Nf-part of the NNLO virtual correction to electroweak vector boson production using direct numerical integration

based on arXiv:2407.18051 in collaboration with Matilde Vicini

F D E

UNIVERSITÀ

DI TORINO

Dario Kermanschah HP2, 11 September 2024

How to conquer multi-scale multi-loop calculations?

- Full two-loop amplitudes beyond 2 \rightarrow 3 massless particles unavailable
- Overwhelming complexity of IBP reduction & unknown Master Integrals
- NNLO calculations become analytically intractable... resort to numerical methods!

Why vector boson production?

- Uncharted territory: 3 massive bosons at two loops
- Fewer IR singularities: only ISR (no FSR)
- ATLAS and CMS become sensitive to three Z / W production, test quartic gauge-boson couplings & lightquark Yukawa couplings, BSM...

Our approach for the two-loop virtual contribution: Local subtraction & direct numerical integration

finite remainder:
$$R^{(2)} = M^{(2)} - \frac{2\beta_0}{\epsilon} M^{(1)}$$

UV renorm.

hard scattering amplitude $M_{\rm hard}^{(2)} = M$ CIR&UV easy loops

local IR & UV

counterterms

- finite in D = 4 dimensions, no dim reg. ($\gamma^{5}...$)
- integrate numerically with Monte Carlo

loops -----

directly in momentum space

Feynman

diagrams

• no IBPs, no Master integrals, no sector decomposition

Anastasiou, Haindl, Karlen, Sterman, Venkata, Yang, Zeng [2403.13712,2212.12162, 2008.12293,1812.03753]

$$\mathbf{Z}^{(1)}M^{(1)} - \mathbf{Z}^{(2)}M^{(0)}$$

Catani IR poles

 $C_{\rm IR\&UV}$ from local factorisation see Julia Karlen's talk!

renormalisation & factorisation scheme change

+ $C_{\text{IR&UV}}$ - $\frac{2\beta_0}{C} M^{(1)} - Z^{(1)}M^{(1)} - Z^{(2)}M^{(0)}$ calculate analytically in $D = 4 - 2\epsilon$ dimensions $= c_1 M_{\text{hard}}^{(1)} + c_0 M^{(0)}$

interfere with tree & integrate over phase space to get the virtual cross section: $\int d\Pi \sum_{hel} |M|^2$

Our approach for the two-loop virtual contribution: Local subtraction & direct numerical integration

finite remainder:
$$R^{(2)} = M^{(2)} - \frac{2\beta_0}{\epsilon} M^{(1)}$$

UV renorm.

hard scattering amplitude

$$M_{\rm hard}^{(2)} = M^{(2)} - C_{\rm IR\&UV}$$

Two-loop
$$N_f$$
 -part $\mathcal{M}_{hard}^{(2,N_f)}$

$$\sum_{i=1}^{n} + \sum_{i=1}^{n} + \sum_{i=1}^{n} + \sum_{i=1}^{n} - \sum_{i=1}^{n} -C_{UV}^{(2,N_f)} + \sum_{i=1}^{n} -C_{UV}^{(1)} + \sum_{i=1}^{n} + \sum_{i=1}^{n} + \sum_{i=1}^{n} + \sum_{i=1}^{n} -\sum_{i=1}^{n} -C_{UV}^{(1)} + \sum_{i=1}^{n} + \sum_{i=1}^{n}$$

Anastasiou, Haindl, Karlen, Sterman, Venkata, Yang, Zeng [2403.13712,2212.12162, 2008.12293,1812.03753]

$$\mathbf{Z}^{(1)}M^{(1)} - \mathbf{Z}^{(2)}M^{(0)}$$

Catani IR poles

 $C_{IR\&UV}$ from local factorisation see Julia Karlen's talk!

renormalisation & factorisation scheme change

+ $C_{\text{IR&UV}}$ - $\frac{2\beta_0}{C} M^{(1)} - Z^{(1)}M^{(1)} - Z^{(2)}M^{(0)}$ calculate analytically in $D = 4 - 2\epsilon$ dimensions $= c_1 M_{\text{hard}}^{(1)} + c_0 M^{(0)}$

interfere with tree & integrate over phase space to get the virtual cross section: $\int d\Pi \sum_{hel} |M|^2$

Local singularities of finite loop integrals

4 poles in the integration domain

causal prescription

implement causal prescription for numerical integration

 \rightarrow analytic integration over k^0

Loop integrals are rational functions in the energy component of the loop momentum \rightarrow integrate using the residue theorem: from D to D-1 integration dimensions per loop

Catani, Rodrigo et al. [0804.3170], ETHZ [1906.06138], Mainz [1902.02135], Valencia [2001.03564, 2010.12971] Loop-Tree Duality

compact expression but problematic spurious singularities and derivatives for raised propagators

Time-Ordered Perturbation Theory still some spurious singularities and more terms

Capatti [2211.09653] **Cross-Free Family representation** no spurious singularities

+ many others ...

ETHZ [2009.05509], Mainz [2208.01060], Stony Brook [2309.13023], Valencia [2006.11217, 2112.09028, 2103.09237, 2102.05062]

Threshold singularities

- causal prescription
- implement causal prescription for numerical integration
 - \rightarrow Same problems? Yes but fewer integration dimensions & fewer integrand singularities in compact region!

$$\vec{q}_i^2 + m_i$$

subtraction

DK: [2110.06869] DK, Matilde Vicini [2407.21511]

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathscr{I} \sim \frac{\operatorname{Res}_{i} \mathscr{I}}{|\vec{k}| - k_{i} \pm i\epsilon} \to \operatorname{CT}_{i}$ threshold counterterm

$$\operatorname{Re} I = \int [\mathrm{d}^{3}\vec{k}] \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int [d^{3}\vec{k}] \operatorname{CT}_{i} = \mathrm{i}\pi \int d\Pi \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \overleftarrow{i} & \operatorname{pha} \\ & \overleftarrow{i} & \overleftarrow{i} & \overleftarrow{i} & \operatorname{spa} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$$

Im
$$I = \pi \int d\Pi \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$
 absorptive par
local optical theorem: all singularities incl. IR call

DK: [2110.06869] DK, Matilde Vicini [2407.21511]

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathscr{I} \sim \frac{\operatorname{Res}_{i} \mathscr{I}}{|\vec{k}| - k_{i} \pm i\epsilon} \to \operatorname{CT}_{i}$ threshold counterterm

$$\operatorname{Re} I = \int [\mathrm{d}^{3}\vec{k}] \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int [d^{3}\vec{k}] \operatorname{CT}_{i} = \mathrm{i}\pi \int d\Pi \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \overleftarrow{i} & \operatorname{pha} \\ & \overleftarrow{i} & \overleftarrow{i} & \overleftarrow{i} & \operatorname{spa} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$$

Im
$$I = \pi \int d\Pi \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$
 absorptive par
local optical theorem: all singularities incl. IR call

DK: [2110.06869] DK, Matilde Vicini [2407.21511]

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathscr{I} \sim \frac{\operatorname{Res}_{i} \mathscr{I}}{|\vec{k}| - k_{i} \pm i\epsilon} \to \operatorname{CT}_{i}$ threshold counterterm

$$\operatorname{Re} I = \int [\mathrm{d}^{3}\vec{k}] \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

we will only need the dispersive part!

$$\int d\Pi d^{3}\vec{k} d^{3}\vec{l} \sum_{\text{hel.}} 2 \operatorname{Re} \left[\underbrace{\$}_{\text{hel.}} \underbrace$$

 $\gamma^*\gamma^*$ $q\bar{q} \rightarrow$

corresponding Cutkosky cuts

overlapping thresholds: multi-channelling

same pipeline & same computer with 24 cores

NLO and NNLO-Nf virtual cross sections summed over helicities and convoluted with PDFs

		Order	Result [pb]	Δ [$\%$]	total time [#]	#potential for optim
masses? no prob!*	$pp \rightarrow \gamma \gamma$	NLO	5.2851 ± 0.0164 e-01	0.3	10 min	NLO in BLHA NNLO-Nf in MS NLO cross che interferences with OpenLoop and cross secti with MadGraph
		NNLO-Nf	-6.1475 ± 0.0349 e-02	0.6	1 h 30 min	
	$pp \rightarrow \gamma^* \gamma^*$	NLO	4.3172 ± 0.0089 e-01	0.2	2 min	
		NNLO-Nf	-3.6943 ± 0.0322 e-02	0.9	40 min	
	$p_d p_d \rightarrow ZZ$	NLO	7.0067 ± 0.0159 e-01	0.2	4 min	
		NNLO-Nf	-5.9363 ± 0.0520 e-02	0.9	1 h 30 min	in agreement w FivePoint Amplitudes- Abreu, De Laur Ita, Klinkert, Pa Sotnikov [2305
	$pp \rightarrow \gamma \gamma \gamma$	NLO	1.4874 ± 0.0140 e-04	0.9	2 h 30 min	
		NNLO-Nf	-2.5460 ± 0.0237 e-05	0.9	1 day	
	$pp \rightarrow \gamma^* \gamma^* \gamma^*$	NLO	1.4692 ± 0.0144 e-04	1.0	2h 45 min	
		NNLO-Nf	-1.4301 ± 0.0137 e-05	1.0	4 days	×3! new!
	$p_d p_d \rightarrow Z \gamma_1^* \gamma_2^*$	NLO	2.4600 ± 0.0210 e-04	0.9	1 day 12 h	
		NNLO-Nf	-2.5301 ± 0.0229 e-05	0.9	1 month	

*additional thresholds have to be considered

DK, Matilde Vicini [2407.18051]

numerical integration over loop & phase space

Summary & Outlook

If First NNLO calculation for the LHC using numerical integration over loop & phase space

Local IR factorisation & UV renormalisation

- apply these techniques to the full NNLO virtual contribution
- combine with real radiation
- processes with colorful final state

Model of the section of the secti

Analytic loop energy integration LTD, CFF, TOPT, ...

Threshold subtraction

flexible and robust framework suited for automation

