching
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What is NLO matching?

NLO matching: producing a prediction for an IR-safe observable ⟨O⟩
which contains the parton shower resummation but which gives the
correct NLO value for the observable:

⟨O⟩Matched = ⟨O⟩NLO +O(αm+2)

Crucially, we must avoid double counting of the first emission.

Starting point: interleaved Catani-Seymour dipole QCD+QED shower
Schumann, Krauss ’07, LF ’24 and SHERPA’s implementation of the QCD
MC@NLO Höche et al. ’12

Lois Flower IPPP
The QED MC@NLO method



3/8

Motivation NLO matching Results Conclusions

The MC@NLO algorithm

1. Produce a seed event, which is either an S-event with Born
kinematics, or an H-event with real-emission kinematics, according
to their subtracted matrix elements.

2. If S-event: run a one-step Sudakov parton shower, using the
MC@NLO subtraction terms as the splitting kernels, on the event,
either generating an emission or not.

3. If no emission generated, leave event as-is.
4. Pass S-events with an emission and H-events to the usual parton

shower. Generate further emissions from the appropriate starting
scale.

More details in backup slides
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Advantages of MC@NLO

▶ YFS is more easily generalisable to higher orders, however, fermion
masses are needed to regulate collinear singularities

▶ In our MC@NLO, masses can be included or not as convenient -
collinear logs are resummed either way

▶ MC@NLO is well-suited to Higgs production since it avoids
exponentiation beyond the logarithmically enhanced regions

▶ Exact NLO accuracy, including exact LO in differential distributions
of the first emission

▶ Can match NLO to initial-state showers at lepton-lepton colliders -
work in progress
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Results
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νµν̄µ → e+e− at 91.2 GeV

YFS
QED shower
MC@NLO
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▶ YFS prediction contains exact
NLO on-shell Z decay ME for
radiation pattern – but no
overall K -factor

▶ YFS produces significantly more
photons

▶ QED shower is LO+LL
▶ MC@NLO contains exact NLO

νµν̄µ → e+e− ME (virtual from
OPENLOOPS)

▶ Difference between shower and
MC@NLO only in 0- and
1-photon bins
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νµν̄µ → e+e− at 91.2 GeV

YFS
QED shower
MC@NLO
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νµν̄µ → e+e− at 500 GeV

YFS
QED shower
MC@NLO
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▶ YFS prediction contains exact
on-shell Z decay ME

▶ YFS produces significantly more
photons

▶ QED shower is LO+LL
▶ MC@NLO contains exact

νµν̄µ → e+e− ME from
OPENLOOPS
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νµν̄µ → e+e− at 500 GeV

YFS
QED shower
MC@NLO
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gg → H → µ+µ−e+e−

Bare leptons
YFS
QED shower
QED MC@NLO
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YFS
QED shower
QED MC@NLO
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Conclusions

▶ We introduced an automated method to match QCD+EW NLO
with a final-state QCD+QED parton shower

▶ We demonstrated the matching for QED in two different scenarios
▶ Next step: QCD+QED MC@NLO

▶ Needs a few process handling changes
▶ These developments will be released in a future version of SHERPA

(3.x)
▶ See Peter Meinzinger’s talk for the latest in SHERPA 3.0
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Backup: Anatomy of an NLO calculation

A general NLO calculation of an infrared-safe observable O in a 2 → n process can be
written schematically in the form

⟨O⟩NLO =

∫
dΦn

[
B + Ṽ

]
O ({pn}) +

∫
dΦn+1 Rn+1O ({pn+1})

=

∫
dΦn

B + Ṽ +
∑
ı̃ȷ,k̃

I S
ı̃ȷ,k̃

O ({pn})

+

∫
dΦn+1

Rn+1O ({pn+1})−
∑
ij,k

DS
ij,k O ({pn})


where DS

ij,k are a set of process-independent subtraction terms and I S
ı̃ȷ,k̃

are their

analytic d-dimensional integrals.
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Backup: Introducing the parton shower

A leading-order plus parton shower calculation has the form

⟨O⟩PS =

∫
dΦn B Fn(Φn,O)

where Fn(Φn,O) is the unitary parton shower factor, defined recursively as

Fn(Φn,O) = ∆n(µ
2
Q , tc ) O ({pn}) +

∫
dΦ1 ∆n(µ

2
Q , t) Fn+1(Φn+1,O) K

where

∆n(µ
2
Q , t) = exp

(
−
∫ µ2

Q

t
dΦ1 K

)

is the Sudakov form factor which describes the no-emission probability, and K is the
parton shower splitting kernel.
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Backup: What is NLO matching?

NLO matching: producing a prediction for ⟨O⟩ which contains the parton
shower factor Fn(Φn,O) but which gives the correct NLO value for the
observable:

⟨O⟩Matched = ⟨O⟩NLO +O(αm+2)

Crucially, we must avoid double counting of the first emission.

Starting point: interleaved dipole QCD+QED shower (to be published)
and SHERPA’s implementation of the QCD MC@NLO Höche et al. ’12
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Adding and subtracting an extra set of subtraction terms DA:

⟨O⟩NLOPS =

∫
dΦn B̄ O(Φn) +

∫
dΦn+1

R −
∑
ij,k

DA
ij,k

O(Φn+1)

+

∫
dΦn+1

∑
ij,k

DA
ij,k [O(Φn+1)− O(Φn)]

where we have introduced the shorthand (suppressing sums and indices)

B̄ = B + Ṽ + I S +

∫
dΦ1

[
DA − DS

]
.

Then applying the parton shower:

⟨O⟩NLOPS =

∫
dΦn B̄ Fn(Φn,O) +

∫
dΦn+1

R −
∑
ij,k

DA
ij,k

Fn+1(Φn+1,O)

Expanding in α, we can see this is ⟨O⟩NLO to O(α).
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The MC@NLO matching method can be written as

⟨O⟩MC@NLO =

∫
dΦn B̄

 ∆̄ O ({pn}) +
∑
ij,k

∫
dΦ1O ({pn+1})

DA
ij,k

B
∆̄


+

∫
dΦn+1

R −
∑
ij,k

DA
ij,k

O ({pn+1})

where the modified Sudakov factor is

∆̄(µ2
Q , t) = exp

−
∫ µ2

Q

t
dΦ1

∑
ij,k

DA
ij,k

B
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Many different methods, but here we use the S–MC@NLO method Höche

et al. ’12

B Kij,k = DA
ij,k = DS

ij,kΘ(µ2
Q − t)

where µ2
Q is the shower starting scale.

This means that the B̄ function does not (usually) depend on the
radiative phase space, so the evaluation is simpler.
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Backup: QCD+QED shower for gg → H → µ+µ−

QCD+QED shower
QCD shower
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