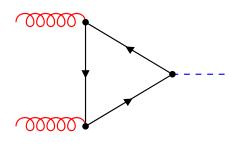
Quark Mass Effects in Higgs Production

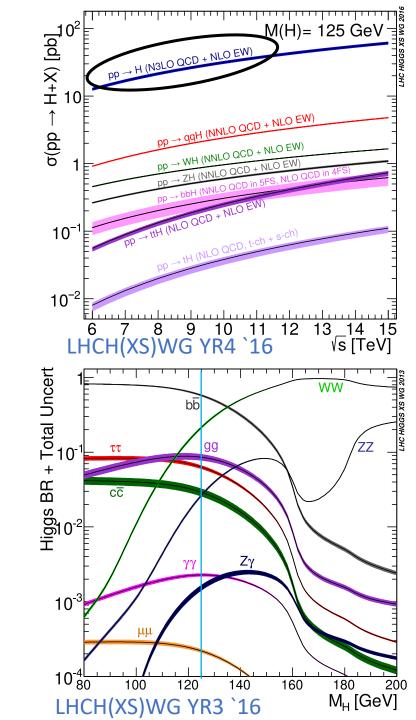
Marco Niggetiedt

with M. Czakon, F. Eschment, R. Poncelet and T. Schellenberger

based on

PRL 132 (2024) 211902 [arXiv:2407.12413]

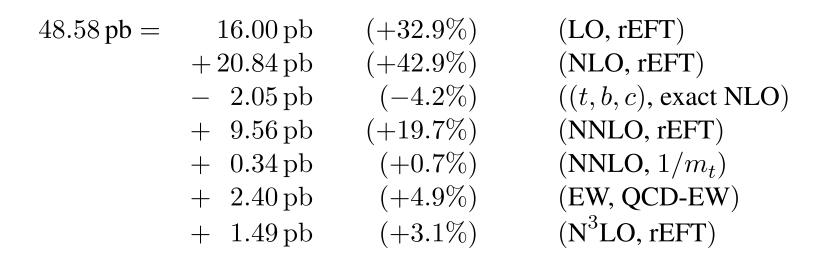

High Precision for Hard Processes 2024


Turin September 10th 2024

Gluon fusion

- Gluon fusion is the predominant Higgs boson production mode at the LHC
 - \succ loop induced process

- Higgs boson plays unique role in the SM:
 - Only scalar particle
 - > Only particle with Yukawa interactions to fermions
- Predictions for gluon fusion cross section directly impact extraction of Higgs couplings from experimental measurements
- Reducing theory uncertainty is crucial for facilitating high precision measurements of Higgs couplings at the LHC
- ➢ High luminosity LHC projections anticipate uncertainty 𝒪(2%) and theory uncertainty to be halved WG2 Report `19

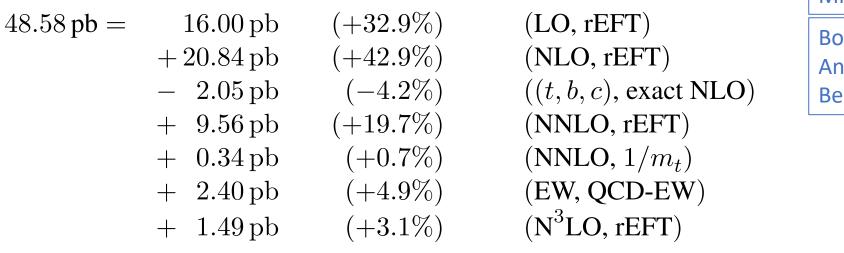

• Inclusive gluon fusion cross section according to LHCH(XS)WG YR4 `16 at the LHC at 13 TeV:

	LHCH(XS)WG YR4 `16		
ncertainty:	Anastasiou, Duhr, Dulat, et al. `16		

•	Sources	of	uncertainty:
---	---------	----	--------------

δ (scale)	$\delta(\text{trunc})$	δ (PDF-TH)	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$	
$+0.10 \text{ pb} \\ -1.15 \text{ pb}$	$\pm 0.18~{ m pb}$	$\pm 0.56~{ m pb}$	$\pm 0.49~\mathrm{pb}$	$\pm 0.40~\mathrm{pb}$	$\pm 0.49~\mathrm{pb}$	
$+0.21\%\ -2.37\%$	$\pm 0.37\%$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$	▲ All sources <i>0</i> (1%)

• Inclusive gluon fusion cross section according to LHCH(XS)WG YR4 `16 at the LHC at 13 TeV:


Mistlberger `18

Sources of uncertainty:

LHCH(XS)WG YR4 `16 Anastasiou, Duhr, Dulat, et al. `16

_							
	δ (scale)	δ (trunc)	δ (PDF-TH)	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$	
	$+0.10~\mathrm{pb}$ $-1.15~\mathrm{pb}$	± 0.18 pb	$\pm 0.56~{ m pb}$	$\pm 0.49~\mathrm{pb}$	$\pm 0.40~{ m pb}$	$\pm 0.49~\mathrm{pb}$	
-	$+0.21\%\ -2.37\%$	$\pm 0.37\%$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$	← All sources <i>O</i> (1%)
-							

• Inclusive gluon fusion cross section according to LHCH(XS)WG YR4 `16 at the LHC at 13 TeV:

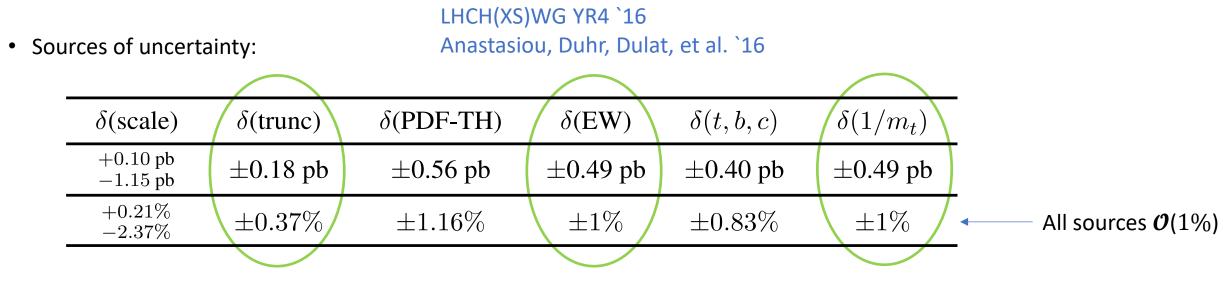
Mistlberger `18

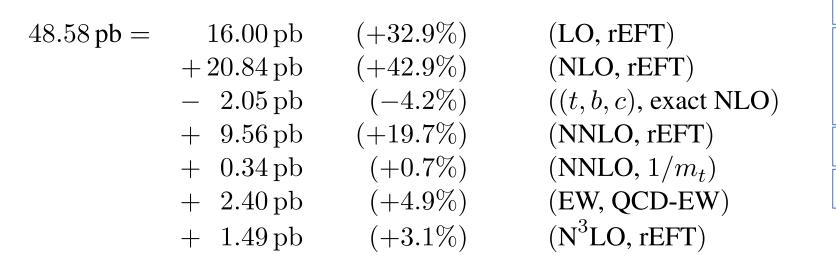
Bonetti, Melnikov, Tancredi `18 Anastasiou, del Duca, Furlan, et al. `19 Becchetti, Bonciani, Del Duca, et al. `21

• Sources of uncertainty:

LHCH(XS)WG YR4 `16 Anastasiou, Duhr, Dulat, et al. `16

δ (scale)	δ (trunc)	δ (PDF-TH)	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$	
$+0.10 { m ~pb}\ -1.15 { m ~pb}$	± 0.18 pb	$\pm 0.56~\mathrm{pb}$	$\pm 0.49~\mathrm{pb}$	$\pm 0.40~{ m pb}$	$\pm 0.49~\mathrm{pb}$	
$^{+0.21\%}_{-2.37\%}$	$\pm 0.37\%$	$\pm 1.16\%$	±1%	$\pm 0.83\%$	$\pm 1\%$	All sources <i>O</i> (1%)
						_


• Inclusive gluon fusion cross section according to LHCH(XS)WG YR4 `16 at the LHC at 13 TeV:

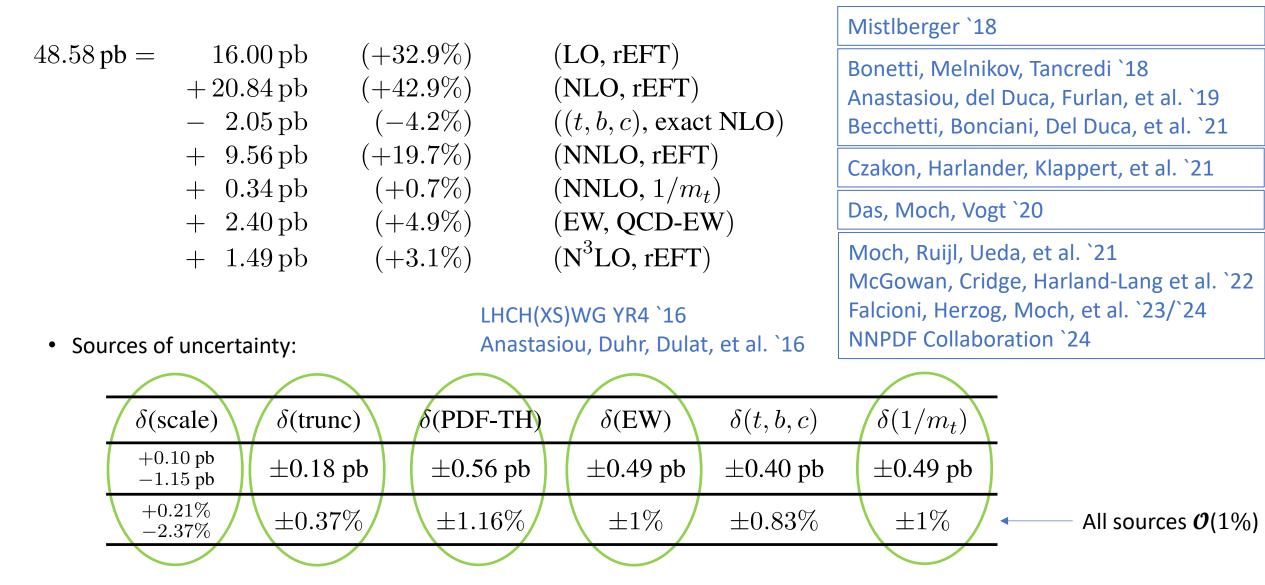

Mistlberger `18

Bonetti, Melnikov, Tancredi `18 Anastasiou, del Duca, Furlan, et al. `19 Becchetti, Bonciani, Del Duca, et al. `21

Czakon, Harlander, Klappert, et al. `21

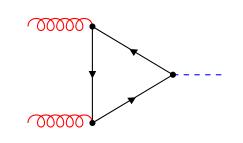
• Inclusive gluon fusion cross section according to LHCH(XS)WG YR4 `16 at the LHC at 13 TeV:

Mistlberger `18


Bonetti, Melnikov, Tancredi `18 Anastasiou, del Duca, Furlan, et al. `19 Becchetti, Bonciani, Del Duca, et al. `21

Czakon, Harlander, Klappert, et al. `21

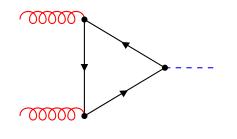
Das, Moch, Vogt `20


LHCH(XS)WG YR4 `16 Anastasiou, Duhr, Dulat, et al. `16 • Sources of uncertainty: δ (scale) δ (PDF-TH) $\delta(EW)$ $\delta(t, b, c)$ $\delta(1/m_t)$ δ (trunc) +0.10 pb $\pm 0.18 \text{ pb}$ $\pm 0.56 \text{ pb}$ $\pm 0.49 \text{ pb}$ $\pm 0.40 \text{ pb}$ $\pm 0.49 \text{ pb}$ -1.15 pb +0.21% $\pm 0.37\%$ $\pm 0.83\%$ $\pm 1.16\%$ $\pm 1\%$ $\pm 1\%$ All sources O(1%)-2.37%

• Inclusive gluon fusion cross section according to LHCH(XS)WG YR4 `16 at the LHC at 13 TeV:

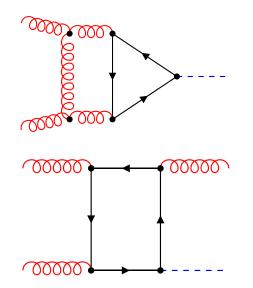
Order by order in perturbation theory

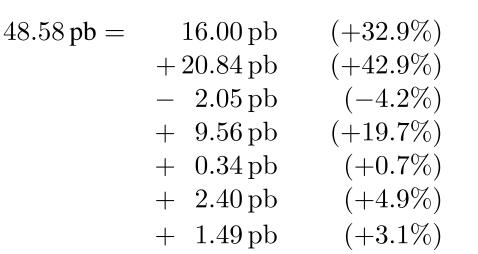
• LO contribution exactly known for almost 50 years


Georgi, Glashow, Machacek, et al. `78

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(]
	$+20.84\mathrm{pb}$	(+42.9%)	[]
	$-2.05\mathrm{pb}$	(-4.2%)	()
	$+ 9.56\mathrm{pb}$	(+19.7%)	[]
	$+ 0.34 \mathrm{pb}$	(+0.7%)	[]
	$+ 2.40\mathrm{pb}$	(+4.9%)	(]
	$+ 1.49 \mathrm{pb}$	(+3.1%)	[]

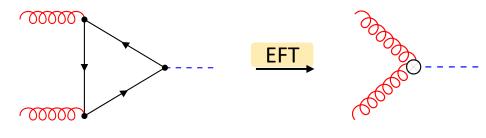
(LO, rEFT) (NLO, rEFT) ((t, b, c), exact NLO) (NNLO, rEFT) (NNLO, $1/m_t$) (EW, QCD-EW) (N³LO, rEFT)


Order by order in perturbation theory

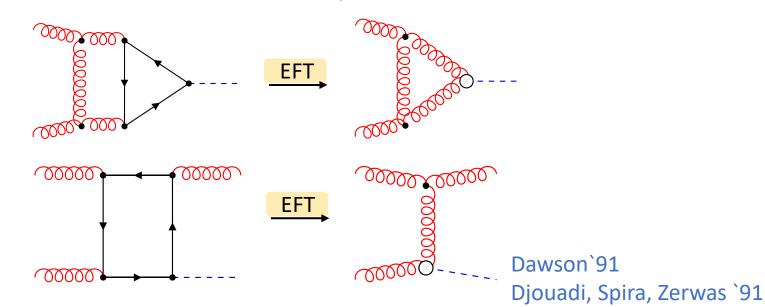

 LO contribution exactly known for almost 50 years

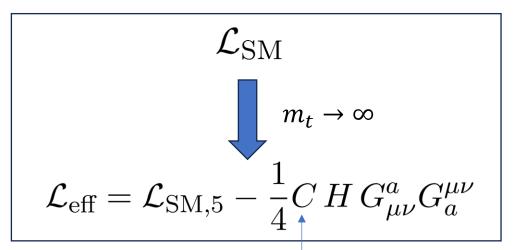
Georgi, Glashow, Machacek, et al. `78

• NLO contribution exactly known for arbitrary quark masses running in the loop Graudenz, Spira, Zerwas `93

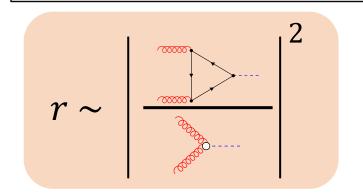


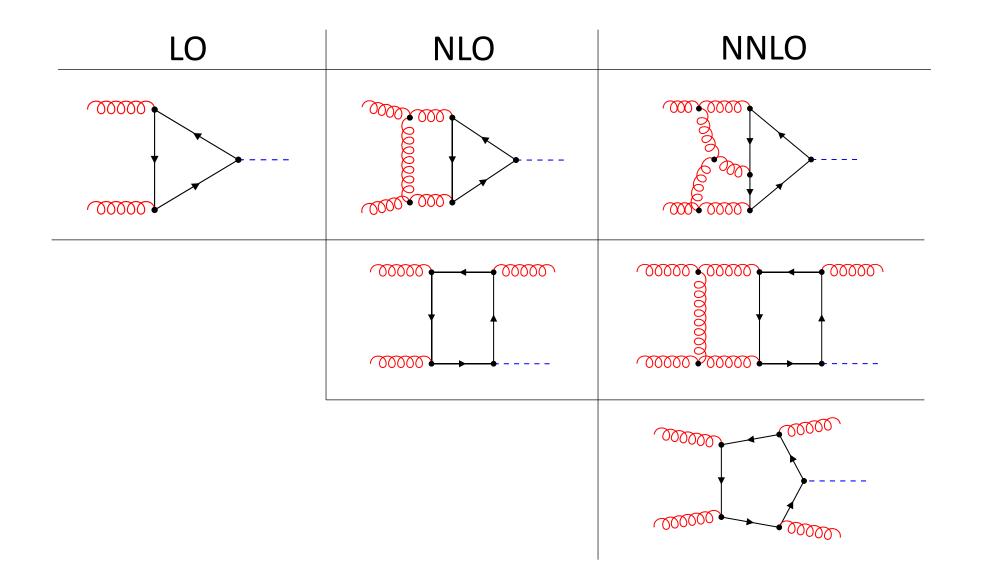
(LO, rEFT) (NLO, rEFT) ((t, b, c), exact NLO) (NNLO, rEFT) (NNLO, $1/m_t$) (EW, QCD-EW) (N³LO, rEFT)


Inclusive cross section in (r)EFT

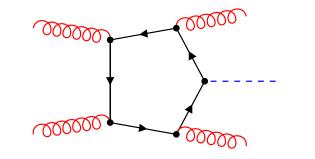

 LO contribution exactly known for almost 50 years

Georgi, Glashow, Machacek, et al. `78

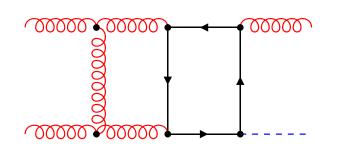

• NLO contribution exactly known for arbitrary quark masses running in the loop Graudenz, Spira, Zerwas `93


Chetyrkin, Kniehl, Steinhauser `98 Schröder, Steinhauser `06 Chetyrkin, Kühn, Sturm `06

$$\sigma_{\rm HEFT}^{\rm HO} = \left(\frac{\sigma^{\rm HO}}{\sigma^{\rm LO}}\right)_{M_{\rm t}\to\infty} \sigma^{\rm LO}$$

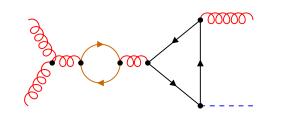


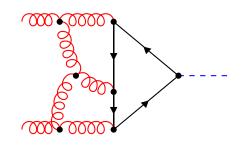
Computation


Ingredients for the NNLO calculation

Ingredients for the NNLO calculation

Analytic formulae available: Del Duca, Kilgore, Oleari, et al. `01 More compact expressions and implemented in **MCFM**: Budge, Campbell, De Laurentis, et al. `20 Evaluate scalar integrals with **QCDLoop** library: Carrazza, Ellis, Zanderighi `16

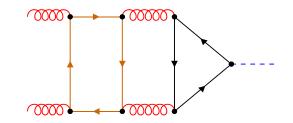



For one massive flavor:

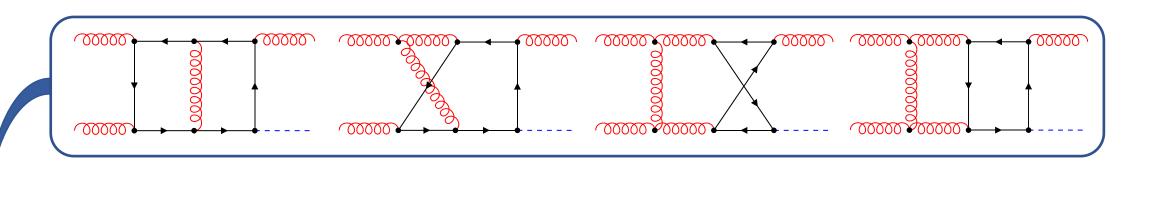
- solve integrals numerically
- construct regular grids of IR-regulated amplitudes
- interpolate for efficient evaluation

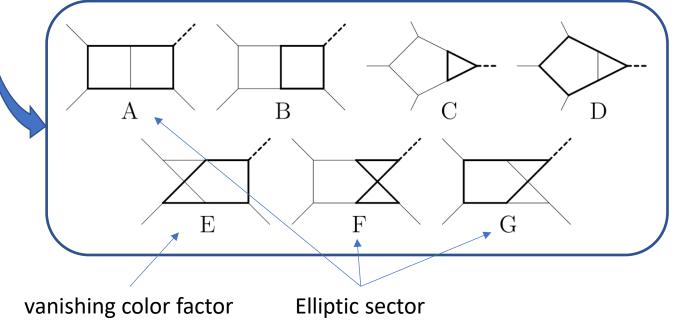
For two massive flavors:

all contributions factorize
 into products of one-loop integrals

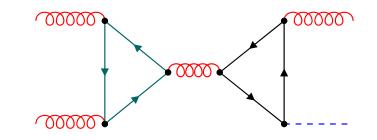


For one massive flavor: Czakon, MN `20

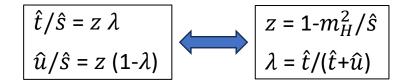

- asymptotic expansions in kinematic limits
- numerical samples in full parameter space

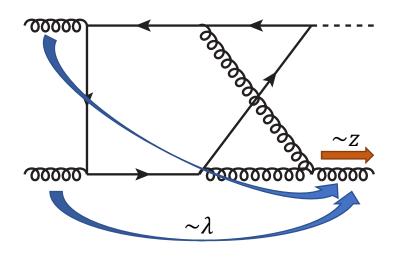

For two massive flavors: MN, Usovitsch '23

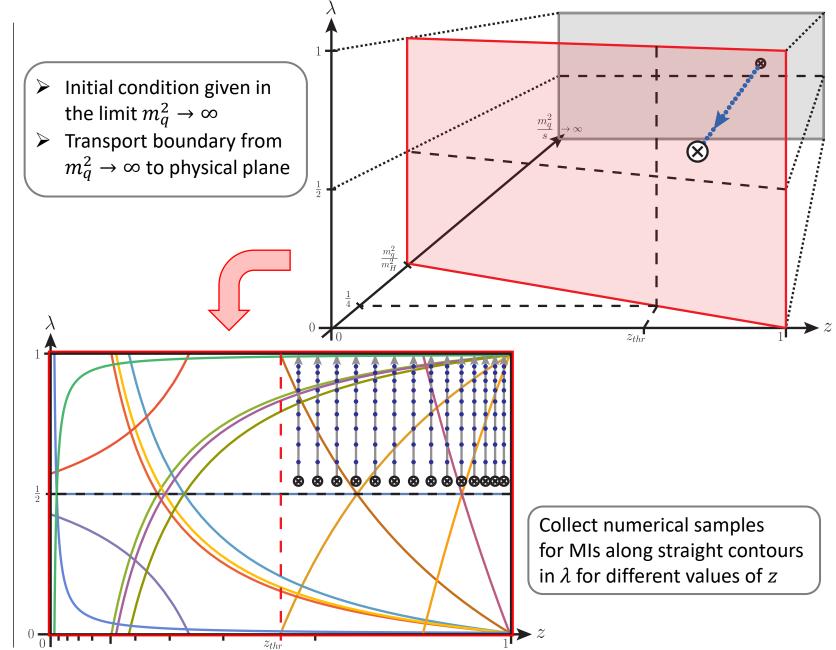
- deep large/small mass expansions
- numerical sampling with AMFlow: Liu, Ma `22


Real-virtual corrections

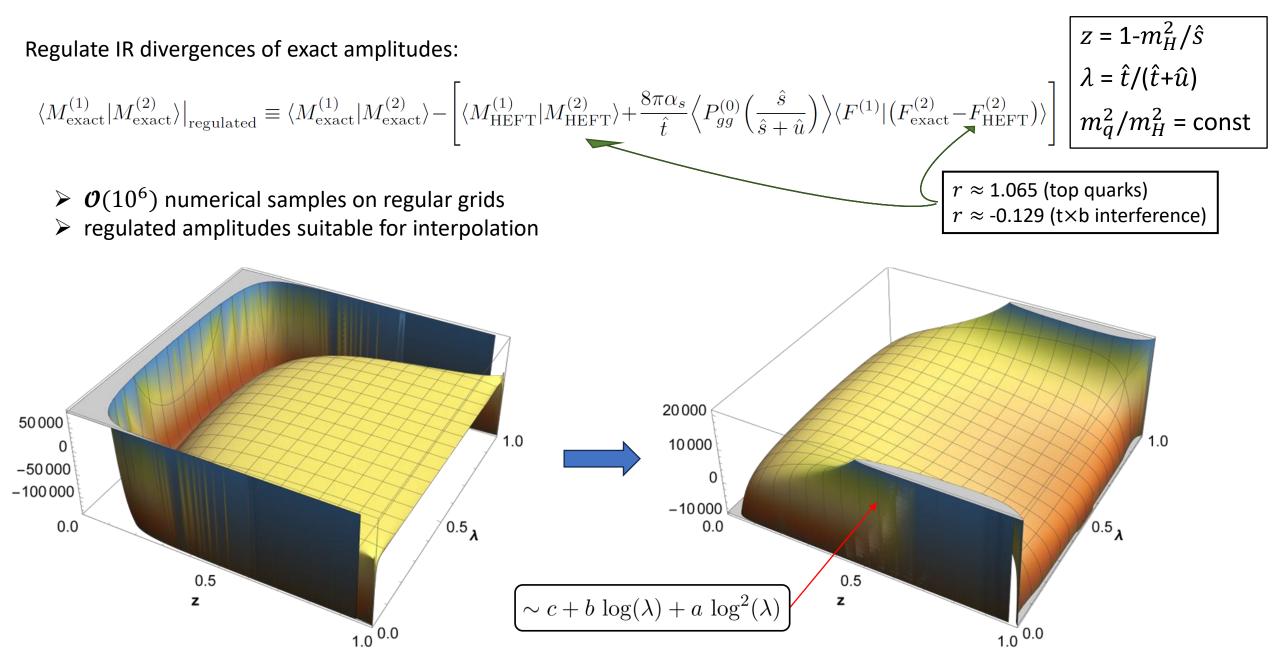
A,B,C,D: Bonciani, Del Duca, Frellesvig, et al. `16F: Bonciani, Del Duca, Frellesvig, et al. `19G: Frellesvig, Hidding, Maestri, et al. `19

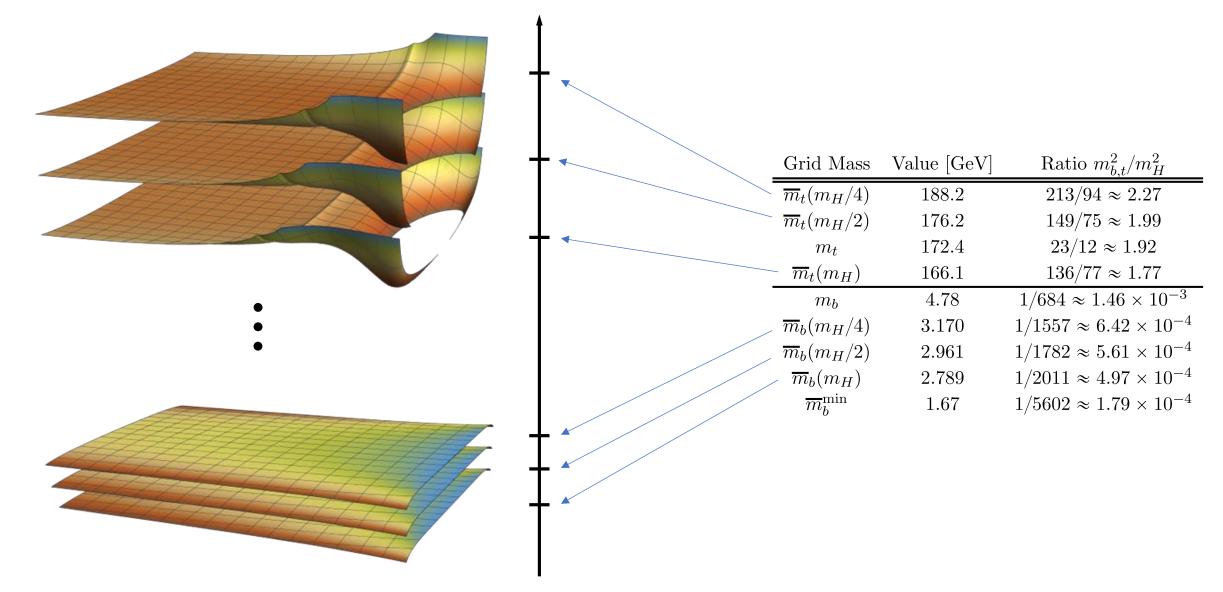

Contributions with two closed fermion chains are always factorizable:



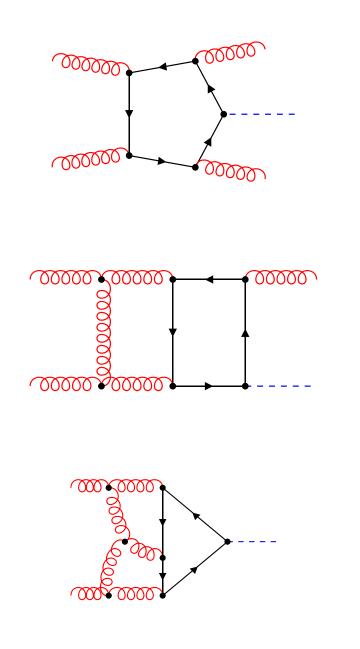

Also see H+jet calculation: Bonciani, Del Duca, Frellesvig, et al. 22

Real-virtual corrections


- Variables: \hat{s} , \hat{t} , \hat{u} , m_H^2 , m_q^2
- Introduce dimensionless variables and fix ratio m_q^2/m_H^2
 - z parametrizes soft limit
 - $\succ \lambda$ parametrizes collinear limit



Regulated amplitudes for real-virtual corrections



Interpolation to arbitrary quark masses

Repeat calculation of amplitudes for different fixed mass ratios:

Ingredients for the NNLO calculation

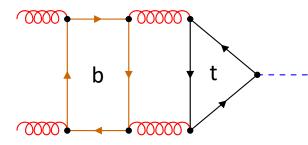
Analytic formulae available: Del Duca, Kilgore, Oleari, et al. `01 More compact expressions and implemented in **MCFM**: Budge, Campbell, De Laurentis, et al. `20 Evaluate scalar integrals with **QCDLoop** library: Carrazza, Ellis, Zanderighi `16

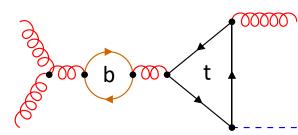
or one massive flavor:

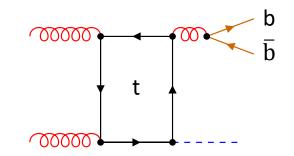
Phase-space integration with sector-improved residue subtraction scheme (Stripper Czakon `10)

into products of one-loop integrals

For one massive flavor: Czakon, MN `20


- asymptotic expansions in kinematic limits
- > numerical samples in full parameter space
- For two massive flavors: MN, Usovitsch `2
 - deep large/small mass expansions
 - numerical sampling with AMFlow: Liu, Ma `22





4-flavor scheme ↔ 5-flavor scheme

 $log(m_b^2)$ -divergences in virtual corrections must cancel against divergences due to massive b-quark splittings in real radiation

Obtain double-real amplitudes with **Recola**: Actis, Denner, Hofer, et al. `16

4-flavor scheme

- Consistent treatment of massive t- and b-quarks
- Exclude b-quark from initial state
- Include massive b-quark splittings in final state

5-flavor scheme

- Treat b-quark as massless particle
- Massive b-quark only present in loops directly attached to the Higgs-boson
- Corresponds to theory with a replica b-quark carrying the mass of the b-quark

Results

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118
 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ and $m_b \approx 4.779 \text{ GeV}$ (both in OS-scheme)

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\rm HEFT}) \ [{\rm pb}]$	$\sigma_{t \times b}$ [pb]	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 7 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+5.85	—	-0.708	
LO	$5.85^{+1.56}_{-1.11}$	_	$-0.708\substack{+0.13\\-0.19}$	-12
$\mathcal{O}(lpha_s^3)$	+7.14	-0.0604	-0.226	
NLO	$12.99^{+2.89}_{-2.14}$	$-0.0604^{+0.021}_{-0.037}$	$-0.934^{+0.09}_{-0.07}$	$-7.2^{+1.0}_{-0.8}$
$\mathcal{O}(lpha_s^4)$	+3.28	+0.0386(2)	+0.121(3)	
NNLO	$16.27^{+1.45}_{-1.61}$	$-0.0218(2)^{+0.035}_{-0.009}$	$-0.813(3)^{+0.10}_{-0.04}$	$-5.0^{+1.0}_{-0.8}$
		$\sqrt{s} = 8 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+7.39	—	-0.895	
LO	$7.39^{+1.98}_{-1.40}$	—	$-0.895\substack{+0.17\\-0.24}$	-12
$\mathcal{O}(\alpha_s^3)$	+9.14	-0.0873	-0.268	
NLO	$16.53^{+3.63}_{-2.73}$	$-0.0873^{+0.030}_{-0.052}$	$-1.163\substack{+0.10\\-0.08}$	$-7.0^{+1.0}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+4.19	+0.0523(2)	+0.167(3)	
NNLO	$20.72^{+1.84}_{-2.06}$	$-0.0350(2)^{+0.048}_{-0.013}$	$-0.996(3)^{+0.12}_{-0.05}$	$-4.8^{+0.9}_{-0.8}$
		$\sqrt{s} = 13 \text{ TeV}$	T	
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10\\-0.17}$	$-2.42_{-0.12}^{+0.19}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$
		$\sqrt{s} = 13.6 \text{ Te}$	V	
$\mathcal{O}(\alpha_s^2)$	+17.47	_	-2.117	
LO	$17.47^{+4.67}_{-3.32}$	_	$-2.12\substack{+0.40\\-0.57}$	-12
$\mathcal{O}(\alpha_s^3)$	+22.76	-0.338	-0.464(1)	
NLO	$40.23_{-6.77}^{+9.07}$	$-0.338^{+0.11}_{-0.18}$	$-2.58\substack{+0.20\\-0.12}$	$-6.4^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+10.47	+0.162(1)	+0.464(9)	
NNLO	$50.70^{+4.53}_{-5.14}$	$-0.176(1)^{+0.14}_{-0.03}$	$-2.12(1)^{+0.33}_{-0.16}$	$-4.2^{+0.9}_{-0.8}$
		$\sqrt{s} = 14 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+18.26		-2.213	
LO	$18.26^{+4.88}_{-3.47}$	_	$-2.21_{-0.59}^{+0.42}$	-12
$\mathcal{O}(\alpha_s^3)$	+23.86	-0.362	-0.475(1)	
NLO	$42.12_{-7.10}^{+9.51}$	$-0.362\substack{+0.12\\-0.20}$	$-2.69\substack{+0.21\\-0.13}$	$-6.4^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+10.98	+0.171(1)	+0.488(9)	
NNLO	$53.10\substack{+4.75 \\ -5.39}$	$-0.191(1)^{+0.15}_{-0.04}$	$-2.20(1)^{+0.34}_{-0.17}$	$-4.1^{+0.9}_{-0.8}$

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118
 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ and $m_b \approx 4.779 \text{ GeV}$ (both in OS-scheme)

Order	$\sigma_{\mathrm{HEFT}} \; [\mathrm{pb}]$	$(\sigma_t - \sigma_{\rm HEFT}) \; [{\rm pb}]$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 7 \text{ TeV}$		
$\mathcal{O}(lpha_s^2)$	+5.85	—	-0.708	
LO	$5.85^{+1.56}_{-1.11}$	_	$-0.708^{+0.13}_{-0.19}$	-12
$\mathcal{O}(lpha_s^3)$	+7.14	-0.0604	-0.226	
NLO	$12.99^{+2.89}_{-2.14}$	$-0.0604^{+0.021}_{-0.037}$	$-0.934^{+0.09}_{-0.07}$	$-7.2^{+1.0}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+3.28	+0.0386(2)	+0.121(3)	11.0
NNLO	$16.27^{+1.45}_{-1.61}$	$-0.0218(2)^{+0.035}_{-0.009}$	$-0.813(3)^{+0.10}_{-0.04}$	$-5.0^{+1.0}_{-0.8}$
		$\sqrt{s} = 8 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+7.39	—	-0.895	
LO	$7.39^{+1.98}_{-1.40}$	_	$-0.895^{+0.17}_{-0.24}$	-12
$\mathcal{O}(\alpha_s^3)$	+9.14	-0.0873	-0.268	
NLO	$16.53^{+3.63}_{-2.73}$	$-0.0873^{+0.030}_{-0.052}$	$-1.163\substack{+0.10\\-0.08}$	$-7.0\substack{+1.0\\-0.8}$
$\mathcal{O}(\alpha_s^4)$	+4.19	+0.0523(2)	+0.167(3)	
NNLO	$20.72^{+1.84}_{-2.06}$	$-0.0350(2)^{+0.048}_{-0.013}$	$-0.996(3)^{+0.12}_{-0.05}$	$-4.8^{+0.9}_{-0.8}$
		$\sqrt{s} = 13 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	
ĹO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10\\-0.17}$	$-2.42_{-0.12}^{+0.19}$	$-6.5\substack{+0.9\\-0.8}$
${\cal O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$
		$\sqrt{s} = 13.6 \text{ TeV}$	V	
$\mathcal{O}(\alpha_s^2)$	+17.47		-2.117	
LO	$17.47^{+4.67}_{-3.32}$	—	$-2.12\substack{+0.40\\-0.57}$	-12
$\mathcal{O}(\alpha_s^3)$	+22.76	-0.338	-0.464(1)	
NLO	$40.23_{-6.77}^{+9.07}$	$-0.338\substack{+0.11\\-0.18}$	$-2.58\substack{+0.20\\-0.12}$	$-6.4^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+10.47	+0.162(1)	+0.464(9)	
NNLO	$50.70\substack{+4.53 \\ -5.14}$	$-0.176(1)^{+0.14}_{-0.03}$	$-2.12(1)^{+0.33}_{-0.16}$	$-4.2^{+0.9}_{-0.8}$
		$\sqrt{s} = 14 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+18.26	_	-2.213	
LO	$18.26^{+4.88}_{-3.47}$	—	$-2.21_{-0.59}^{+0.42}$	-12
$\mathcal{O}(\alpha_s^3)$	+23.86	-0.362	-0.475(1)	
NLO	$42.12_{-7.10}^{+9.51}$	$-0.362\substack{+0.12\\-0.20}$	$-2.69_{-0.13}^{+0.21}$	$-6.4^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+10.98	+0.171(1)	+0.488(9)	
NNLÓ	$53.10^{+4.75}_{-5.39}$	$-0.191(1)^{+0.15}_{-0.04}$	$-2.20(1)^{+0.34}_{-0.17}$	$-4.1^{+0.9}_{-0.8}$

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{ m HEFT} ~[m pb]$	$(\sigma_t - \sigma_{\rm HEFT}) \ [{\rm pb}]$	$\sigma_{t imes b}$ [pb]	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
${\cal O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{ m HEFT}~[m pb]$	$(\sigma_t - \sigma_{\rm HEFT}) [{\rm pb}]$	$\sigma_{t imes b}$ [pb]	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
${\cal O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

Interference effects much larger than pure top mass effect

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{ m HEFT} \ [m pb]$	$(\sigma_t - \sigma_{\rm HEFT}) \ [{\rm pb}]$	$\sigma_{t imes b}$ [pb]	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10 \\ -0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

Interference effects much larger than pure top mass effect

Interference effect at NNLO cancels against NLO

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{ m HEFT} ~[m pb]$	$(\sigma_t - \sigma_{\rm HEFT}) [{\rm pb}]$	$\sigma_{t imes b}$ [pb]	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	T	
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10 \\ -0.17}$	$-2.42_{-0.12}^{+0.19}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

Interference effects much larger than pure top mass effect

- Interference effect at NNLO cancels against NLO
- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{ m HEFT}~[m pb]$	$(\sigma_t - \sigma_{\rm HEFT}) \ [{\rm pb}]$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
${\cal O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
${\cal O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{ m HEFT} \ [m pb]$	$(\sigma_t - \sigma_{\rm HEFT}) \ [{\rm pb}]$	$\sigma_{t imes b}$ [pb]	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
${\cal O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)

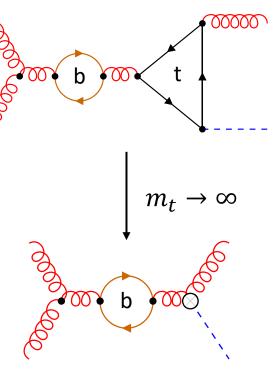
Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC

- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ and $m_b \approx 4.779 \text{ GeV}$ (OS-scheme, but Y_b in $\overline{\text{MS}}$ with $\overline{m}_b(\overline{m}_b) \approx 4.18 \text{ GeV}$)
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{ m HEFT} \; [m pb]$	$(\sigma_t - \sigma_{\mathrm{HEFT}}) \; [\mathrm{pb}]$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b}\left(Y_{b,\overline{\mathrm{MS}}}\right)$ [pb]
		$\sqrt{s} = 13 \text{ TeV}$	V	
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	-1.223
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	$-1.22^{+0.29}_{-0.44}$
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	-0.623(1)
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-1.85 \frac{+0.26}{-0.26}$
$\mathcal{O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	+0.019(5)
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-1.83(1)^{+0.08}_{-0.03}$

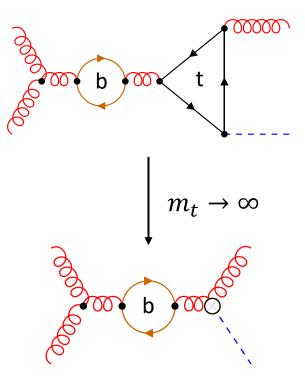
- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)
- Improved convergence in mixed renormalization scheme compared to OS-scheme

Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC


- PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
- central scale: $\mu_R = \mu_F = m_H/2$ (7-point scale variation)
- $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ (OS-scheme) and m_b in $\overline{\text{MS}}$ -scheme with $\overline{m}_b(\overline{m}_b) \approx 4.18 \text{ GeV}$
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

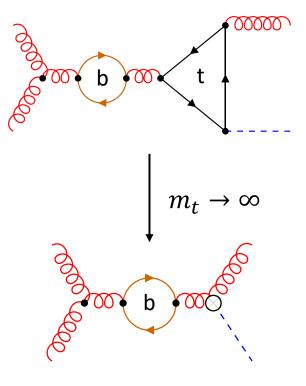
Order	$\sigma_{ m HEFT}~[m pb]$	$(\sigma_t - \sigma_{\rm HEFT}) \ [{\rm pb}]$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} \left(Y_{b, \overline{\mathrm{MS}}} \right) [\mathrm{pb}]$	$\sigma_{t \times b} \left(\overline{m}_b \right) [\text{pb}]$
		\checkmark	$\overline{s} = 13 \text{ TeV}$		
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	-1.223	-1.11
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98^{+0.38}_{-0.53}$	$-1.22\substack{+0.29\\-0.44}$	$-1.11^{+0.28}_{-0.43}$
${\cal O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	-0.623(1)	-0.65
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10 \\ -0.17}$	$-2.42^{+0.19}_{-0.12}$	$-1.85^{+0.26}_{-0.26}$	$-1.76^{+0.27}_{-0.28}$
$\mathcal{O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	+0.019(5)	+0.02
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-1.83(1)^{+0.08}_{-0.03}$	$-1.74(2)^{+0.13}_{-0.03}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)
- Improved convergence in mixed renormalization scheme compared to OS-scheme
- > Similar pattern of corrections for m_b in $\overline{\text{MS}}$ -scheme


- Validate the cancellation of logarithmic mass divergences in HEFT (rescaling as in 5FS)
- Effects beyond missing b-quark PDF contribution appear for the first time at NNLO
- PDF set: NNPDF31_nnlo_as_0118_nf_4

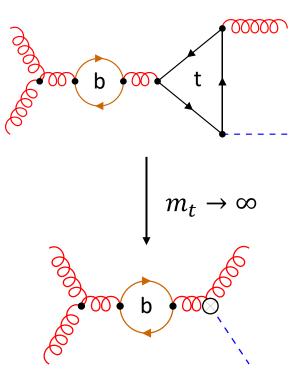
Order			$\sigma_{ m HEFT}$ [p	ob]	
			$\sqrt{s} = 13 \text{ TeV}$	-	
	$5\mathrm{FS}$	4FS	4FS	4FS	4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30^{+4.36}_{-3.10}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63 \\ -3.22}$
$\mathcal{O}(lpha_s^3)$	+21.14	+20.08(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(lpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NNLO	$47.16_{-4.77}^{+4.21}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

- Validate the cancellation of logarithmic mass divergences in HEFT (rescaling as in 5FS)
- Effects beyond missing b-quark PDF contribution appear for the first time at NNLO
- PDF set: NNPDF31_nnlo_as_0118_nf_4


Order			$\sigma_{ m HEFT}$ [1	ob]	
			$\sqrt{s} = 13 \text{ TeV}$		
	$5\mathrm{FS}$	4FS	4FS	4FS	4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30^{+4.36}_{-3.10}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27\substack{+4.63 \\ -3.22}$
${\cal O}(lpha_s^3)$	+21.14	+20.08(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NNLO	$47.16^{+4.21}_{-4.77}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

➢ NNLO corrections approach constant value in the limit $m_b^2 → 0$ Central value seems to converge to 5FS

- Validate the cancellation of logarithmic mass divergences in HEFT (rescaling as in 5FS)
- Effects beyond missing b-quark PDF contribution appear for the first time at NNLO
- PDF set: NNPDF31_nnlo_as_0118_nf_4


Order			$\sigma_{ m HEFT}$ [p	ob]	
			$\sqrt{s} = 13 \text{ TeV}$		
	5 FS	4FS	4FS	4FS	4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30^{+4.36}_{-3.10}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27\substack{+4.63 \\ -3.22}$
$\mathcal{O}(\alpha_s^3)$	+21.14	+20.08(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NNLO	$47.16^{+4.21}_{-4.77}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

- > NNLO corrections approach constant value in the limit $m_b^2 \rightarrow 0$ Central value seems to converge to 5FS
- > Total cross section insensitive with respect to renormalization scheme for m_b $\hookrightarrow m_b$ only present in the loop

- Validate the cancellation of logarithmic mass divergences in HEFT (rescaling as in 5FS)
- Effects beyond missing b-quark PDF contribution appear for the first time at NNLO
- PDF set: NNPDF31_nnlo_as_0118_nf_4

Order			$\sigma_{ m HEFT}$ [p	ob]	
			$\sqrt{s} = 13 \text{ TeV}$		
	5 FS	4FS	4FS	4FS	4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30^{+4.36}_{-3.10}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63\\-3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63 \\ -3.22}$
$\mathcal{O}(lpha_s^3)$	+21.14	+20.08(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NNLO	$47.16^{+4.21}_{-4.77}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

- > NNLO corrections approach constant value in the limit $m_b^2 \rightarrow 0$ Central value seems to converge to 5FS
- ➢ Total cross section insensitive with respect to renormalization scheme for m_b $⇔ m_b$ only present in the loop
- > 2% shift in agreement with previous estimate: Pietrulewicz, Stahlhofen `23

• Finite top quark mass effects beyond HEFT: 5FS ↔ 4FS

Order	$\sigma_{ m HEFT}$ [pb]		Order	$(\sigma_t - \sigma_t)$	$_{\rm HEFT}) \ [{\rm pb}]$			
	$\sqrt{s} = 13 \text{ TeV}$			$\sqrt{s} = 13 \text{ TeV}$				
	5FS 4FS			5 FS	4FS			
	$\overline{m}_b(\overline{m}_b) = 4.18 \mathrm{GeV}$			$m_t = 173.06 \text{ GeV}$	$m_t = 173.06 \mathrm{GeV}$			
$\mathcal{O}(\alpha_s^2)$	+16.30 16.27				$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$			
LO	$16.30^{+4.36}_{-3.10}$	$16.27^{+4.63}_{-3.22}$	LO	-	-			
$\mathcal{O}(lpha_s^3)$	+21.14	+20.08(3)	$\mathcal{O}(lpha_s^3)$	-0.30	-0.27			
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	NLO	$-0.30^{+0.10}_{-0.17}$	$-0.27^{+0.09}_{-0.16}$			
$\mathcal{O}(\alpha_s^4)$	+9.72	+9.6(2)	$\mathcal{O}(\alpha_s^4)$	+0.14	+0.12			
NNLO	$47.16^{+4.21}_{-4.77}$	$46.0(2)^{+4.4}_{-5.0}$	NNLO	$-0.16^{+0.13}_{-0.03}$	$-0.15_{-0.02}^{+0.10}$			

• Finite top quark mass effects beyond HEFT: 5FS ↔ 4FS

Order	$\sigma_{ m HEFT} \ [m pb]$		[pb] Order $(\sigma_t - \sigma_{\text{HEFT}})$ [pb]					
	$\sqrt{s} = 13 \text{ TeV}$			$\sqrt{s} = 13 \text{ TeV}$				
	5FS 4FS			5 FS	4FS			
	$\overline{m}_b(\overline{m}_b) = 4.18 \mathrm{GeV}$			$m_t = 173.06 \text{ GeV}$	$m_t = 173.06 \mathrm{GeV}$			
$\mathcal{O}(\alpha_s^2)$	+16.30 16.27				$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$			
LO	$16.30^{+4.36}_{-3.10}$	$16.27^{+4.63}_{-3.22}$	LO	-	-			
$\mathcal{O}(lpha_s^3)$	+21.14	+20.08(3)	$\mathcal{O}(\alpha_s^3)$	-0.30	-0.27			
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	NLO	$-0.30\substack{+0.10\\-0.17}$	$-0.27^{+0.09}_{-0.16}$			
$\mathcal{O}(\alpha_s^4)$	+9.72	+9.6(2)	$\mathcal{O}(\alpha_s^4)$	+0.14	+0.12			
NNLO	$47.16^{+4.21}_{-4.77}$	$46.0(2)^{+4.4}_{-5.0}$	NNLO	$-0.16^{+0.13}_{-0.03}$	$-0.15^{+0.10}_{-0.02}$			

- > Small power-suppressed effect: -0.01 pb
- > 2% shift in HEFT

- Finite top quark mass effects beyond HEFT: 5FS \leftrightarrow 4FS
- Mass renormalization scheme difference

Order $\sigma_{\rm HEFT}$ [pb]			Order	$(\sigma_t - \sigma_1)$	$_{\rm HEFT}) [{\rm pb}]$		
	$\sqrt{s} = 13 \text{ TeV}$			$\sqrt{s} = 13$ [ſeV		
	$5\mathrm{FS}$	4FS		$5\mathrm{FS}$	4FS	Order	$(\sigma_t^{\overline{\mathrm{MS}}} - \sigma_t^{\mathrm{OS}}) \ [\mathrm{pb}]$
		$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$		$m_t = 173.06 \text{ GeV}$	$m_t = 173.06 \mathrm{GeV}$	\sqrt{s}	e = 13 TeV
$\mathcal{O}(\alpha_s^2)$	+16.30	16.27			$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$16.30^{+4.36}_{-3.10}$	$16.27^{+4.63}_{-3.22}$	LO	-	-	LO	$-0.04^{+0.12}_{-0.17}$
$\mathcal{O}(\alpha_s^3)$	+21.14	+20.08(3)	$\mathcal{O}(\alpha_s^3)$	-0.30	-0.27	$\mathcal{O}(\alpha_s^3)$	+0.02
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	NLO	$-0.30\substack{+0.10\\-0.17}$	$-0.27\substack{+0.09\\-0.16}$	NLO	$-0.02^{+0.14}_{-0.30}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+9.6(2)	$\mathcal{O}(\alpha_s^4)$	+0.14	+0.12	$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$47.16^{+4.21}_{-4.77}$	$46.0(2)^{+4.4}_{-5.0}$	NNLO	$-0.16\substack{+0.13\\-0.03}$	$-0.15_{-0.02}^{+0.10}$	NNLO	$-0.01\substack{+0.12 \\ -0.24}$

- \succ Small power-suppressed effect: -0.01 pb
- > 2% shift in HEFT

- Finite top quark mass effects beyond HEFT: 5FS ↔ 4FS
- Mass renormalization scheme difference

Order $\sigma_{\rm HEFT}$ [pb]			Order	$(\sigma_t - \sigma_1)$	$_{\rm HEFT}) [{\rm pb}]$		
	$\sqrt{s} = 13 \text{ TeV}$			$\sqrt{s} = 13$ [ГeV		
	5 FS	4FS		5 FS	4FS	Order	$(\sigma_t^{\overline{\mathrm{MS}}} - \sigma_t^{\mathrm{OS}}) \ [\mathrm{pb}]$
		$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$		$m_t = 173.06 \text{ GeV}$	$m_t = 173.06 \text{ GeV}$	\sqrt{s}	= 13 TeV
$\mathcal{O}(\alpha_s^2)$	+16.30	16.27			$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$16.30^{+4.36}_{-3.10}$	$16.27\substack{+4.63 \\ -3.22}$	LO	-	-	LO	$-0.04^{+0.12}_{-0.17}$
$\mathcal{O}(\alpha_s^3)$	+21.14	+20.08(3)	$\mathcal{O}(lpha_s^3)$	-0.30	-0.27	$\mathcal{O}(\alpha_s^3)$	+0.02
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	NLO	$-0.30\substack{+0.10\\-0.17}$	$-0.27\substack{+0.09\\-0.16}$	NLO	$-0.02^{+0.14}_{-0.30}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+9.6(2)	$\mathcal{O}(\alpha_s^4)$	+0.14	+0.12	$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$47.16^{+4.21}_{-4.77}$	$46.0(2)^{+4.4}_{-5.0}$	NNLO	$-0.16^{+0.13}_{-0.03}$	$-0.15_{-0.02}^{+0.10}$	NNLO	$-0.01^{+0.12}_{-0.24}$

- > Small power-suppressed effect: -0.01 pb
- > 2% shift in HEFT
- ➢ No scheme dependence at the central scale

- Finite top quark mass effects beyond HEFT: 5FS \leftrightarrow 4FS
- Mass renormalization scheme difference

Order		$\sigma_{ m HEFT} \ [m pb]$	Order	$(\sigma_t - \sigma_1)$	HEFT) [pb]		
$\sqrt{s} = 13 \text{ TeV}$		$\sqrt{s} = 13 \text{ TeV}$					
	5 FS	4FS		5 FS	4FS	Order ($(\sigma_t^{\overline{\text{MS}}} - \sigma_t^{\text{OS}}) \text{ [pb]}$
		$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$		$m_t = 173.06 \text{ GeV}$	$m_t = 173.06 \text{ GeV}$	$\overline{\sqrt{s}}$	= 13 TeV
$\mathcal{O}(\alpha_s^2)$	+16.30	16.27			$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$16.30^{+4.36}_{-3.10}$	$16.27\substack{+4.63 \\ -3.22}$	LO	-	-	LO	$-0.04^{+0.12}_{-0.17}$
$\mathcal{O}(lpha_s^3)$	+21.14	+20.08(3)	$\mathcal{O}(\alpha_s^3)$	-0.30	-0.27	$\mathcal{O}(lpha_s^3)$	+0.02
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	NLO	$-0.30\substack{+0.10\\-0.17}$	$-0.27^{+0.09}_{-0.16}$	NLO	$-0.02^{+0.14}_{-0.30}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+9.6(2)	$\mathcal{O}(\alpha_s^4)$	+0.14	+0.12	$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$47.16^{+4.21}_{-4.77}$	$46.0(2)^{+4.4}_{-5.0}$	NNLO	$-0.16^{+0.13}_{-0.03}$	$-0.15^{+0.10}_{-0.02}$	NNLO	$-0.01^{+0.12}_{-0.24}$

- > Small power-suppressed effect: -0.01 pb
- > 2% shift in HEFT
- > No scheme dependence at the central scale
- ➢ Use of 5FS and OS-scheme for finite top quark mass effects justified

- Top-bottom interference contribution in different setups
- PDF set: NNPDF31_nnlo_as_0118
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{t \times b} \; [\text{pb}]$					
	$\sqrt{s} = 13 \text{ TeV}$					
	$5\mathrm{FS}$	$5\mathrm{FS}$	$5\mathrm{FS}$	4FS		
	$m_t = 173.06 \text{ GeV}$	$m_t = 173.06 {\rm GeV}$	$m_t(m_t) = 162.7 \text{ GeV}$	$m_t = 173.06 \mathrm{GeV}$		
	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$		
$\mathcal{O}(\alpha_s^2)$	-1.11	-1.98	-1.12	-1.15		
LO	$-1.11\substack{+0.28\\-0.43}$	$-1.98\substack{+0.38\\-0.53}$	$-1.12\substack{+0.28\\-0.42}$	$-1.15_{-0.45}^{+0.29}$		
$\mathcal{O}(\alpha_s^3)$	-0.65	-0.44	-0.64	-0.66		
NLO	$-1.76\substack{+0.27\\-0.28}$	$-2.42^{+0.19}_{-0.12}$	$-1.76\substack{+0.27\\-0.28}$	$-1.81\substack{+0.28\\-0.30}$		
$\mathcal{O}(\alpha_s^4)$	+0.02	+0.43	-0.02	-0.02		
NNLO	$-1.74(2)^{+0.13}_{-0.03}$	$-1.99(2)^{+0.29}_{-0.15}$	$-1.78(1)^{+0.15}_{-0.03}$	$-1.83(2)^{+0.14}_{-0.03}$		

- Top-bottom interference contribution in different setups
- PDF set: NNPDF31_nnlo_as_0118
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{t \times b} \; [\text{pb}]$						
		$\sqrt{s} = 13 \text{ TeV}$					
	5 FS	$5\mathrm{FS}$	$5\mathrm{FS}$	4FS			
	$m_t = 173.06 \mathrm{GeV}$	$m_t = 173.06 \text{ GeV}$	$m_t(m_t) = 162.7 \text{ GeV}$	$m_t = 173.06 \mathrm{GeV}$			
	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$			
$\mathcal{O}(\alpha_s^2)$	-1.11	-1.98	-1.12	-1.15			
LO	$-1.11\substack{+0.28\\-0.43}$	$-1.98^{+0.38}_{-0.53}$	$-1.12\substack{+0.28\\-0.42}$	$-1.15_{-0.45}^{+0.29}$			
$\mathcal{O}(\alpha_s^3)$	-0.65	-0.44	-0.64	-0.66			
NLO	$-1.76\substack{+0.27\\-0.28}$	$-2.42^{+0.19}_{-0.12}$	$-1.76\substack{+0.27\\-0.28}$	$-1.81\substack{+0.28\\-0.30}$			
$\mathcal{O}(\alpha_s^4)$	+0.02	+0.43	-0.02	-0.02			
NNLO	$-1.74(2)^{+0.13}_{-0.03}$	$-1.99(2)^{+0.29}_{-0.15}$	$-1.78(1)^{+0.15}_{-0.03}$	$-1.83(2)^{+0.14}_{-0.03}$			

 \blacktriangleright Poor perturbative convergence for m_b in OS-scheme

- Top-bottom interference contribution in different setups
- PDF set: NNPDF31_nnlo_as_0118
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{t \times b} \; [\text{pb}]$					
	$\sqrt{s} = 13 \text{ TeV}$					
	$5\mathrm{FS}$	$5\mathrm{FS}$	$5\mathrm{FS}$	4FS		
	$m_t = 173.06 { m Ge}$	$m_t = 173.06 \text{ GeV}$	$m_t(m_t) = 162.7 \ { m G}$	GeV $m_t = 173.06 \text{ GeV}$		
_	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ G}$	GeV $m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ G}$	$eV \overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$		
$\mathcal{O}(\alpha_s^2)$	-1.11	-1.98	-1.12	-1.15		
LO	$-1.11\substack{+0.28\\-0.43}$	$-1.98\substack{+0.38\\-0.53}$	$-1.12^{+0.28}_{-0.42}$	$-1.15\substack{+0.29\\-0.45}$		
$\mathcal{O}(lpha_s^3)$	-0.65	-0.44	-0.64	-0.66		
NLO	$-1.76^{+0.27}_{-0.28}$	$-2.42^{+0.19}_{-0.12}$	$-1.76\substack{+0.27\\-0.28}$	$-1.81\substack{+0.28\\-0.30}$		
$\mathcal{O}(\alpha_s^4)$	+0.02	+0.43	-0.02	-0.02		
NNLO	$-1.74(2)^{+0.13}_{-0.03}$	$-1.99(2)^{+0.29}_{-0.15}$	$-1.78(1)^{+0.15}_{-0.03}$	$-1.83(2)^{+0.14}_{-0.03}$		

- \blacktriangleright Poor perturbative convergence for m_b in OS-scheme
- > Much better pattern in $\overline{\text{MS}}$ -scheme

- Top-bottom interference contribution in different setups
- PDF set: NNPDF31_nnlo_as_0118
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{t imes b}$ [pb]					
	$\sqrt{s} = 13 \text{ TeV}$					
	$5\mathrm{FS}$	$5\mathrm{FS}$	$5\mathrm{FS}$	4FS		
	$m_t = 173.06 { m ~Ge}$	$V \qquad m_t = 173.06 \mathrm{GeV}$	$m_t(m_t) = 162.7 \text{ GeV}$	$M m_t = 173.06 \text{ GeV}$		
	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ G}$	eV $m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$		
$\mathcal{O}(\alpha_s^2)$	-1.11	-1.98	-1.12	-1.15		
LO	$-1.11\substack{+0.28\\-0.43}$	$-1.98\substack{+0.38\\-0.53}$	$-1.12^{+0.28}_{-0.42}$	$-1.15_{-0.45}^{+0.29}$		
$\mathcal{O}(lpha_s^3)$	-0.65	-0.44	-0.64	-0.66		
NLO	$-1.76\substack{+0.27\\-0.28}$	$-2.42_{-0.12}^{+0.19}$	$-1.76\substack{+0.27\\-0.28}$	$-1.81^{+0.28}_{-0.30}$		
$\mathcal{O}(\alpha_s^4)$	+0.02	+0.43	-0.02	-0.02		
NNLO	$-1.74(2)^{+0.13}_{-0.03}$	$-1.99(2)^{+0.29}_{-0.15}$	$-1.78(1)^{+0.15}_{-0.03}$	$-1.83(2)^{+0.14}_{-0.03}$		

- \blacktriangleright Poor perturbative convergence for m_b in OS-scheme
- > Much better pattern in $\overline{\text{MS}}$ -scheme
- \succ Interference insensitive with respect to choice of renormalization scheme for m_t

- Top-bottom interference contribution in different setups
- PDF set: NNPDF31_nnlo_as_0118
- previous estimate: $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20

Order	$\sigma_{t \times b} [\mathrm{pb}]$					
	$\sqrt{s} = 13 \text{ TeV}$					
	$5\mathrm{FS}$	$5\mathrm{FS}$	$5\mathrm{FS}$	4FS		
	$m_t = 173.06 \text{ GeV}$	$m_t = 173.06 \text{ GeV}$	$m_t(m_t) = 162.7 \text{ GeV}$	$m_t = 173.06 \mathrm{GeV}$		
	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$		
$\mathcal{O}(\alpha_s^2)$	-1.11	-1.98	-1.12	-1.15		
LO	$-1.11\substack{+0.28\\-0.43}$	$-1.98^{+0.38}_{-0.53}$	$-1.12\substack{+0.28\\-0.42}$	$-1.15_{-0.45}^{+0.29}$		
$\mathcal{O}(\alpha_s^3)$	-0.65	-0.44	-0.64	-0.66		
NLO	$-1.76\substack{+0.27\\-0.28}$	$-2.42^{+0.19}_{-0.12}$	$-1.76\substack{+0.27\\-0.28}$	$-1.81\substack{+0.28\\-0.30}$		
$\mathcal{O}(\alpha_s^4)$	+0.02	+0.43	-0.02	-0.02		
NNLO	$-1.74(2)^{+0.13}_{-0.03}$	$-1.99(2)^{+0.29}_{-0.15}$	$-1.78(1)^{+0.15}_{-0.03}$	$-1.83(2)^{+0.14}_{-0.03}$		

- \blacktriangleright Poor perturbative convergence for m_b in OS-scheme
- > Much better pattern in $\overline{\text{MS}}$ -scheme
- \succ Interference insensitive with respect to choice of renormalization scheme for m_t
- ➢ 5FS and 4FS agree within scale uncertainties

Summary

- A thorough analysis of the impact of finite top- and bottom-quark masses on the total Higgs production cross section has been performed
 - different flavor schemes
 - different mass renormalization schemes
- > Top-quark and interference contribution not sensitive to small variations of the top-quark mass
- > 5FS and 4FS agree within scale uncertainties
- Renormalization scheme dependence
 - no scheme dependence for the top-quark mass
 - interference shows signs of poor perturbative convergence
 - \blacktriangleright better convergence in $\overline{\text{MS}}$ -scheme for the bottom-quark mass or Yukawa coupling only

Cross checks at the differential level:

- Jones, Kerner, Luisoni `18
- Caola, Lindert, Melnikov, et al. `18
- Bonciani, Del Duca, Frellesvig, et al. 22