

<u>INISTERIC</u> E CIENCIA, INNOVACIÓN **UNIVERSIDADES**

Financiado por la Unión Europea

ANA CUETO O.B.O. ATLAS COLLABORATION, UNIVERSIDAD AUTÓNOMA DE MADRID, HP2-2024

OVERVIEW OF ATLAS PRECISION MEASURE **AENERATORS USA**

Run: 475522 **Event: 2563184864** 2024-05-13 06:27:42 CEST

This work has been part of the grant RYC2021-031273, with funding from MCIN/AEI/10.13039/501100011033 and «NextGenerationE

LHC PLAN AND STATUS

2

ATLAS PRECISION PHYSICS PROGRAMME

Standard Model Production Cross Section Measurements

Status: June 2024

3

ATLAS PRECISION PHYSICS PROGRAMME

 $\overline{2}$ 10¹¹

 10^5

 10^4

 10^3

 10^2

 10^1

 10^{-1}

 10^{-3}

- **• ATLAS has a wide programme of Standard Model physics with different groups focused on different final states (SM, Top, Higgs and DiHiggs)**
- **• Measurements of total or fiducial differential cross sections, SM parameters, but also new avenues of testing the SM (polarisation, entanglement,…) and new methodologies (e.g. unbinned cross sections)**
- **• Large number of observation of rare SM processes during Run 2 (diboson VBS, photon induced, triboson, 4tops) and new Higgs decay channels**
- **• Similar programme in Run 3 benefitting of the updates in the detector (e.g. New Small Wheel) and performance (e.g x4 better btagging background rejection)**

Standard Model Production Cross Section Measurements

Status: June 2024

JETS PHYSICS: R3/2 RATIO

[arXiv:2405.20206](https://arxiv.org/pdf/2405.20206)

*dσ*3*j*/*dx* $d\sigma_{2j}/dx$

where $x = H_{T2}$, $m_{jj,max}$, $|\Delta y_{jj,max}|$, m_{jj} , $|\Delta y_{jj}|$

- **• Differential cross sections in different jet multiplicity bins** ■Several p_{T3} thresholds for H_{T2} measurements: explore sensitivity to **resummation effects**
	- \blacktriangleright Ratios for better sensitivity to α_{s} (smaller uncertainties)
	- ➡ **NNLO needed for a good description of the data.**
	- ➡**HEJ description is better in regions with large contributions of log(pTjet/√s)**

PRECISE MEASUREMENTS OF W AND Z TRANSVERSE MOMENTUM SPECTRA

 $\frac{1}{2}$ de^V
 $\frac{1}{2}$ 10⁻²

Data

1.05

 $\frac{6}{5}$ 0.95

 $\frac{1}{2}$ (GeV $\frac{1}{2}$ 10⁻²

10 $^{-6}$

 $\frac{18}{6}$ 1.05

 $\overline{2}$ 0.95

 0.9

0.85

 1.1

 0.85

 10^{-3}

[arXiv:2404.06204](https://arxiv.org/abs/2404.06204)

• Performed with dedicated runs of the LHC with an average of two interactions per bunch crossing at √s=5.02 and 13 TeV ➡**Optimize the reconstruction of the hadronic recoil**

➡ **Needed for a precise measurement of** m_W (m_W = 80366.5±15.9 MeV in the **[latest ATLAS measurement\)](https://arxiv.org/abs/2403.15085)**

- **• Unprecedented granularity in the distributions of around 7 GeV**
- **• Improved precision by a factor 3.5 (1.7) for the W (Z) measurement**
- **• Several deficits in the descriptions of MC generators**
	- ➡**Better description at 5.02 TeV with showers tuned to ATLAS 7 TeV Z data**

Z BOSON IN ASSOCIATION WITH ONE OR TWO B- OR C-JETS

[arXiv:2403.15093](https://arxiv.org/abs/2403.15093)

- **• Modelling relevant for Z+HF production**
	- ➡ **Differences between FS**
- **• Harder pT spectra by predictions in Z+1bjet**
- **• Fixed-order predictions corrected for non-perturbative effects and different b-jet definition**
	- ➡ **Show discrepancies with data at** high $p_T(Z)$
- No prediction has agreement with mbb **in the full spectrum**

ELECTROWEAK VBS PRODUCTION OF WZ AND W

8

[arXiv:2403.02809](https://arxiv.org/pdf/2403.02809) [arXiv:2403.15296](https://arxiv.org/pdf/2403.15296)

- **• VVjj production being tested differentially**
	- ➡ **Helpful to test the modelling of key observables**
- **• Multivariate techniques used to distinguish the EW production from the irreducible background**
- **• Measurements compared to aMC@NLO and Sherpa both at LO but Sherpa includes an additional parton in the ME**
- **• Sensitivity of the measurement to deviations of quartic gauge couplings exploited through SMEFT**

9

- Measurement of W- and top-initiated anti-kt jets R=1.0 (p_T>350 GeV) using charged particles
	- ➡ **Help to understand reconstruction and modelling of hadronic tops**
	- ➡ **Complement other jet substructure measurements and can serve as input for MC tuning**

LUND JET PLANE IN HADRONIC DECAYS OF TOP QUARKS AND W BOSONS

- wide value, **• Agreement with predictions but regions with low p-value, specially in W-jets**
	- ➡ **Systematics dominated by the toppair and parton shower modelling**

DIFFERENTIAL TT AND TT+JETS CROSS SECTIONS IN L+JETS FINAL STATES

➡ **Characterisation with a wide number of observables, many of them not previously measured.**

• Test of the dynamics and topology of the $t\bar{t}$ system and the hardest emissions $t\bar{t}$

Usage of NNLO MC+PS with better agreement to data than NLO MC+PS

DIFFERENTIAL CROSS SECTIONS OF $t\bar{t}$ PLUS **HEAVY FLAVOUR IN THE** $e\mu$ **CHANNEL**

- **• Important and poorly constrained background of ttH, tttt**
	- ➡ **Challenging calculations with very** different scales involved ($t\bar{t}$ system and $b\bar{b}$ from gluon splitting)
- ➡ **MC calculations with different treatments of: b-quark mass, production of the extra b-quarks or merging of the b-quark production** with the inclusive $t\bar{t}$ prediction
- **• Most observables are generally well described by the majority of MC predictions**

[arXiv:2407.16320](https://arxiv.org/pdf/2407.16320)

DIFFERENTIAL CROSS SECTIONS IN *H* → *ττ* **AND COUPLINGS MEASUREMENT**

- $H \to \tau\tau$ with a BR of 6% is in a unique **position of having sufficient statistics and low enough backgrounds for precise Higgs production** $H \to \tau\tau$
	- ➡**Reconstruction of leptonic and hadronically decaying tau leptons**
- **• Higher granularity and improvement in the VBF and ttH measurement over previous measurements in the channel**
- **VH** Production mode **VBF** ggF ttH 0.91 Best-fit value 0.93 0.94 0.77 ± 0.16 ± 0.97 Total uncertainty ± 0.30 ± 0.62 Samples size ± 0.09 ± 0.32 ± 0.03 ± 0.25 Theoretical uncertainty in signal ± 0.19 ± 0.14 ± 0.10 ± 0.13 Jet and $E_{\rm T}^{\rm miss}$ ± 0.12 ± 0.14 ± 0.03 ± 0.11
- **• Theory uncertainty is dominant**

```
qq'\rightarrowHqq', \geq 2-jet, 350 \leq m<sub>u</sub> < 700, p<sub>r</sub><sup>H</sup> < 200
  qq'→Hqq', ≥ 2-jet, 700 ≤ m<sub>ii</sub> < 1000, p_{\rm T}^{\rm H} < 200
 qq'\rightarrowHqq', \geq 2-jet, 1000 \leq m<sub>ii</sub> < 1500, p_{T}^{H} < 200
             qq'\rightarrowHqq', \geq 2-jet, m<sub>ii</sub> \geq 1500, p_{\rm T}^{\rm H} < 200
    qq'→Hqq', ≥ 2-jet, 350 ≤ m<sub>ii</sub> < 700, p<sup>H</sup><sub>T</sub> ≥ 200
   qq'\rightarrowHqq', \geq 2-jet, 700 \leq m<sub>u</sub> < 1000, p_{\rm T}^{\rm H} \geq 200
qq'→Hqq', ≥ 2-jet, 1000 ≤ m<sub>ii</sub> < 1500, p<sup>H</sup> ≥ 200
              qq'\rightarrowHqq', \geq 2-jet, m<sub>u</sub> \geq 1500, p<sup>H</sup><sub>r</sub> \geq 200
```
Measured for the first time

14

AVAILABILITY OF GENERATORS IN ATLAS

- **• All MC samples sets used in data analysis are centrally produced and managed in ATLAS.**
- **• Wide range of MC event generator programs** ➡**Powheg, MadGraph, Sherpa, Pythia8 and Herwig7 most commonly used.**

➡**Afterburners run as secondary in Athena: Photos++ (refinement of FSR), Tauola++ (precise tau leptonic decays) or**

• Dedicated team outside ATLAS (CERN EP-SFT) maintain the LCG software stack that provide the MC generators

- **EvtGen (for heavy flavour hadron decays)**
- ➡**Several other limited-use generators: EPOS, Hijing, Hto4l, Pythia8B, Starlight, SuperChic, etc…**
- **installation** ➡**The GENSER (GENerator SERvices) in charge of MC programmes**
- **• ATLAS software [\(Athena](https://gitlab.cern.ch/atlas/athena/-/tree/main/Generators)) publicly available in gitlab** ➡**Generator interfaces, MC default settings or MC samples steering files can be found**

GENERATOR VALIDATION WITHIN ATLAS

- **• Regular validation of event generation performed as part of the ATLAS Release Testing** ➡**A small output is automatically compared to a reference output from previous test**
- **• In case of change of generator version, a more thorough validation is performed based on PAVER results are compared to those of previous runs**
	- ➡**Technical parameters are also compared (cross sections, event on-the-fly weights, filter efficiencies…)**

➡**Event samples for a variety of processes and generators are analysed with several Rivet routines and the**

THE ATLAS PHYSICS MODELLING GROUP

- **• PMG responsible for the developments and validation of MC generators and samples**
	- ➡**Also responsible for setting theory uncertainty recipes for the developed samples**
- **• Central samples developments focused on bulk SM that are used across the whole collaboration**
	- ➡**Largest and most CPU consuming samples are [V+jets](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PMGR-2021-01/figaux_01.png)** ➡**Seek for ways to improving effective statistics and reducing**
	- **CPU time without compromising much the accuracy**

• Studies within the group published as [PUB notes](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MCPublicResults)

17

THE ATLAS PHYSICS MODELLING GROUP

- **• Slow but continuous efforts to:**
	- ➡**Update to the highest accuracy available (e.g. MiNNLO+PS)**
	- ➡**Include new features in samples (e.g EW corrections)**
	- ➡**Test additional generators (e.g Geneva)**
	- ➡ **New parton showers and their matching to matrix-element calculations (e.g Vincia)**
	- ➡**Tools to reduce the fraction of negative weights in samples (e.g cell resampler or MC@NLO-Delta matching)**
	- ➡**Usage of GPUs (e.g Madgraph GPU or Pepper)**
- **• Difficulties in forming and retaining expertise in MC event generators within the collaboration**
	- ➡**Easy interaction with MC authors is key**
	- ➡ **Possibility of having an ATLAS author qualifier working with MC authors**
	- ➡**MCI figure to allow MC authors attend ATLAS meetings and ease the exchange of information**

(SOME) MC GENERATORS CODES WISHLIST

- **• Many new features and fancy generator versions take long to make production ready in ATLAS** ➡**Experienced problems with e.g bb4l, Vincia**
	- ➡**Lack of knowledge within the collaboration that need assistance from authors**
- **• ^Efficient phase-space biasing and filtering**
	- ➡**ATLAS has gained some experience with phase-space biasing in V+jets production** ➡ **Time consuming to ensure proper working of biasing and no issues with physics results. Any regular checks that can be performed?**
	- ➡**Heavy-flavour filtering: many events thrown away. Exploring ways of enhancing heavy flavour production and improve filter efficiency is needed**
- **• Optimisation of parallelisation: integration of processes does not scale with CPU**
- **• Improvement of negative weights**
- **• Sharing of samples and common tuning with CMS**

(SOME) PHYSICS MODELLING POINTS

- **• Going beyond NNLO seems needed for some processes (e.g. DY, top)** ➡**N3LOPS for specific processes** ➡**How far are we from NNLO QCD + NLO EW + PS ?**
- **• Sometimes we are interested in interference e ffects which are intrinsically difficult to model (e.g H→** and $\gamma\gamma$ QCD)
- **• Better accuracy/control of parton showers, mass effects and non-perturbative models**

- **• UNCERTAINTIES!!** ➡**It is taking years to build a systematic uncertainty model for the di fferent processes**
	- ➡**Limiting several measurements**
	- ➡**Theory guidance is key**

SUMMARY

- **• ATLAS has a wide programme for precision measurements** ➡**At the same time looking for new physics and rare production never observed before**
- **• It combine standard analysis strategies of measurement of differential cross sections or extraction of SM parameters with new methodologies**
- **• Improving the precision of the measurements and understanding the modelling in MC generators is key to improve the sensitivity to new physics effects** ➡**A large number of measurements currently including SMEFT interpretations**
- ATLAS has a continuous effort to adapt to the newest MC versions and provide samples for the general use of the **collaboration**
	- ➡**Improvement in the knowledge exchange with MC authors is key for the success of the ATLAS SM and BSM programme**
	- ➡**Many of the topics can be discussed in the LHC MC working group**

BACK-UP

PRECISE MEASUREMENTS OF W AND Z TRANSVERSE MOMENTUM SPECTRA

[arXiv:2404.06204](https://arxiv.org/abs/2404.06204)

• Comparisons to Radish at √s=13 TeV and multi-leg predictions ➡**Radish is NNLO QCD + N3LL**

JETS PHYSICS: R3/2 RATIO

- **• Revisited "flavour response uncertainty" of jet energy scale** ➡**Flavour response depends on particle content and their pT spectrum which can have noticeable differences in different hadronisation models**
	- ➡**New factorised uncertainty targeting different regimes of the parton shower, hadronization or UE**
	- ➡ **Improvements at low and medium transverse momenta**

Figure 3: Illustration of the OmniFold method. First, MC is corrected to match data at the detector level. Second, particle-level MC is adjusted by propagating the learned correction through the MC using a weighting function $\omega(\vec{x}_r)$. Third, a new correction $v(\vec{x}_p)$ is learned based on particle-level quantities only. Finally, $v(\vec{x}_p)$ is propagated through the MC back to the detector level achieving an improved agreement to data. The method proceeds iteratively four more times, achieving a combined function $v(\vec{x}_p)$ that reweights the MC such that the event yields and kinematics match those observed in the data.

[arXiv:2405.20041](https://arxiv.org/abs/2405.20041)

UNBINNED DIFFERENTIAL CROSS SECTIONS IN Z+JETS

[arXiv:2405.20041](https://arxiv.org/abs/2405.20041)

➡ **Machine learning technique using discriminative NN that generalises the Iterative Bayesian Unfolding for**

- **• Z+jets cross section in 24 observables using Omnifold correction for detector effects**
- **• Results are presented as an unbinned dataset allowing the re-use adjusting the binning or building new observables starting from the 24 ones originally measured**
- **• Recommendations on how to use the dataset formatted as Panda DataFrame also provided**

Z+b and Z+bb / modelling is important 4FS and 5FS, fixed-order NLO and NNLO

$x_F = 2|p_z(c)|/\sqrt{s}$ $10[′]$ $d\sigma/dx_F$ [pb] **ATLAS EXE** Data 1 0° \sqrt{s} = 13 TeV, 140 fb 1 \rightarrow NNPDF40 (pch) 10° $(\rightarrow \parallel)$ + \geq 1 c-jet CT14NNLO CT18NNLO $10²$ 10^3 $10²$ 10 10^{-1} 10^{-2} MC/Data 0.6 \bigoplus BHPS2 CT14NNLO **C** BHPS1 MC/Data 0.6 1.4 C T18NNI O **MC/Data** 1.2 0.8 0.6 10^{-2} 10^{-1} Leading c-jet x

Z BOSON IN ASSOCIATION WITH ONE OR TWO B- OR C-JETS

• aMC@NLO+Pythia FxFx (5FS) compared to data with several PDF sets testing different intrinsic charm models ➡**PDFs with large IC contribution, such as CT14 BHPS2 (2.1% IC) agree at large** x_F ➡**More realist PDF fits (NNPDF4.0 + LHCb + EMC) only marginal improvement at high XF**

