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INTRODUCTION

- Massive progress in computation of two-loop amplitudes in the last decades.
- Computational complexity grows fast with additional internal, external masses and legs.

- Can become accessible with numerical methods.



INTRODUCTION

- Universal numerical approach would permit to achieve high precision in relevant processes
for LHC.

- Integrate numerically directly in momentum space: # of integrations per loop order is fixed.
+ Major obstacle: removal of infrared and ultraviolet singularities at the integrand level.

- GOAL: universal method to create finite amplitude integrands in D = 4 — integrable with
Monte Carlo.

- Universal = IR factorization

- Build framework for factorization at the integrand level: local factorization.



PROGRESS TOWARDS A GENERAL FRAMEWORK

- Worked out previously for two examples at two loops
+

*

eteT A"y (Anastasiou, Haindl, Sterman, Yang, and Zeng (2021))

qq — Vi...Vn withV; € {+*,W,Z} (Anastasiou and Sterman (2022))
+ First demonstration of framework for two-loop processes with external gluons:
gg — N colorless particles.

For example:




OUTLINE

- Infrared factorization

- What is the price to pay to make IR factorization local?

- Complexity of gluons: triple gluon vertex —s decomposition
- How does the decomposition of the triple gluon vertex help?
- Factorization at the integrand level

- More complicated gluonic processes



INFRARED FACTORIZATION

Wide-angle scattering amplitudes in gauge theories factorize to all orders:
(Ma (2020), Erdogan and Sterman (2015), Dixon, Magnea, and Sterman (2008), Catani (1998), and Sen (1983))

Amplitude = Hard - Soft - ] ] Jet;,

p2

- Soft and Jet functions S, J;: contain all IR singularities, are universal functions.

-+ Hard function H: is process-dependent and IR finite.
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Wide-angle scattering amplitudes in gauge theories factorize to all orders:
(Ma (2020), Erdogan and Sterman (2015), Dixon, Magnea, and Sterman (2008), Catani (1998), and Sen (1983))

Amplitude = Hard - Soft - ] ] Jet;,

p2

- Soft and Jet functions S, J;: contain all IR singularities, are universal functions.
-+ Hard function H: is process-dependent and IR finite.
Expand up to two perturbative orders:
H® — p
H(Q) — M(z) _ I(l) ~M(1) ,

Goal: Make this manifestly local in momentum space! Generate integrand for the hard function H
free of singularities point-by-point in the integrand.



MAKE INFRARED FACTORIZATION LOCAL

Naively at first two perturbative orders at the integrand level:
HD = D
'H(Z) — M(2) _J:(l)M(l)

- Physical IR singularities factorize: subtracted by a universal one-loop form factor amplitude
times the IR finite Born amplitude.

Naive integrand construction has non-local cancellations A

" _ cannot be integrated numerically. v



WHAT IS THE PRICE TO PAY?

Factorization at the integrand level:
HP (R, 1) = M@ (R, [) = FDRYMD (1) — AMP) (R, 1),

- Additional counterterm AM. Serves a purpose locally but does not change integrated value
of the finite amplitude:

/dlDAM@)(k, l)=o.

- Careful about the routing of loop momentum k, [ in the diagrams — make gauge invariance
apply locally.



MULTI-HIGGS PRODUCTION THROUGH GLUON FUSION

- Grey disk: heavy quark loop, gluons attach everywhere.

- Diagrams with triple gluon vertices are the origin of collinear singularities k || p1 and k || p2.
- Second line is IR finite.

- Interested in the first line of IR singular diagrams.



TRIPLE GLUON VERTEX

What is the issue with gluonic diagrams and handling their singularities?

Too many terms!

7€

-
a,a B.b

—

k1 ks

= —sfavc (k1 — R2) "™ — gefuca(Re — k3)*n®Y — gsfuan (R — k)P

- Each term exhibits a different behavior in collinear limits!
- As a single object the diagrams with a triple gluon vertex do not factorize in a local fashion.

-+ Analyze each contribution separately.



“SCALAR”-DECOMPOSITION

7,¢

[ = —Gsfabec (k1 — £2) 0% = Gofocalha — ka)* 0" = gsfean (ks — k1) 0™
a,a
. B,b
Ky ks
Note: vertex of color-octet scalars and a gluon is
7,
Elk = —gsfac (k1 = k2)"
R b
Ky k2

Appears in triple gluon vertex times a metric 1



“SCALAR”-DECOMPOSITION

7,¢

US = —Gsfupc (k1 — R2) "™ = gefocalke — Ra) ™0™ = gefean(Rs — k1)

a,a B,b
e
Ky ks
Note: vertex of color-octet scalars and a gluon is

7,
E% = —gsfac (k1 = k2)"
[ b
L
Ky k2
Appears in triple gluon vertex times a metric 1

“Scalar”-decomposition

7.¢ 7.¢ v.c Ve
I |
I I
J1s = Elks + e + s
aa B,b [ B,b ENONITITI SRR B,b [ s~ B,b

Note: Scalar lines are still gluons! Graphically only tells us which triple gluon vertex terms we
consider.



“SCALAR”-DECOMPOSITION

Why is this useful?

Original momentum flow of diagram: does not lead to factorization at the integrand level.
b2t ”

a
A

P
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\\\\\ N 58S N
P2 VT ™ n VT ™

IR-finite
Gluon must always have same momentum!
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IR-finite
Gluon must always have same momentum! We can impose a different momentum routing for each
decomposed diagram:




“SCALAR” DECOMPOSITION OF IR SINGULAR DIAGRAMS

Apply “scalar” decomposition to all diagrams with triple-gluon vertices.
Analyze integrand — separates them in classes due to their behavior in the collinear limits.

P14y




“SCALAR” DECOMPOSITION OF IR SINGULAR DIAGRAMS

=MmP v

n,IR-finite

_ g (@)fact
= MR
physical singularities:

factorize locally
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i ; fact
1. Factorizable diagrams Mffl)Rac




COLLINEAR GLUON = LONGITUDINAL

Analyze collinear limit

(2P R)a e k= 1 (2 —x) (k) v
R2(R+ p1)? R2(R+p1)2 X «




COLLINEAR GLUON = LONGITUDINAL

Analyze collinear limit

(2p1 + R)a .0 k=—xp1 1 (2—=x) o
= % —R)a V
R2(k + p1)2 R2(k+p1)2 X (=h)

The collinear gluon gets unphysical longitudinal polarization!



WARD IDENTITY

In diagrams with longitudinal gluons the Ward identity applies.

Tree level Ward identity (partial fraction decomposition)

R

Ward identities lead to cancellation between diagrams in the collinear limits.



DIAGRAMS RELATED VIA GAUGE INVARIANCE: M

Factorizable diagrams

JIWN . [ P . N P>~ /,/q:
Tl o el o o
-T2 -T2 - R
Mr(72‘)Rfact _ kT = . k\ = . k/ =
, 0 o o
Boe N N - N
p¥ s > n p VT > n 123854 ™ n



DIAGRAMS RELATED VIA GAUGE INVARIANCE: M 7t

Factorizable diagrams

no o

(2)fact _ S
MR = ’CT .
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singularin k||py



DIAGRAMS RELATED VIA GAUGE INVARIANCE: M 7t

Factorizable diagrams

pL~ A
s
(2)fact __ -
MmlR - kT E @ ;
pa¥ ™ n

singularin k||py
With
- chosen routing of gluon momentum k through decomposition,

- consistent treatment for the quark momentum routing,

cancellations through Ward identity leads to local factorization:

s

R=— ~__
MR == [ M Upapa) + MV (L4 R, pr, pa)
\—v—l
[ Born amplitude
— —

external leg correction



FORM FACTOR COUNTERTERM

ALLIR limits (R || p1, R || p2, k ~ 0) factorize at the integrand level.
Removing IR singularities

IR singularities removed with a scalar-scalar form factor multiplied by an average over Born
amplitudes.

1
F (k) x 5 (M( Y(1,p1,p2) + M (L+ k, pl,pz))

O
= kTE:i:- x 3 (M p1,pa) + MU+ b, pa,p2))
o
P
iz N T X (Mg1>(1,p1,p2)+M§1>(1+fe,p1,p2)) .
P

Has same behavior as factorizable diagrams M,Sz,?:a“ in all three IR limits.



HARD INTEGRAND FOR FACTORIZABLE DIAGRAMS

AlL IR singular behavior is removed locally by form factor times averaged Born amplitude.

1
Hg,gl)refm = Mﬁ?fm - F (k) x 5 (Mr(yl)(lv p1,p2) + -Mr(yl)([ + Rk, p1, Pz))

scalar



HARD INTEGRAND FOR FACTORIZABLE DIAGRAMS

AlL IR singular behavior is removed locally by form factor times averaged Born amplitude.

1
HES = MEE = FOL () x 5 (M (L1, p2) + M (L4 ko pa,p2))

scalar

By introducing a shift counterterm

1
AMEE = F O (1) x 5 (MP U+ koprp2) = MV (L pa,p2)
we can rewrite

HEPEE = MO~ FD (k) x MO (U, 1, p2) — AMPRE

scalar



. hif
2. “Shift-integrable” diagrams Mﬁf "t




“SHIFT-INTEGRABLE” DIAGRAMS: M ()™

Remaining IR singular diagrams from “scalar” decomposition:

P> LN P > LN Pr, > P
" 2 E Z %
2)shi i - — ' -
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¥~ S P2~ an

- Diagrams are IR finite after integration.

- Have IR singularities at the integrand level.
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HARD INTEGRAND FOR SHIFT INTEGRABLE DIAGRAMS

In the collinear limit k || py the sum of all shift-integrable diagrams behave as:

lim (M) o = (k+p1)* M) 4 (k+p1,p2 — k)
k=—xpy ’

n,ap

Longitudinally polarized gluon enters quark loop everywhere.

21
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HARD INTEGRAND FOR SHIFT INTEGRABLE DIAGRAMS

In the collinear limit k || py the sum of all shift-integrable diagrams behave as:

tim (M) o — (k4 p1) Mk + P pa — .
k=—xpy ’

n,ap

Longitudinally polarized gluon enters quark loop everywhere.
QED Ward identity applies

I+k+p

k4| L l
% N @lk+pl
—q + —q = g - 4
\A@Tk-#pl
1¥q tk

+p

+ Non-local cancellation: vanishes after integration over L.

- Remove this difference locally with counterterm before integration: shift counterterm
AL MR oc (R4 p1)* M) (R + p1,pa — kD).

a4

- Counterterm integrates to zero: /dl“Alel)RS“‘“ =o0.

21



SUMMARY AND FULLY FINITE AMPLITUDE

Local IR subtraction of amplitude

“Scalar” decomposition + specific loop momentum routing:
Removed all IR singularities locally with one form factor counterterm and shift counterterms:

HEP (R, 1) = MEP (R, 1) — F&(R) x MED (1) — AMP (R, 1)

scalar

This is a general construction for an arbitrary number of external electroweak bosons in gluon
fusion.

Fully finite amplitude

Remove UV singularities with local counterterms (local R-operator). Admits numerical integration
inD=4.

22



Towards a general framework




TOWARDS A GENERAL FRAMEWORK

Next step towards general framework: NNLO for initial state gluons
Additional issues in single collinear limits:

1. Power-like divergences in self energy correction diagrams.

Solution: Tensor reduction to reduce to logarithmic
divergences.

B X VY 4 (—R)a X VS
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TOWARDS A GENERAL FRAMEWORK

1.

Next step towards general framework: NNLO for initial state gluons

Additional issues in single collinear limits:

Power-like divergences in self energy correction diagrams.

Solution: Tensor reduction to reduce to logarithmic
divergences.

Ll XV 4 (—Ra x Yy
~

Loop polarization

o can be a hard momentum pointing into any direction — cannot apply Ward identity.
After integration over [ : collinear gluons=longitudinal .

Solution: Symmetrization over [, <« —[,, partial Tensor reduction etc.

Challenge: not spoil other limits when solving one issue!

23



TOWARDS A GENERAL FRAMEWORK

v Fully local factorization for ete™ and gg annihilation at two loops in previous papers.
(Anastasiou, Haindl, Sterman, Yang, and Zeng (2021)) (Anastasiou and Sterman (2022))

C Progress: initial state gluons at NNLO

v All self energy correction are solved:

€ Achieving full local factorization in all collinear limits: resolve shift mismatches.

24



CONCLUSION AND OUTLOOK

Conclusion
- Learned how to combine diagrams such that factorization is local.

- Established local factorization for loop induced colorless production at two loops with
external gluons.

- Solved how to project loop polarizations onto longitudinal polarizations before integration at
NNLO.

How to connect to phenomenology?
- Numerical integration via Monte Carlo: new problem — threshold singularities.
+ Combine with real radiation to full cross section.

- Recent publication: 2-loop Ny contribution to pp — V1VaVs with V; € {~v*, W+, w—,Z}
(Kermanschah and Vicini (2024))
— Dario Kermanschah’s talk tomorrow

Next steps

- Tackle factorization in all limits for NNLO gluon fusion processes.

- Expand framework to colorful final states.
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Thanks for listening!
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