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Recap of Antenna Subtraction

At NLO, we want to construct a subtraction term

dσNLO =

∫
dΦm+1

[
dσR

NLO − dσS
NLO

]
+

[∫
dΦm+1

dσS
NLO +

∫
dΦm

dσV
NLO

]
The only emission topology we encounter is a single unresolved
emission between a pair of hard radiator partons

We can reproduce this singular behaviour with terms like

X 0
3 (i

h, j , kh)M0
m(..., ĩj , j̃k, ...)J(m)m(..., ĩj , j̃k, ...)

Elliot Fox (IPPP Durham University) Generalised Antenna Functions 2 / 36



Recap of Antenna Subtraction

At NNLO, we need to construct subtraction terms such that

dσNNLO =
∫
dΦm+2

[
dσRR

NNLO − dσS,RR
NNLO

] ∫
dΦm+1

[
dσRV

NNLO − dσS,RV
NNLO

]
+
∫
dΦm

[
dσVV

NNLO − dσS,VV
NNLO

]
where∫

dΦm+2

dσS,RR
NNLO +

∫
dΦm+1

dσS ,RV
NNLO +

∫
dΦm

dσS ,VV
NNLO = 0

At the RR level we can have both single- and double- unresolved
emissions

At the RV level we have one-loop single-unresolved emissions, and
bulk singularities

This leads to more complex emission topologies
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Double-Unresolved Emission Topologies

Colour Unconnected
¬ Both emissions are well separated in the colour string and share

no common hard radiator

X 0
3 (i

h, j , kh)X 0
3 (l

h,m, nh)M0
n(..., ĩj , j̃k, ..., l̃m, m̃n...)
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Double-Unresolved Emission Topologies

Colour Connected
¬ Both emissions are colour connected to each other and one of

the hard radiators

X 0
4 (i

h, j , k , lh)M0
n(..., ĩjk, j̃kl , ...)

− X 0
3 (i

h, j , kh)X 0
3 (ĩj

h
, j̃k, lh)M0

n(...,
˜̃
ij j̃k,

˜̃
jkl , ...)

− X 0
3 (l

h, k, jh)X 0
3 (l̃k

h
, k̃j , ih)M0

n(..., ĩ j̃k,
˜̃
jkk̃l , ...)
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Double-Unresolved Emission Topologies

Almost Colour Unconnected
¬ The two unresolved partons are colour unconnected, but share a

common hard radiator

Antenna functions have 2 hard radiators, so cannot cleanly describe
this kind of singularity

Instead, they are described by a non-trivial combination of X̃ 0
4 and

Large Angle Soft Terms

For high multiplicity processes, this is the bottleneck for the size and
complexity of the subtraction terms
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Double-Unresolved Emission Topologies

Almost Colour Unconnected

Instead, we would like to be able to to describe the ACU singularities
like

X 0
5,3(i

h, j , kh, l ,mh)M0
n(..., ĩjk, ĩjklm, j̃kl , ...)

− X 0
3 (i

h, j , kh)X 0
3 (j̃k

h
, l ,mh)M0

n(..., ĩj ,
˜̃
jkl , l̃m, ...)

− X 0
3 (m

h, l , kh)X 0
3 (l̃k

h
, j , ih)M0

n(..., ĩj , j̃ k̃l , l̃m, ...)
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Double-Unresolved Emission Topologies

Instead, we would like to be able to to describe the ACU singularities
like

X 0
5,3(i

h, j , kh, l ,mh)M0
n(..., ĩjk, ĩjklm, j̃kl , ...)

− X 0
3 (i

h, j , kh)X 0
3 (j̃k

h
, l ,mh)M0

n(..., ĩj ,
˜̃
jkl , l̃m, ...)

− X 0
3 (m

h, l , kh)X 0
3 (l̃k

h
, j , ih)M0

n(..., ĩj , j̃ k̃l , l̃m, ...)

Advantages
✓A more algorithmic construction of subtraction terms
✓A reduction in the size of subtraction terms
✓Works for a single colour ordering
✓Reduced computational time (∼ n! for n gluons)
✓No wide-angle soft terms

Elliot Fox (IPPP Durham University) Generalised Antenna Functions 8 / 36



Recap of Designer Antennas

In the original antenna subtraction scheme, antenna functions were
extracted from matrix elements with the required infrared limits
[Gehrmann-De Ridder, Gehrmann, Glover ’05]

In the designer antenna scheme, we build antennas directly from the
set of infrared limits we want the antenna to have

✓We have a full set of unintegrated and integrated FF antennae
[Braun-White,Glover ’23]

X 0
3 (i

h, j , kh) X 0
4 (i

h, j , k , lh) X 1
3 (i

h, j , kh)
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Tree level five particle three-hard radiator antenna
functions

We can construct a X 0
5,3(i

h
a , jb, k

h
c , ld ,m

h
e ) antenna from its desired

infrared limits

We have a momentum-conserving on-shell 5to3 mapping which
behaves correctly in all unresolved limits

Hence we can use these antennas in RR subtraction terms
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Leading Colour e+e− → 3jet RR subtraction term

12 terms compared to 42 in the traditional scheme

Works for a single colour ordering

Clear algorithmic construction
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Analytic Integration: Mapping dependence

We consider an unintegrated subtraction term

X ({p})M({p̃}, {q̃}) J(np̃+nq)
np+nq ({p̃}, {q̃}) dPSnp+nq(p, q)

We choose a mapping such that the phase space integral factorises

dPSnp+nq(p, q) → dPSX (p/{p̃}) dPSnp̃+nq({p̃}, {q̃})

The integrated subtraction term is then given by

X ({p̃})M({p̃}, {q̃}) J(np̃+nq)
np+nq ({p̃}, {q̃}) dPSm({p̃}, {q̃})

where

X ({p̃}) =
∫

X ({p}) dPSX (p/{p̃}),
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Analytic Integration: Mapping dependence

Antennas with 2 hard radiators

A generic n→2 mapping has the form

{p1, . . . , pnp} → {p̃I , p̃J}

The only available scale after integration is sIJ so on dimensional
grounds

X ({p̃I , p̃J}) = c(ϵ) (sIJ)
d

It is straightforward to check that all mappings give the same c(ϵ)
and d
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Analytic Integration: Mapping dependence

Antennas with 3 hard radiators

A generic n→3 mapping has the form

{p1, . . . , pnp} → {p̃I , p̃J , p̃K}

Now we have have multiple available scales

sIJ , sIK , sJK , sIJK , sIJ+sJK , sIJ+sIK , sJK+sIK

As before the overall dimensionality of is fixed, but the dependence
on each individual scale is not

X ({p̃I , p̃J , p̃K}) =
∑
i

ci (sIJ)
αi (sJK )

βi (sJK )
γi (sIJK )

δi + . . .

Hence we have to use the same mapping for analytic integration as
we do in the numerical implementation
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Analytic Integration: X 0
5,3

We split X 0
5,3 into 3 parts to make the integration more

straightforward

X 0
5,3(i

h, j , kh, l ,mh) = X 0
5,3;M(ih, j , kh, l ,mh) + X 0

5,3;L(i
h, j , kh, l |mh)

+X 0
5,3;R(i

h|j , kh, l ,mh)

X 0
5,3;L and X 0

5,3;R are related to X̃ 0
4 so can be integrated in the same

way
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Analytic Integration: X 0
5,3

X 0
5,3;M ≡ X 0

3 (i
h
a , jb, k

h
c )X

0
3 (k

h
c , ld ,m

h
e )

− C↓
jk((1− S↓

j )X
0
3 (i

h
a , jb, k

h
c ))C

↓
kl((1− S↓

l )X
0
3 (k

h
c , ld ,m

h
e ))

This satisfies fully 8 out of the 11 limits, and only include terms with
invariants built from momenta in one half of the X 0

5,3

We can integrate this analytically over the mapping

pI = pi + pj −
sij

sik + sjk
pk ,

: pK =

(
1 +

sij
sik + sjk

+
slm

slk + smk

)
pk ,

pM = pl + pm − slm
slk + smk

pk ,
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Real-Virtual Subtraction Term

First we include the terms from the RR subtraction term that
naturally land at the RV level
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Real-Virtual Subtraction Term

First we include the terms from the RR subtraction term that
naturally land at the RV level
Then we add in the single unresolved behaviour using loop*tree and
tree*loop terms
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Real-Virtual Subtraction Term

✓Gives the correct ϵ poles in all unresolved limits
✓Gives the correct implicit singularity behaviour in all unresolved
limits
⊗ Gives incorrect 1

ϵ2
and 1

ϵ poles in the bulk
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One-loop single-unresolved emission topologies

X 0
3 tree*loop terms are able to capture the singular behaviour from

tree-level sub-graphs of a full matrix element

X 1
3 loop*tree terms are able to capture the singular behaviour when

the unresolved emission couples directly to a loop
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One-loop single-unresolved emission topologies

We also have a third case where the unresolved emission is neither
directly connected to the loop nor fully detached from it

In the traditional approach these explicit singularities were captured
by a combination of LAST terms coming from the RR, but now we
need a new structure to do this

Elliot Fox (IPPP Durham University) Generalised Antenna Functions 21 / 36



One-loop four-particle three-hard-radiators antenna
functions (X 1

4,3)

To construct the X 1
4,3 we collect the leftover poles equipped with their

mappings in the subtraction term, and assemble them into a function
multiplying an X 0

3 antenna

We find that in general we have 3 different mappings;

The dipole mapping with i scaled → X 1
4,3;L(i

h, j , kh; lh)

The antenna mapping → X 1
4,3;M(ih, j , kh; lh)

The dipole mapping with k scaled → X 1
4,3;R(i

h, j , kh; lh)

The analytic integration is mapping dependent, but now we have
specified the mapping it is straightforward
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One-loop four-particle three-hard-radiators antenna
functions (X 1

4,3)

In this case, we get
A1
4,3;L(i , j , k; b) = 0

A1
4,3;M(i , j , k ; b) =

(
1

ϵ2
+

1

ϵ

(
log

(
sijkµ

2

(sik + sjk)sj̃kb

)
+

5

3

))
D0
3 (i , j , k)

A1
4,3;R(i , j , k ; b) =

(
− 1

ϵ2
+

1

ϵ

(
log

(
skb
µ2

)
− 5

3

))
D0
3 (i , j , k)

A1
4,3;T (i , j , k ; b) =

1

ϵ
log

(
sijkskb

(sik + sjk)sj̃kb

)
D0
3 (i , j , k)

This contributes to poles in the bulk, but does not contribute in
unresolved limits
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Real-Virtual Subtraction Term

✓Gives the correct ϵ poles in all unresolved limits
✓Gives the correct implicit singularity behaviour in all unresolved
limits
✓Gives the correct poles in the bulk
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Virtual Virtual Subtraction Term

✓We indeed get full pole cancellation with the two loop matrix
element as expected
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New map between layers of the subtraction scheme

  

−χ4
 0MB 

RR

RV

VV

dσa 

X3
 0 MR 

dσb1   

X4
 0MB 

dσb2 

−X3
 0X3

 0MB  

dσb1 

−χ5,3
 0      MB  

dσb2 

−X3
 0X3

 0MB  

−J  2
 1  MR 

X3
 1MB 

 

J2 
1   X3    

 0 MB  

X3
 0 MV 

J2 
1   X3    

 0 MB  

−χ3
 0MV −χ3

 1MB 

 

X5,3
 0    MB 

 

                    
−χ4,3

 1      MB   

dσd 

−X3
 0X3

 0MB  

-2J2 
1   X3    

 0 MB  

J2 
1 J2 

1 MB  
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Summary (RR)

We already have clean ways to describe singularities that are

Single unresolved (3 parton description)
Colour connected double unresolved (4 parton description)
Colour unconnected double unresolved (6+ parton description)

Almost colour unconnected double unresolved singularities would
naturally have a 5 parton description

The current treatment with X̃ 0
4 is very messy

We have constructed and integrated 5 parton antennas with 3 hard
radiators, X 0

5,3, that cleanly captures these almost colour unconnected
double unresolved singularities

At the RV level we need a new one-loop 4 parton three hard radiator
non-divergent structure to cancel poles in the bulk

We have constructed and integrated all X 1
4,3 relevant for e+e− → 3jet

We have constructed subtraction terms for all colour layers of
e+e− → 3jet and achieved poll cancellation
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Outlook

Finish the validation of our new method compared with the old
implementation

Quantify the speedup we can achieve

Fit this new formalism into the colourful antenna subtraction
framework, and automate the construction of subtraction terms for
arbitrary processes at any multiplicity

Extend the formalism to include intial state radiation
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Map between layers of the subtraction scheme
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Designer Antenna Algorithm
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Designer Antenna Algorithm
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5to3 mapping limits

{A,B,C} DS 12−−−→ {a, b, c}
TC 1||b||2−−−−−−→ {a, 1 + b + 2, c}
DC a||1 b||2−−−−−−−→ {a+ 1, b + 2, c}
DC a||1 2||c−−−−−−−→ {a+ 1, b, 2 + c}
SC 1 b||2−−−−−→ {a, b + 2, c}
SC 1 2||c−−−−−→ {a, b, 2 + c}
Soft 1−−−→ {a, b̃2, 2̃c}
Collinear a||1−−−−−−−→ {a+ 1, b̃2, 2̃c}
Collinear 1||b−−−−−−−→ {a, ˜(1 + b)2, 2̃c}
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Dipole and Tripole Mappings

The dipole mapping (with k rescaled) is an onshell momentum conserving
map

{pi , pj , pk} → {pI , pK}

pI = pi + pj −
sij

sik + sjk
pk ,

pK =
sijk

sik + sjk
pk .

The tripole mapping (with k rescaled) is an onshell momentum conserving
map

{pi , pj , pk , pl} → {pI , pK}

pI = pi + pj + pl −
sijl

sik + sjk + skl
pk

pK =
sijkl

sik + sjk + skl
pk
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Antenna 3 to 2 mapping

For the 3 to 2 mapping {i , j , k} → {I ,K}

I = xpi + rpj + ypk

K = (1− x)pi + (1− r)pj + (1− y)pk

x =
1

2(sik + sij)
((1 + ρ1)sijk − 2rsjk)

r =
sjk

sij + sjk

y =
1

2(sik + sjk)
((1− ρ1)sijk − 2rsij)

ρ21 = 1 + 4r(1− r)
sijsjk
sijksik
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RR Spike Plots

Figure: gg Double Soft
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RR Spike Plots

Figure: qgg Triple Collinear
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