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INTRODUCTION

• Massive progress in computation of two-loop amplitudes in the last decades.

• Computational complexity grows fast with additional internal, external masses and legs.

• Can become accessible with numerical methods.
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INTRODUCTION

• Universal numerical approach would permit to achieve high precision in relevant processes
for LHC.

• Integrate numerically directly in momentum space: # of integrations per loop order is fixed.

• Major obstacle: removal of infrared and ultraviolet singularities at the integrand level.

• GOAL: universal method to create finite amplitude integrands in D = 4 −→ integrable with
Monte Carlo.

• Universal = IR factorization

• Build framework for factorization at the integrand level: local factorization.
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PROGRESS TOWARDS A GENERAL FRAMEWORK

• Worked out previously for two examples at two loops

e+e− → γ
∗
. . . γ

∗ (Anastasiou, Haindl, Sterman, Yang, and Zeng (2021))

qq̄ → V1 . . . Vn with Vi ∈ {γ∗
,W, Z} (Anastasiou and Sterman (2022))

• First demonstration of framework for two-loop processes with external gluons:

gg → N colorless particles.

For example:

p2

p1

W−

W+

H
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OUTLINE

• Infrared factorization

• What is the price to pay to make IR factorization local?

• Complexity of gluons: triple gluon vertex −→ decomposition

• How does the decomposition of the triple gluon vertex help?

• Factorization at the integrand level

• More complicated gluonic processes
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INFRARED FACTORIZATION

Wide-angle scattering amplitudes in gauge theories factorize to all orders:
(Ma (2020), Erdoğan and Sterman (2015), Dixon, Magnea, and Sterman (2008), Catani (1998), and Sen (1983))

Amplitude = Hard · Soft ·
∏
i

Jeti,

M

p1

p2

·
·
· = H

p1

p2

H

H

·
·
·

J1

J 2

S

• Soft and Jet functions S, Ji : contain all IR singularities, are universal functions.

• Hard function H: is process-dependent and IR finite.

Expand up to two perturbative orders:

H(1)
= M(1)

H(2)
= M(2) − I(1) · M(1)

,

Goal: Make this manifestly local in momentum space! Generate integrand for the hard functionH
free of singularities point-by-point in the integrand.
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MAKE INFRARED FACTORIZATION LOCAL

Naively at first two perturbative orders at the integrand level:

H(1)
= M(1)

H(2)
= M(2) − F(1)M(1)

• Physical IR singularities factorize: subtracted by a universal one-loop form factor amplitude
times the IR finite Born amplitude.

• Naive integrand construction has non-local cancellations→ cannot be integrated numerically.
+∞

−∞
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WHAT IS THE PRICE TO PAY?

Factorization at the integrand level:

H(2)(k, l) = M(2)(k, l) − F(1)(k)M(1)(l) − ∆M(2)(k, l),

• Additional counterterm∆M. Serves a purpose locally but does not change integrated value
of the finite amplitude: ∫

dlD∆M(2)
(k, l) = 0.

• Careful about the routing of loop momentum k, l in the diagrams→ make gauge invariance
apply locally.
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MULTI-HIGGS PRODUCTION THROUGH GLUON FUSION

M(2)
n =

p1

p2

q1

q2

···
qn

k +

p1

p2

q1

q2

···
qn

+

p1

p2

q1

q2

···
qn

+

p1

p2

q1

q2

···
qn

+

p1

p2

q1

q2

···
qn

+

p1

p2

q1

qm

·
··

qm+1

qn

·
··

• Grey disk: heavy quark loop, gluons attach everywhere.

• Diagrams with triple gluon vertices are the origin of collinear singularities k ‖ p1 and k ‖ p2 .

• Second line is IR finite.

• Interested in the first line of IR singular diagrams.
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TRIPLE GLUON VERTEX

What is the issue with gluonic diagrams and handling their singularities?

p1

p2

q1

q2

···
qn

k +

p1

p2

q1

q2

···
qn

+

p1

p2

q1

q2

···
qn

Too many terms!

α, a β, b

γ, c

k1 k2

k3

= −gsfabc(k1 − k2)γηαβ − gsfbca(k2 − k3)αη
βγ − gsfcab(k3 − k1)βηγα

• Each term exhibits a different behavior in collinear limits!

• As a single object the diagrams with a triple gluon vertex do not factorize in a local fashion.

• Analyze each contribution separately.
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“SCALAR”-DECOMPOSITION

α, a β, b

γ, c

k1 k2

k3 = −gsfabc(k1 − k2)γηαβ − gsfbca(k2 − k3)αη
βγ − gsfcab(k3 − k1)βηγα

Note: vertex of color-octet scalars and a gluon is

a b

γ, c

k1 k2

k3 = −gsfabc(k1 − k2)γ

Appears in triple gluon vertex times a metric ηαβ !

“Scalar”-decomposition

α, a β, b

γ, c

k1 k2

k3 =
α, a β, b

γ, c

k1 k2

k3 +
α, a β, b

γ, c

k1 k2

k3 +
α, a β, b

γ, c

k1 k2

k3 .

Note: Scalar lines are still gluons! Graphically only tells us which triple gluon vertex terms we
consider.
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“SCALAR”-DECOMPOSITION

Why is this useful?

Original momentum flow of diagram: does not lead to factorization at the integrand level.

p1

p2

q1

q2

···
qn

k + p1

k =

p1

p2

q1

q2

qn

···
k +

p1

p2

q1

q2

···
qn

k + p1

+

p1

p2

q1

q2

···
qn︸ ︷︷ ︸

IR-finite

Gluon must always have same momentum!

We can impose a different momentum routing for each
decomposed diagram:

p1

p2

q1

q2

qn

···
k +

p1

p2

q1

q2

···
qn

k
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“SCALAR” DECOMPOSITION OF IR SINGULAR DIAGRAMS

Apply “scalar” decomposition to all diagrams with triple-gluon vertices.

Analyze integrand→ separates them in classes due to their behavior in the collinear limits.

p1

p2

q1

q2

···
qn

+

p1

p2

q1

q2

···
qn

+

p1

p2

q1

q2

···
qn
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“SCALAR” DECOMPOSITION OF IR SINGULAR DIAGRAMS

p1

p2

q1

q2

qn

···

k

p1

p2

q1

q2

qn

···

p1

p2

q1

q2

qn

···

= M(2)

n,IR-finite X

p1

p2

q1

q2

···
qn

k

p1

p2

q1

q2

qn

···

k

p1

p2

q1

q2

qn

···
k

= M(2)fact
n,IR

physical singularities:
factorize locally

p1

p2

q1

q2

···
qn

k

p1

p2

q1

q2

qn

···

k

p1

p2

q1

q2

qn

···

k

p1

p2

q1

q2

qn

···

k

p1

p2

q1

q2

qn

···

k

p1

p2

q1

q2

qn

···

k

p1

p2

q1

q2

qn

···

k

= M(2)shift
n,IR

non-local
cancellations
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1. Factorizable diagramsM(2)fact
n,IR



COLLINEAR GLUON = LONGITUDINAL

Analyze collinear limit

Vα

p1

p1 + k

k

=
(2p1 + k)α
k2(k+ p1)2

Vα k=−xp1−−−−−→
1

k2(k+ p1)2
(2 − x)

x
(−k)α Vα

≡
Vα

p1

p1 + k

k

The collinear gluon gets unphysical longitudinal polarization!
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WARD IDENTITY

In diagrams with longitudinal gluons the Ward identity applies.

Tree level Ward identity (partial fraction decomposition)

c

l l + k

k
=

c

l

k
−

c

l + k

k

Ward identities lead to cancellation between diagrams in the collinear limits.
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DIAGRAMS RELATED VIA GAUGE INVARIANCE:M(2)fact
n,IR

Factorizable diagrams

M(2)fact
n,IR =

p1

p2

q1

q2

···
qn

k +

p1

p2

q1

q2

qn

···
k +

p1

p2

q1

q2

qn

···

k

With

• chosen routing of gluon momentum k through decomposition,

• consistent treatment for the quark momentum routing,

cancellations through Ward identity leads to local factorization:

M(2)fact
n,IR

k=−xp1−−−−−→

p2

p1

k

︸ ︷︷ ︸
external leg correction

×

M(1)
n (l, p1, p2)︸ ︷︷ ︸
Born amplitude

+M(1)
n (l+ k, p1, p2)

 .
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FORM FACTOR COUNTERTERM

All IR limits (k ‖ p1 , k ‖ p2 , k ∼ 0) factorize at the integrand level.

Removing IR singularities

IR singularities removed with a scalar-scalar form factor multiplied by an average over Born
amplitudes.

F(1)

scalar(k) ×
1

2

(
M(1)

n (l, p1, p2) + M(1)
n (l+ k, p1, p2)

)

=

p1

p2

k ×
1

2

(
M(1)

n (l, p1, p2) + M(1)
n (l+ k, p1, p2)

)

k=−xp1−−−−−→

p2

p1

k ×
(
M(1)

n (l, p1, p2) + M(1)
n (l+ k, p1, p2)

)
.

Has same behavior as factorizable diagramsM(2)fact
n,IR in all three IR limits.
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HARD INTEGRAND FOR FACTORIZABLE DIAGRAMS

All IR singular behavior is removed locally by form factor times averaged Born amplitude.

H(2)fact
n,IR = M(2)fact

n,IR − F(1)

scalar(k) ×
1

2

(
M(1)

n (l, p1, p2) + M(1)
n (l+ k, p1, p2)

)

By introducing a shift counterterm

∆M(2)fact
n,IR = F(1)

scalar(k) ×
1

2

(
M(1)

n (l+ k, p1, p2) − M(1)
n (l, p1, p2)

)
we can rewrite

H(2)fact
n,IR = M(2)fact

n,IR − F(1)

scalar(k) × M(1)
n (l, p1, p2) − ∆M(2)fact

n,IR .
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2. “Shift-integrable” diagramsM(2)shift
n,IR



“SHIFT-INTEGRABLE” DIAGRAMS:M(2)shift
n,IR

Remaining IR singular diagrams from “scalar” decomposition:

M(2)shift
n,IR =

p1

p2

q1

q2

···
qn

k +

p1

p2

q1

q2

qn

···

k +

p1

p2

q1

q2

qn

···

k

+

p1

p2

q1

q2

qn

···

k +

p1

p2

q1

q2

qn

···

k

+

p1

p2

q1

q2

qn

···

k +

p1

p2

q1

q2

qn

···

k

• Diagrams are IR finite after integration.

• Have IR singularities at the integrand level.
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HARD INTEGRAND FOR SHIFT INTEGRABLE DIAGRAMS

In the collinear limit k ‖ p1 the sum of all shift-integrable diagrams behave as:

lim
k=−xp1

(
M(2)shift

n,IR

)
∝

q1

q2

···
qn

k + p1

p2 − k

= (k+ p1)αM(1)
n,αβ(k+ p1, p2 − k, l)

Longitudinally polarized gluon enters quark loop everywhere.

QED Ward identity applies

q

k + p1
l

l + q

+ q

k + p1

l

= q

k + p1

l

− q

k + p1

l + k + p1

• Non-local cancellation: vanishes after integration over l.
• Remove this difference locally with counterterm before integration: shift counterterm

∆1M(2)shift
n,IR ∝ (k+ p1)αM(1)

n,αβ(k+ p1, p2 − k, l).

• Counterterm integrates to zero:
∫

dl4∆1M(2)shift
n,IR = 0.
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SUMMARY AND FULLY FINITE AMPLITUDE

Local IR subtraction of amplitude

“Scalar” decomposition + specific loop momentum routing:
Removed all IR singularities locally with one form factor counterterm and shift counterterms:

H(2)
n (k, l) = M(2)

n (k, l) − F(1)

scalar(k) × M(1)
n (l) − ∆M(2)

n, (k, l) .

This is a general construction for an arbitrary number of external electroweak bosons in gluon
fusion.

Fully finite amplitude

Remove UV singularities with local counterterms (local R-operator). Admits numerical integration
in D = 4.
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Towards a general framework



TOWARDS A GENERAL FRAMEWORK

Next step towards general framework: NNLO for initial state gluons

Additional issues in single collinear limits:

1. Power-like divergences in self energy correction diagrams.

Solution: Tensor reduction to reduce to logarithmic
divergences.

Vα

p1

k

l

2. Loop polarizations in vertex correction diagrams: Collinear gluons are not longitudinally polarized.

Vα

p1

l

k

k=−xp1−−−−−→ lα × Vα
1 + (−k)α × Vα

2

lα can be a hard momentum pointing into any direction −→ cannot apply Ward identity.
After integration over l : collinear gluons=longitudinal .

Solution: Symmetrization over l⊥ ↔ −l⊥ , partial Tensor reduction etc.
Challenge: not spoil other limits when solving one issue!

23



TOWARDS A GENERAL FRAMEWORK

Next step towards general framework: NNLO for initial state gluons

Additional issues in single collinear limits:

1. Power-like divergences in self energy correction diagrams.

Solution: Tensor reduction to reduce to logarithmic
divergences.

Vα

p1

k

l

2. Loop polarizations in vertex correction diagrams: Collinear gluons are not longitudinally polarized.

Vα

p1

l

k

k=−xp1−−−−−→ lα︸︷︷︸
Loop polarization

× Vα
1 + (−k)α × Vα

2

lα can be a hard momentum pointing into any direction −→ cannot apply Ward identity.
After integration over l : collinear gluons=longitudinal .

Solution: Symmetrization over l⊥ ↔ −l⊥ , partial Tensor reduction etc.
Challenge: not spoil other limits when solving one issue!

23



TOWARDS A GENERAL FRAMEWORK

X Fully local factorization for e+e− and qq̄ annihilation at two loops in previous papers.
(Anastasiou, Haindl, Sterman, Yang, and Zeng (2021)) (Anastasiou and Sterman (2022))

Progress: initial state gluons at NNLO

X All self energy correction are solved:

Vα

p1

k

l

Vα

p1

k

l

Vα

p1

k

l

X Loop polarization for gluon, ghost and fermion loop corrections removed.

Vα

p1

l

k

Vα

p1

l

k

Vα

p1

l

k

Achieving full local factorization in all collinear limits: resolve shift mismatches.
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CONCLUSION AND OUTLOOK

Conclusion

• Learned how to combine diagrams such that factorization is local.

• Established local factorization for loop induced colorless production at two loops with
external gluons.

• Solved how to project loop polarizations onto longitudinal polarizations before integration at
NNLO.

How to connect to phenomenology?

• Numerical integration via Monte Carlo: new problem→ threshold singularities.

• Combine with real radiation to full cross section.

• Recent publication: 2-loop Nf contribution to pp → V1V2V3 with Vi ∈ {γ∗,W+,W−, Z}
(Kermanschah and Vicini (2024))
−→ Dario Kermanschah’s talk tomorrow

Next steps

• Tackle factorization in all limits for NNLO gluon fusion processes.

• Expand framework to colorful final states.
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Thanks for listening!
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