

NNNLO zero-jettiness soft function

Andrey Pikelner | HP², Turin In collaboration with: Daniel Baranowski, Maximilian Delto, Kirill Melnikov and Chen-Yu Wang

Motivation

- Differential calculation require a good handle on IR divergences, many schemes at NNLO
- Slicing scheme seems feasible at N3LO due to complexity of subtraction schemes

C

$$\sigma(\mathbf{0}) = \int_{\mathbf{0}} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{0})}{\mathrm{d}\tau} = \int_{\mathbf{0}}^{\tau_0} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{0})}{\mathrm{d}\tau} + \int_{\tau_0} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{0})}{\mathrm{d}\tau}$$

1 (0)

C

1 (0)

- q_{τ} subtraction scheme [Catani, Grazzini'07] - N-jettiness subtraction scheme [Boughezal et al. '15][Gaunt et al. '15]
- SCET factorization theorem motivates us to consider jettiness as convenient slicing variable

$$\lim_{\tau \to 0} \mathrm{d}\sigma(\mathbf{0}) = \mathbf{B}_{\tau} \otimes \mathbf{B}_{\tau} \otimes \mathbf{S}_{\tau} \otimes \mathbf{H}_{\tau} \otimes \mathrm{d}\sigma_{\mathrm{LO}}$$

Slicing scheme ingredients

 \blacksquare Possible to use any lower order calculation with additional jet in the $\tau > \tau_{\rm cut}$ region

To apply at the NNNLO level:

- Existing NNLO+j calculations
- Many efficient NNLO subtraction schemes

• Approximate cross section in the singular region from the factorisation formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = H_{\tau} \otimes \{B_{\tau}\} \otimes \{J_{\tau}\} \otimes S_{\tau} \otimes \frac{\mathrm{d}\sigma_{0}}{\mathrm{d}\tau} + \mathscr{O}(\tau)$$

- Hard function H_{τ}
- Beam function B_{τ} , jet function J_{τ}
- Soft function ${\boldsymbol{S}}_{\tau}$

Zero-jettiness measurement function

• For two hard partons with p_a and p_b measurement function $\delta(\tau - \mathscr{T}_0)$ is defined with

$$\mathscr{T}_0 = \sum_{i=1}^m \min\left\{\frac{2p_a \cdot k_i}{Q}, \frac{2p_b \cdot k_i}{Q}\right\}$$

• It is possible to rescale $p_a = \frac{\sqrt{s_{ab}}}{2}n$, $p_b = \frac{\sqrt{s_{ab}}}{2}\overline{n}$ and go to the frame where *n* and \overline{n} are back-to-back

• Eikonal factors E(k, I) have uniform scaling: rescale integration momenta $q_i = q'_i \frac{Q\tau}{\sqrt{s_{ob}}}, q_i \in \{k, I\}$

$$\int \left[\mathrm{d}^{d} k \right]^{m} \left[\mathrm{d}^{d} l \right]^{n} \delta(\tau - \mathscr{T}_{0}) E(k, l) \to \frac{1}{\tau} \left(\frac{s_{ab}}{Q^{2} \tau^{2}} \right)^{\varepsilon(m+n)} \int \left[\mathrm{d}^{d} k' \right]^{m} \left[\mathrm{d}^{d} l' \right]^{n} \delta\left(1 - \sum_{i=1}^{m} \min\{\alpha_{i}, \beta_{i}\} \right) E(k', l')$$

Sudakov decomposition

$$k_i = \frac{\alpha_i}{2}n + \frac{\beta_i}{2}\overline{n} + k_{i,\perp}, \quad k_i \cdot n = \beta_i, \quad k_i \cdot \overline{n} = \alpha_i, \quad n \cdot \overline{n} = 2, \quad n^2 = \overline{n}^2 = 0$$

What is actually calculated?

 H,Z,W^{\pm},\ldots

• 0-jettiness in hadronic collisions is equal to Thrust or 2-jettiness in e^+e^- annihilation or Higgs decay

- The limit $\tau \rightarrow 0$ corresponds to the soft limit of the squared amplitude eikonal rules
- Need to include all possible real and virtual corrections to the amplitude squared

γ,Ζ,...

- Possible to combine different measurement function terms into unique configurations
- Perform integration over highly non-trivial region all kinds of divergencies are possible

From measurement function to configurations

Definition which is more friendly for PS integration generates different configurations

$$\delta\left(1-\sum_{i=1}^{m}\min\{\alpha_{i},\beta_{i}\}\right)=\delta(1-\beta_{1}-\beta_{2}-\ldots)\theta(\alpha_{1}-\beta_{1})\theta(\alpha_{2}-\beta_{2})\ldots$$
$$+\delta(1-\beta_{1}-\alpha_{2}-\ldots)\theta(\alpha_{1}-\beta_{1})\theta(\beta_{2}-\alpha_{2})\ldots$$

- Configurations can be mapped to the minimal set due to symmetries of Eikonal factor and $\delta(1 \{\alpha, \beta\})$
- RVV single configuration with $\delta(1 k \cdot n)$, trivial PS interation
 - Two-loop soft current is known [Duhr, Gehrmann'13]
- RRV two configurations *nn* and *nn*
 - Emission of gluons and quark pair
- RRR two configurations *nnn* and *nnn*
 - Same hemisphere gluon emission
 - Different hemispheres configuration nnn and quark pair emission in nnn configuration current work

[Chen et al.'22] [Baranowski et al.'24]

[Baranowski et al. '22]

Laplace space and UV renormalization

• Final unrenormalized result for the NNNLO soft function is a sum over configurations C

$$S^{\mathrm{NNNLO}}_{\tau, B} = \sum_{C} S^{\mathrm{RVV}, C}_{\tau, B} + \sum_{C} S^{\mathrm{RRV}, C}_{\tau, B} + \sum_{C} S^{\mathrm{RRR}, C}_{\tau, B}$$

 \blacksquare For renormalizartion we need NNLO result expanded to higher order in ε

[Baranowski'20]

$$\mathbf{S}_{\tau,B} = \delta(\tau) + \frac{\mathbf{a}_{s,B}}{\tau} \left(\frac{\mathbf{s}_{ab}}{Q^2 \tau^2}\right)^{\varepsilon} \mathbf{S}_{1} + \frac{\mathbf{a}_{s,B}^2}{\tau} \left(\frac{\mathbf{s}_{ab}}{Q^2 \tau^2}\right)^{2\varepsilon} \mathbf{S}_{2} + \frac{\mathbf{a}_{s,B}^3}{\tau} \left(\frac{\mathbf{s}_{ab}}{Q^2 \tau^2}\right)^{3\varepsilon} \mathbf{S}_{3} + \mathcal{O}\left(\mathbf{a}_{s,B}^4\right)$$

• After strong coupling renormalization $a_{s,B} = \mu^{2\varepsilon} Z_{a_s} a_s(\mu)$ and Laplace transform with parameter $\bar{u} = u e^{\gamma_E}$

$$\tilde{\mathsf{S}}_{\mathsf{B}}\left(a_{\mathsf{s}}(\mu), L_{\mathsf{S}}\right) = \int_{0}^{\infty} d\tau \, \mathsf{e}^{-\tau u} \, \mathsf{S}_{\tau, \mathsf{B}}\left(a_{\mathsf{s}, \mathsf{B}} \to \mu^{2\varepsilon} Z_{a_{\mathsf{s}}} a_{\mathsf{s}}(\mu)\right), \quad L_{\mathsf{S}} = \mathsf{In}\left(\mu \bar{u} \frac{\sqrt{\mathsf{s}_{ab}}}{Q}\right)$$

• Convinient to consider \tilde{S}_B due to simple multiplicative renormalization in the Laplace space

• Z_{s} determined by the pole part of \widetilde{S}_{B} satisfies RG equation

Renormalization and checks from RG equation

• Multiplicative renormalization in the Laplace space with L_S dependent renormalization constant

$$\tilde{S}(a_{s},L_{S}) = Z_{s}(a_{s},L_{S})\tilde{S}_{B}(a_{s},L_{S}) = \mathscr{O}\left(\varepsilon^{0}\right)$$

– $\,\mu$ dependence in $a_{
m s}(\mu)$ and $L_{
m S}$

- $\Gamma_{\rm s}$ is finite

 $-L_{\rm s} = \ln\left(\mu \bar{u} \frac{\sqrt{s_{ab}}}{\Omega}\right)$

$$\left(\frac{\partial}{\partial L_{s}} + \beta(a_{s})\frac{\partial}{\partial a_{s}}\right) \ln Z_{s}(a_{s}, L_{s}) = \Gamma_{s}(a_{s}, L_{s}) = -4\gamma_{cusp}(a_{s})L_{s} - 2\gamma_{s}(a_{s}) - \text{Known cusp an.dim } \gamma_{cusp} - \text{Known non-cusp an.dim } \gamma_{s}$$

Possible to make prediction for the NNNLO pole part of S
B and therefore for S{τ,B} from NNLO result
 Final form of the renormalized NNNLO soft function can be split into constant and L_s dependent parts

$$\ln\left(\tilde{S}(a_s, L_S)\right) = \sum_{i=1}^{\infty} \sum_{j=0}^{2i} C_{ij} a_s^i L_S^j = \ln\left(\tilde{S}\right) + \sum_{i=1}^{\infty} \sum_{j=1}^{2i} C_{ij} a_s^i L_S^j, \quad \tilde{S} = \tilde{S}(a_s, 0)$$

2)

1 2

Result for NNNLO zero-jettiness soft function

Eikonal line representation dependence completely factorizes at NNNLO due to Casimir scaling

$$\frac{\ln\left(\tilde{S}\right)}{C_{R}} = -a_{s}\pi^{2} + a_{s}^{2} \left[n_{f}T_{F}\left(\frac{80}{81} + \frac{154\pi^{2}}{27} - \frac{104\zeta_{3}}{9}\right) - C_{A}\left(\frac{2140}{80} + \frac{871\pi^{2}}{54} - \frac{286\zeta_{3}}{9} - \frac{14\pi^{4}}{15}\right) \right] \\ + a_{s}^{3} \left[n_{f}^{2}T_{F}^{2}\left(\frac{265408}{6561} - \frac{400\pi^{2}}{243} - \frac{51904\zeta_{3}}{243} + \frac{328\pi^{4}}{1215}\right) + n_{f}T_{F}\left(C_{F}X_{FF} + C_{A}X_{FA}\right) + C_{A}^{2}X_{AA} \right] + \mathcal{O}\left(a_{s}^{4}\right)$$

• With $a_s = \frac{a_s}{4\pi}$ and new coefficients calculated numerically with high precision

 $X_{FF} = 68.94258498$ $X_{FA} = 839.72385238$ $X_{AA} = -753.77578727$

• Soft function constants in $n_f = 5$ QCD required for resummed predictions $(q: C_R \rightarrow C_F)$ and $(g: C_R \rightarrow C_A)$

$$c_3^{5,g} = -1369.575849$$
 $c_3^{5,g} = -3541.982541$

Singular region cross section from MC simulation

Fit in the region, where NNLO MC predictions and approximate factorization prediction overlap
 From the condition R(τ) + R̄(τ) = 1 and all C_i, G_{ii} except C₃ known

$$R(\tau) = \left(1 + \sum_{k=1}^{\infty} \frac{C_k}{2\pi} \left(\frac{\alpha_s}{2\pi}\right)^k\right) \exp\left[\sum_{i=1}^{\infty} \sum_{j=1}^{i+1} \frac{G_{ij}}{2\pi} \left(\frac{\alpha_s}{2\pi}\right)^i \ln^j \frac{1}{\tau}\right]$$

• Missing C_3 in the parametrisation of dijet region for NNLO Thrust

$$C_3 = -1050 \pm 180 \pm 500$$

From soft function to singular cross section

this work

Coefficient C3 is determined by constant parts of Hard(H), Jet(J) and Soft(S) functions

- N3LO hard function is known $c_3^H = 8998.08$
- N3LO jet function known $c_3^{\prime} = -128.651$
- N3LO soft function $c_3^S = -1369.57$

• From C_3 value can determine c_3^S , since all other ingredients are known

[Brüser,Liu,Stahlhofen'18]

[Brüser,Liu,Stahlhofen'18]

[Abbate,Fickinger,Hoang et al.'10]

 $c_3^S = -19988 \pm 1440 \pm 4000$

• Inverse of the relation with known c_3^S allows C_3 color structures prediction [Monni, Gehrmann, Luisoni'11]

	$n_f^0 N^2$	$n_f^0 N^0$	$n_{f}^{0}N^{-2}$	$n_f^{\dagger}N^{\dagger}$	$n_f^{\dagger} N^{-1}$	$n_f^2 N^0$	sum
From c_3^S	2766.05	-60.1237	0.37891	-1581.01	18.4901	133.47	1277.25
Fit	3541±51	-265 ± 8	-71 ± 3	-5078 ± 145	236 ± 7	95±120	-1543 ± 195

Applications: Thrust resummation

Thrust resummation for α_s determination

[Becher, Schwartz'08] $c_2^{\rm S}$ numerical fit [Abbate,Fickinger,Hoang et al. '10] c_3^H known, fitted c_2, c_3^S [Bell,Lee,Makris et al. '23] c_3^H, c_3^J known, attempt to extract c_3^S

Last missing ingredient c_3^S is now available

Higgs decay to quarks/gluons [Ju, Xu, Yang, Zhou'23]

 α_{s} series convergence restored

$$\tilde{s}_g = 1 - 2.36\alpha_s + 1.617\alpha_s^2 - \underbrace{(22.89 \pm 5.67)}_{\text{fit}} \alpha_s^3$$

Applications: Thrust resummation

Thrust resummation for α_s determination [Becher, Schwartz'08] c_{2}^{S} numerical fit [Abbate, Fickinger, Hoang et al. '10] c_{2}^{H} known, fitted c_{2}^{J}, c_{2}^{S} [Bell,Lee,Makris et al.'23] c_3^H, c_3^J known, attempt to extract c_3^S Last missing ingredient c_3^S is now available

Higgs decay to quarks/gluons [Ju, Xu, Yang, Zhou'23]

exact

Relative complexity of ingredients

RVV corrections

Two-loop corrections $r_{s}^{(2)}$ to single gluon emission soft current are known exactly in ε [Duhr, Gehrmann'13]

$$- \frac{n}{k} = r_{\mathsf{S}}(k) \left(\begin{array}{c} n & n \\ - n & k \\ - n & k \\ \overline{n} & - n \\ - n & k \\ \overline{n} & - n \\ - n & k \end{array} \right), \quad r_{\mathsf{S}}(k) = 1 + \sum_{l=1}^{\infty} A_{\mathsf{S}}^{l} \left[\frac{-(n \cdot \overline{n})}{2(k \cdot n)(k \cdot \overline{n})} \right]^{l_{\mathcal{E}}} r_{\mathsf{S}}^{(l)}$$

Two contributions from different hemisphere emissions need to be integrated, $S_g^{(3)} = s_{2,0} + s_{1,1} + s_{0,2}$

$$\mathbf{s}_{l,m} = \int \frac{\mathrm{d}^{d} k}{(2\pi)^{d-1}} \delta^{+} \left(k^{2}\right) \left[\delta(1-k\cdot n)\theta(k\cdot \bar{n}-k\cdot n) + \delta(1-k\cdot \bar{n})\theta(k\cdot n-k\cdot \bar{n})\right] \mathbf{w}_{L,M}(k)$$

- Linear propagators only
- Factorisation of *k*-dependent part of soft current

One-loop corrections with double emission

- RRV squared amplitudes generated from scratch
- Results for one-loop soft current are known
- RRV result for gg final state is known
- Recalculation including $q\bar{q}$ final state

[Zhu'20][Czakon et al.'22] [Chen,Feng,Jia,Liue'22] [Baranowski et al.'24]

Multi-loop calculations inspired approach

- Reduction to the minimal set of master integrals
- Differential equations from IBP reduction

Modified reverse unitarity

• In dimensional regularisation system of IBP equation can be constructed by integration under integral sign

$$\int \mathrm{d}^{d} I \frac{\partial}{\partial I_{\mu}} \big[\mathbf{v}_{\mu} \cdot f(\{I\}) \big], \qquad \frac{\partial}{\partial k \cdot \bar{n}} \theta(k \cdot \bar{n} - k \cdot n) = \delta(k \cdot \bar{n} - k \cdot n)$$

• IBP for integrals with θ -functions generate new auxiliary topologies, partial fractioning required

$$\frac{\theta(k \cdot \bar{n} - k \cdot n)}{(k \cdot \bar{n})^a (k \cdot n)^b} \to \frac{\delta(k \cdot \bar{n} - k \cdot n)}{(k \cdot \bar{n})^a (k \cdot n)^b}$$

$$\begin{array}{c} - \operatorname{RR} \underbrace{\theta \theta \theta}_{- \operatorname{RRV}} \xrightarrow{\delta \theta \theta} \underbrace{\delta \theta + \theta \delta \theta + \theta \theta \delta}_{\operatorname{Level 2}} \xrightarrow{\delta \delta \theta + \delta \theta \delta + \theta \delta \delta} \xrightarrow{\delta \delta \delta}_{\operatorname{Level 1}} \underbrace{\delta \delta \theta + \theta \delta}_{\operatorname{Level 1}} \xrightarrow{\delta \delta \theta}_{\operatorname{Level 1}} \xrightarrow{\delta \theta}_{\operatorname{Lev}} \xrightarrow{\delta \theta}_{\operatorname{Level 1}} \xrightarrow{\delta \theta}_{\operatorname{Level 1}} \xrightarrow{\delta \theta}_{\operatorname{Level 1$$

- Number of MIs after IBP reduction of both configurations in RRV case
 - $\begin{array}{cccc} \delta\delta & \delta\theta + \theta\delta & \theta\theta \\ 8 & 36 & 15 \end{array}$
- Direct integration possible, except pentagon and box with $a_3 = 0$
- DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution

Different strategy compared to RRR case: instead of $I = \lim_{z \to z_0} J(z)$ now $I = \int dz J(z)$

RRV master integrals from differential equations

• For $\delta\delta$ integrals we introduce auxiliary paremeter **x** and solve DE system $\partial_x J(x) = M(\varepsilon, x)J(x)$

$$I_{\delta\delta} = \int \mathrm{d}(k_1 \cdot k_2) f(k_1 \cdot k_2) = \int_0^1 \mathrm{d}x \int \mathrm{d}(k_1 \cdot k_2) \,\delta(k_1 \cdot k_2 - \frac{x}{2}) f(k_1 \cdot k_2) = \int_0^1 J(x) \mathrm{d}x$$

• For $\delta\theta$ and $\theta\delta$ we use integral representation for θ -function and solve DE system $\partial_z J(z) = M(\varepsilon, z)J(z)$

$$\theta(b-a) = \int_0^1 b\delta(zb-a)dz, \quad I_{\delta\theta} = \int_0^1 J(z)dz$$

• For $\theta\theta$ integrals PDE system in two variables z_1, z_2 , no IBP reduction with θ -functions needed

$$I_{\theta\theta} = \int_0^1 \mathrm{d} z_1 \int_0^1 \mathrm{d} z_2 J(z_1, z_2)$$

Differential equations in canonical form

- For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix factorizes completely: $M(\varepsilon) \rightarrow \varepsilon A$
- Straightforward solution for integrals in canonicaal basis in terms of GPLs
- Simpler boundary conditions fixing due to known general form of expansion near singular points

$$g(z) = z^{a_1+b_1\varepsilon}(c_1+\mathcal{O}(z)) + z^{a_2+b_2\varepsilon}(c_2+\mathcal{O}(z)) + \dots$$

• Construction of subtraction terms to remove endpoint singularities in final integration

$$\int_{0}^{1} J(z) dz = \int_{0}^{1} \underbrace{\left[J(z) - z^{a_{i}+b_{i}\varepsilon} j_{0}(z) - (1-z)^{a_{k}+b_{k}\varepsilon} j_{1}(z) \right]}_{\varepsilon - \text{expanded}} dz + \int_{0}^{1} \underbrace{\left(z^{a_{i}+b_{i}\varepsilon} j_{0}(z) - (1-z)^{a_{k}+b_{k}\varepsilon} j_{1}(z) \right)}_{\varepsilon - \text{exact}} dz$$

•

Triple real emissions

Recalculated input for eikonal factor with partial fractioning and topology mapping

- $ggg = ggg + gc\bar{c}$, coincides with known expression in physical gauge
- gqq in agreement with

Same hemisphere

 $\delta(\tau-\beta_1-\beta_2-\beta_3)$

[Catani,Colferai,Torrini'19] [Del Duca,Duhr,Haindl,Liu'23]

Different hemispheres

 $\delta(\tau-\beta_1-\beta_2-\underline{\alpha_3})$

Same hemisphere result for ggg final state is known

[Baranowski et al.'22]

DE for RRR integrals with auxiliary mass

- Integrals for both *nnn* and *nnn* configurations with denominator $1/k_{123}^2$ are difficult to calculate
- Integrals are single scale, auxiliary parameter needed to construct DE system $I \rightarrow J(m^2)$
- Our solution is to make the most complicated propagator massive $\frac{1}{(k_1+k_2+k_3)^2} \rightarrow \frac{1}{(k_1+k_2+k_3)^2+m^2}$
- Calculation of boundary conditions simplifies in the limit $m^2
 ightarrow \infty$
- Result for integrals of our interest from the solution for $J(m^2)$ in the limit $m^2 \rightarrow 0$

Difficulties of the chosen strategy

- Both points $m^2 \rightarrow 0$ and $m^2 \rightarrow \infty$ are singular points of the DE system
- Solution of the DE for integrals with massive denominator possible only numerically

Details of the DE solution

- Larger DE system size with ~ 650 equations for *nnn* configuration compared to ~ 150 for *nnn*
- Needed to calculate all contributing regions into boundary conditions in the $m^2 \rightarrow \infty$ limit

$$\frac{\sim (m^2)^0}{1/m^2} \qquad \frac{\sim (m^2)^{-\varepsilon}}{\alpha_i \sim m^2} \qquad \frac{\sim (m^2)^{-2\varepsilon}}{\alpha_i, \alpha_j \sim m^2}$$

- For each large parameter $\alpha_i \sim m^2$ we remove $\theta \implies$ additional IBP reduction of BC integrals possible
- Numerical solution of the DE system as a sequence of series expansions [Liu et al.'18][Chen et al.'22]

Direct integration of MIs and boundary constants

- We have calculated ~ 130 integrals without $1/k_{123}^2$ denominator and ~ 100 boundary conditions by direct integration with HyperInt [Panzer'15]
- Summary of used techniques
 - I. Change variables to satisfy all constraints from δ and θ functions
 - 2. Perform as many integrations as possible in terms of ${}_{2}F_{1}$ and F_{1} functions with known argument transforms
 - 3. Do remaining integrations in terms of ${}_{p}F_{q}$ functions if possible
 - 4. For final integral representation with minimal number of integrations and minimal set of divergencies we construct subtraction terms
 - 5. Integrand with all divergencies subtracted is expanded in ε and integrated term by term with HyperInt
 - 6. Subtraction terms are integrated in the same way

Conclusion

- Developed techniques
 - For efficient reduction for integrals with Heaviside θ -functions applicable for phase-space integrals with loops and additional regulators
 - For calculation of the most complicated RRR integrals by solving differential equations in auxuliary parameter numerically with high precision and calculated all needed boundary conditions
- Obtained new results
 - Recalculated one-loop corrections for two gluon emission contribution to the soft function together with a new part for the quark pair emission
 - High precision numerical result for triple emission with quarks and gluons in the final state in the different hemispheres contribution
- Final result for renormalized NNNLO zero-jettiness soft function
 - Application to $e^+e^- \rightarrow 2j$ and Higgs decay Thrust resummation
 - Last missing ingredient for application of jettiness-variable as slicing variable at NNNLO

Thank you for attention!