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Recap of Antenna Subtraction

@ At NLO, we want to construct a subtraction term

donio :/ [damo - de/Lo] + [/ dofio +/ dUMLO]
d®min d®min ddm

@ The only emission topology we encounter is a single unresolved
emission between a pair of hard radiator partons
@ We can reproduce this singular behaviour with terms like

X(ih j, kMYMO(.... if, gk, . ) I(m), (-oey 1, K, )
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Recap of Antenna Subtraction

@ At NNLO, we need to construct subtraction terms such that

o RR S,RR RV S,RV
donnLo = fd4>,,,+2 [df’NNLo dUNNLo} fd¢m+1 [df’NNLo df’NNLo}

vV S,vw
+ Jao,, [dUNNLO - dUNNLO}

where
S.RR SSRV S,\W
/ doynio + / Onneo t / doynio =0
dPpo d®pmi

@ At the RR level we can have both single- and double- unresolved
emissions

@ At the RV level we have one-loop single-unresolved emissions, and
bulk singularities

@ This leads to more complex emission topologies
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Double-Unresolved Emission Topologies

@ Colour Unconnected
K> Both emissions are well separated in the colour string and share
no common hard radiator

XO(ih j, kMXO(1", m, n"YMO(.... 7], jk, ..., Im, min...)
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Double-Unresolved Emission Topologies

@ Colour Connected
©’? Both emissions are colour connected to each other and one of
the hard radiators

XO(ih j, k, IMYMO(...., ijk, jkI, ..)
= XO(ih j, kXA jk, IYMO(.... ijk, jkT, ..
= XU K, VXK kG, iPYM(... ik, kK, ..)
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Double-Unresolved Emission Topologies

@ Almost Colour Unconnected

K> The two unresolved partons are colour unconnected, but share a
common hard radiator

@ Antenna functions have 2 hard radiators, so cannot cleanly describe
this kind of singularity

@ Instead, they are described by a non-trivial combination of )N(f and
Large Angle Soft Terms

@ For high multiplicity processes, this is the bottleneck for the size and
complexity of the subtraction terms
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Double-Unresolved Emission Topologies

@ Almost Colour Unconnected

@ Instead, we would like to be able to to describe the ACU singularities
like

X310 j, kP 1, m"YMO(... ik, TjkTm, jk, ...)
- X??(iha.j7 kh)X??(tha /7 mh)Mr?(a 7]7./’}/7 %7 )
= Xm0 kXK, iPYME..., . K, T, ..)
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Double-Unresolved Emission Topologies

@ Instead, we would like to be able to to describe the ACU singularities
like

X231 j, k" 1, mPYMY(..., ijk, Tjklm, jkl, ...)
— XM kYXOGK 1 mMYMO(... T, ki, Tm, )
= XQ(mP 1 kXK, iPYME..., T, K, T, ..)

o Advantages
v'A more algorithmic construction of subtraction terms
v'A reduction in the size of subtraction terms
v"Works for a single colour ordering
v'Reduced computational time (~ n! for n gluons)
v'No wide-angle soft terms
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Recap of Designer Antennas

@ In the original antenna subtraction scheme, antenna functions were
extracted from matrix elements with the required infrared limits
[Gehrmann-De Ridder, Gehrmann, Glover '05]

i
1 1 j
O O k
; !
. -
k I
ol SL
m+2 m+2 .<
L

@ In the designer antenna scheme, we build antennas directly from the
set of infrared limits we want the antenna to have

v'"We have a full set of unintegrated and integrated FF antennae
[Braun-White,Glover '23]

XM j, kMY XD(ih, j, k, 17) X3(ih, j, k™)
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Tree level five particle three-hard radiator antenna

functions

o We can construct a X05(if, ju, k2, 14, m?) antenna from its desired

infrared limits

@ We have a momentum-conserving on-shell 5to3 mapping which
behaves correctly in all unresolved limits

@ Hence we can use these antennas in RR subtraction terms

La(i®, 3, k" 1,mhy = Sy(i®, j, k%S, kD 1, mh)
Lofi" j k" 0 m"y = Puli®, )Pk 1)
La(i®, 3, k" 1, m"y = Pay(i®, j)Pea(m® 1)
Ly j, K L") = Paglh", ) Pl 1)
La(i®, 4, k" 1Lm"y = Sy(i® 4, k™ XY (D 1,m®™)
Lali®, 4, k" Lom") = Sa(k" 1 mM) X306, 5,65
Ly(i® g, k" 1,mhy = Poy(i®, 5IXD(RM 1, m")
La(i®, 4, k" Lom") = Palm™ DX2E" 5, K"
Lo(i®, 3, k" 1, m"y = Pyaly, k" 1)
La(i®, 4, k" 0, m") = Po(k™ XSG + K" L™
i

Ly ("
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Leading Colour eTe~ — 3jet RR subtraction term

B3g0ZepemS(a. i, j.k,b,1,2) =
+DY(a,i,j) nf“((m).(ﬁ)A kb, 1,2) 5V ({p}a)
+F}(i.5K) By *(a,(85), (Fj).b.1,2) 15 ({ph)
+D3(b, k, ) BE(a, i, (), (66), 1,2) J§V ({p}a)

Single Unresolved

w ot o=

4+ DYai, g, k) BP(aif), (Kii) b, 1,2) I ({p}s)
= D§(a,i,5) D((ai), (i), k) BY (((ai) (i), (kGf)) 5,1,2) ¥ ({p}s)
6 = F9(5,kK) D3a, (7). (k) BE((ali), (( G, b1, 2) 1 ({p}a)

=i

Colour Connected
Double Unresolved

T+ Dbk, 1) BE (. (1K), (BE), 1,2) -l;i‘”({ph
8 PGk DY(b G), 9)) B, () GR), <b<m) 1,2) 1 ({p}s)
o = Dbk, ) D), (R 6) BPa, G, (6, GR) 1,2) I (o))

10 + A9 4(ayi, 4, k. b) BZ({aij}, {aijkb}, {bik}, 1,2) 5P ({p}s)
1 = DS(a,i,5) Db k. (7)) BE ((ai), [GR), k8], 1,2) 27 ({p}s)
12— Db, k) D, i, (7)) BElail, (R, 68, 1,2) 9 ()

Almost Colour
Unconnected
Double Unresolved

@ 12 terms compared to 42 in the traditional scheme
@ Works for a single colour ordering
@ Clear algorithmic construction
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Analytic Integration: Mapping dependence

@ We consider an unintegrated subtraction term

X({p}) M({BY, {@}) Jr= 1) ({5}, {G}) dPSn,+ny (. @)

@ We choose a mapping such that the phase space integral factorises

dPSn,+n, (P, q) = dPSx(p/{P}) dPSn;1n,({P}, {d})

@ The integrated subtraction term is then given by

X({BY) M({BY. {a}) S\ ({3}, {@}) dPSm({B}. {d})

where

X({(5}) = / X({p}) dPSx(p/{B}).
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Analytic Integration: Mapping dependence

Antennas with 2 hard radiators

@ A generic n—2 mapping has the form

{p17 .. -yPnp} — {ElaEJ}

@ The only available scale after integration is s;; so on dimensional
grounds

X({p1.ps}) = c(e) (s)?

@ It is straightforward to check that all mappings give the same c(e)
and d
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Analytic Integration: Mapping dependence

Antennas with 3 hard radiators
@ A generic n—3 mapping has the form
{p1;---pn,} = {P1,PJ, Pk}
@ Now we have have multiple available scales
S1Js SIK SIK SIUK SIy+SIK Si+SIK, SJKTSIK

@ As before the overall dimensionality of is fixed, but the dependence
on each individual scale is not

X({pr, Py, Pr}) = Z ci (51)% (s ) (s ) (51K ) + .

1

@ Hence we have to use the same mapping for analytic integration as
we do in the numerical implementation
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Analytic Integration: Xg

o We split X5°,3 into 3 parts to make the integration more
straightforward

X9 3(i",j, K 1, m"Yy = X250 (17,4, K 1, m") + X3, (i 4, k™, 1| m")
+X05.r(i"j, k", 1, m")

° X§3;L and X50,3;R are related to )NQ? so can be integrated in the same
way
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Analytic Integration: X£3

XE?,3;M = X2(i" jp, KXD(KE, 14, mD)
— CL((1 = SHXZ(i jb, KI)CE (1 — STIXS (KL, Iy, mh))

@ This satisfies fully 8 out of the 11 limits, and only include terms with
invariants built from momenta in one half of the X83

@ We can integrate this analytically over the mapping

pr = P'+P'—7Sij Pk
' T s+ ik
Sjj SIm
PK = 1 + + ) Pk,
< Sik + Sjk  Slk + Smk
Sim
pm = pr+ Pm — ———— Pk,
Stk + Smk
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Real-Virtual Subtraction Term

@ First we include the terms from the RR subtraction term that
naturally land at the RV level

U 4D, 3) By ((ai), (1), k. b,1,2) 4 ({p)s) o) BE%a,,5,0,1,2) 9 (b

2 +F(i5.k) BEa, (i), (k3),b,1,2) 1Y ({p}e) w2 I3 (sy) B (a,0.5,6,1,2) 15" ({p})
3 D0k ) BE i, (R, (6),1,2) S (o) >3 I () BEa.i g, 1.2) 1O ()

vlq]:ff«m)D[Zw i, §) BE ((ai), (i7),5.1,2) 2V ({p}3)
iea)
'({pks)
F (5is) Db, 5,) BE (a, (i7), (1), 1,2) 17 {p}s)

1 +DY(ai,j.k) B E0((aif), U\JIJ b,1,2) lt )({p}.]
5 DAaid) DRU(@), ), ) BE (@) (K0, 1.2) 1 ()
6 — B0, o) DR, (). G51) BE(a)), (GRG0 1,2) S¥Chpl)

E (53) DY i, ) BEY (i), (i), b.1,2) J!

v.(ij“ebJ i) BZa, (i), (7b). 1,

+IEE (o) DS a. i, §) B[, [i7).6,1,2) ¥ ({p}s)
T+ Dbk, j,i) B2 (a, (ijk), (bkj),1,2) }['” {pls) LA (52 DY(b. 5.4) BE (e ig]. 18] 1.2) ¥ (p))
8 — (.. DY, G, (7) B (o, () GO R, 1.2) 1 (pho)

9 DYk, g) DY), (7)) BE e, GGR)), (G, R0 1,2) 257 (pho)

10 +AY(a,i.,k.b) BE({aij}, {aijkb}, {bik}, 1.2) S ({pla)
{(3)

1 = Difai,) DAk, () BE(ai), (20K, k61,2047 (o))
12— Db k.3) DY(a, i, (k7)) BE((ad), [(K)i]. (k). 1,2) J¥ ({p)s)
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Real-Virtual Subtraction Term

@ First we include the terms from the RR subtraction term that
naturally land at the RV level

@ Then we add in the single unresolved behaviour using loop*tree and
tree*loop terms

B2glZepemT(a,i,j,b,1,2)

1 [ Ty (sai) + )+ IR ()| BE(a,i,5.0,1,2) 1Y ({p})
2 4 { + Iy (sai) + Jz'_‘(’,f(’;.'(‘sgjj} DY(a.i,5) BE((ai), (i), 5,1,2) 15 ({p}s)

¢ From the
3 +{+J‘_f'§f-,:s”)v.l;'(:f.‘f.w.]} DY(b,4,1) BE(a, (i), (7). 1,2) 13 ({p}s) RR

4 +J,L,i](}.isj;,)l (a,i, j]B( ([ai] [i} b,1,2) /‘“‘ ({r}s)
5 +J35¢ (sa) D05, i) B *(a. i), i8], 1.2) 15V ({p}s)
6 +Diai, J)H“r{m) (i7).5.1,2) 15" ({p}a)

T+ Db, i) BE(a, (i), (jb), 1.2 :L"’ ({r}s) Added in at
8 4+ DYa.i,j) B/l ((ai), (ij).b,1,2) f, Hﬂh] RV

9 +D(b..i) By (a, (7). (7). 1.2) 1§V ({p}a)
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Real-Virtual Subtraction Term

B2glZepemT (ai.j,b,1,2)

Correct
Poles 7[+ Tyt sw) + Iy () + ff“(m)] B (a,i,,6,1,2) 15" (ph)

+[+ J36 (sa) + ,lz"(l,:(':(m,)]L)f,‘(u.A.;)B("(f:ﬁ).(x}).b.l.2) I ({p}s)
Non-

3 +[+ TEEE (55) + lz(,((<Jy1]1)5:(b.7 i) BE(a, (i), (76). 1,2) 13 ({p}s) Divergent
4 b sm)DS(a.i.g) BP(ail, [{]..1.2) I8 ({p)s)
5 a5 DY(b.di i) BY (a, [, %), 1,2) 5V ({p)a)
6 +Di(ai.j) BZ(ai), (7).6.1,2) 1 ({phs)

T+ Dy(b,4.1) BE(a, (i), (30),1,2) 1SV ({p}s) Correct
8 +DS(a.i.j) B ((ai). (i)).b,1,2) 1S ({p}s) Divergence
9 +DY(b,j.i) BE (a,(7), (30), 1,2) 1Y ({p)s)

v Gives the correct € poles in all unresolved limits

v Gives the correct implicit singularity behaviour in all unresolved
limits

® Gives incorrect —g and 1 ¢ poles in the bulk
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One-loop single-unresolved emission topologies

° X:? tree*loop terms are able to capture the singular behaviour from
tree-level sub-graphs of a full matrix element

° X31 loop*tree terms are able to capture the singular behaviour when
the unresolved emission couples directly to a loop
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One-loop single-unresolved emission topologies

@ We also have a third case where the unresolved emission is neither
directly connected to the loop nor fully detached from it

@ In the traditional approach these explicit singularities were captured
by a combination of LAST terms coming from the RR, but now we
need a new structure to do this
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One-loop four-particle three-hard-radiators antenna

functions (X7 3)

@ To construct the in3 we collect the leftover poles equipped with their
mappings in the subtraction term, and assemble them into a function
multiplying an Xg antenna

o We find that in general we have 3 different mappings;

o The dipole mapping with i scaled — X41,3;L(ih,j, kh, 1h)
o The antenna mapping = Xp ("4, k1)
e The dipole mapping with k scaled — X4173;R(i",j7 kM 1)

@ The analytic integration is mapping dependent, but now we have

specified the mapping it is straightforward
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One-loop four-particle three-hard-radiators antenna

functions (X7 3)

In this case, we get
Asz (i j, kib) =0

. 1 1 Siji 112 5 ..
Ao (i g kib)=|=5+=log| —X—— ) += | | DY}, k
4,3,M( J ) <62 6( g((sik+5jk)5ﬁ<b 3 3(i,J, k)

.. 1 1 Skb 5 ..
AAll,3;R(’v./7k; b) = (‘62 + . <Iog (,u,2> - 3>> Dg(’,J; k)

@ This contributes to poles in the bulk, but does not contribute in
unresolved limits
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Real-Virtual Subtraction Term

B2g1ZepemT(a,|d,b 1.2)

Correct
Poles 1 7[+J;'55(,4m) + B (sy) +./2‘Q(,(w] *ai g b 1,2) 1 (ke

2 g ) + 3 )| D209 B, 0.2 27
Non-
3+ [ Iy i) + Ty b0 (w] DY(b.3,1) B (a, i), (19).1.2) I3 ({phs) Divergent
4 gD, g) B (ail, 1], 6,1,2) 1 ({p)s)
Pole Free 5wy (e DI(b 1) BY *fa, (i3], (i8], 1,2) 15 (s
6 +Dy(ai ) B ((ai), 07, 5.1,2) A7 ({p}s)
T +Dy(b5,1) BY *(as (35, (0), 1,2) 17 ({phs) Correct
8+ DY(a,i ) B ((ad), (i3),5,1,2) “’((p}u Divergence
O DY) B . (). (). 1.2) ({p}s)
10+ al(ei,50) B ail ik 51,2 57 (k) Non-
U Al d.i,0) B (e, (i}, (30),1,2) 57 ({p)e) Divergent

v Gives the correct € poles in all unresolved limits
v Gives the correct implicit singularity behaviour in all unresolved
limits
v Gives the correct poles in the bulk
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Virtual Virtual Subtraction Term

Blg2ZepemU(3,4,5,1,2)

Blg2ZepemU(3,4,5,1,2) =
1 —[DY(s34) + DY(s45)| By (3,4,5,1,2)
2 +%[D°(s34>+D§<845>JBIZ>°<3,4,5,m)

3 f[D;:(s +D3(s4s)] 0(3,4,5,1,2)
—€
. |:<934 DY(s34) + <l‘25) D(s45) | BZ0(3,4,5,1,2)
Hr
5 —[DY(s34) + DI (s45)] By 0(3 4,5,1,2)
6 —[A3(sa4,545)|BZ0(3,4,5,1,2)

7 —[D} (s34, 845) + Di5(s5, 534)1B7°(3,4,5,1,2)

v'"We indeed get full pole cancellation with the two loop matrix
element as expected
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New map between layers of the subtraction scheme

| dom | | do2 || | do* |
XMz
XIMs
XM Mo Jo' o' M
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Summary (RR)

@ We already have clean ways to describe singularities that are
e Single unresolved (3 parton description)
o Colour connected double unresolved (4 parton description)
o Colour unconnected double unresolved (6 parton description)
@ Almost colour unconnected double unresolved singularities would
naturally have a 5 parton description

@ The current treatment with )Z? is very messy

@ We have constructed and integrated 5 parton antennas with 3 hard
radiators, Xg3, that cleanly captures these almost colour unconnected
double unresolved singularities

@ At the RV level we need a new one-loop 4 parton three hard radiator
non-divergent structure to cancel poles in the bulk

We have constructed and integrated all Xj3 relevant for eTe™ — 3jet

@ We have constructed subtraction terms for all colour layers of
eTe™ — 3jet and achieved poll cancellation
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@ Finish the validation of our new method compared with the old
implementation

@ Quantify the speedup we can achieve

@ Fit this new formalism into the colourful antenna subtraction
framework, and automate the construction of subtraction terms for
arbitrary processes at any multiplicity

@ Extend the formalism to include intial state radiation
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Map between layers of the subtraction scheme

datie dgtt dg e

‘A% | U, an ’J—‘ U,y | | 2U,b)

| c.u.

RV l

d&'f’,u dﬁ-Tbl

RR dgse dg54 45 da5b2 dgsh
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Designer Antenna Algorithm

X0, =PlL;,
X2;2 — Xo(')z;l + PE(LQ o ngg,l) )

Xoon = Xpn_1+ P\ (Ly - P%VXS;N—l)
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Designer Antenna Algorithm

- 5ij v Asij, 5 Asji,
Sigk = Siks

ol Sij = Asij,
R (L= aj)(sie + sji), 5 — xj(sik + 5jk). Sijie — Sik + Sjic.

cl . lmi S/ sujns (1= a5) = suef sij
i
Sik + Sjk — Siji
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5to3 mapping limits

{A,B, C}

Collinear 1||b
—_—

Elliot Fox (IPPP Durham University)

=5 {a,b,c}

TC Lileli2, {a,1+b+2,c}
—>DC 2lit b2 {a+1,b+2,c}
{a+1,b,2+c}
{a,b+2,c}
{a,b,2+ ¢}

{a, b2,2c}

Collinear al|1
—_—

DC a||1 2||c
%
SC1bl2
—_
SC12||c
-

Soft 1
—_—
(241,556}

—_~—

{a, (1 + b)2,2¢}
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Dipole and Tripole Mappings

The dipole mapping (with k rescaled) is an onshell momentum conserving
map

{pi, pjs P} = {p1, P}
S

=p,+p— —— ,

Pi Pi T pj S + Sik Pk

Pk = ik k
Sik + Sjk

The tripole mapping (with k rescaled) is an onshell momentum conserving
map

{pi, pjs pis i} = {p1, P}
PI=pi+pj+p———2p,
o Sik + Sjk + Sk

P = Sijki
K — k
Sik + Sjk + Ski
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Antenna 3 to 2 mapping

For the 3 to 2 mapping {/,j, k} — {I, K}

I = xpi + rpj + ypk
K=1-=x)pi+(1—r)pj+(1—y)p«

1
x=————((14 p1)siix — 2rsjx
2(sik —|—s,~j)(( P1)si i)
r= Sik
Sij + Sjk
1

— T (1= p1)sik — 2rs;;
y 2(sikJrsjk)(( p1)Sijk — 2rsij)

PE=1+4r(1—r)i%k
Sijk Sik
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RR Spike Plots

Figure: gg Double Soft Figure: g Soft
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Figure: ggg Triple Collinear Figure: gg Collinear
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RR Spike Plots

Figure: qgg Triple Collinear
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