

Two-loop QCD amplitudes for ttH production from high energy limit

G. Wang, Tianya Xia, Li Lin Yang and Xiaoping Ye, JHEP 05 (2024) 082, JHEP 07 (2024) 121

Guoxing Wang

LPTHE, CNRS, France

High Precision for Hard Processes @ Turin, Italy 12/09/2024

- \bullet Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- \bullet $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

• First observation at the LHC:

CMS, 1804.02610; ATLAS, 1806.00425

• Current Exp. acc. \sim 20%

e.g. CMS, 2003.10866; ATLAS, 2004.04545

• First observation at the LHC:

CMS, 1804.02610; ATLAS, 1806.00425

Approximation method!

- Approximation at NNLO
	- Soft Higgs approximation Catani, et al. Phys. Rev. Lett. 130 (2023) 111902

$$
\mathcal{M}(\{p_{\,i}\},k) \simeq F(m_t)\sum_{i=\,t,\,\overline{t}}\frac{m_t}{p_i\cdot k}\,\mathcal{M}\left(\{\,p_{\,i}\,\}\right) \qquad \left[\begin{array}{ccc} 2 \,\text{---}\,3 & \text{---}\,2 \,\text{---}\,2\\ \end{array}\right]
$$

See talk by C. Savoini.

• High energy limit **GW** , Xia, Yang and Ye: JHEP 05 (2024) 082

$$
\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod \left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle
$$

Massive amplitude Massless amplitude \Rightarrow

Catalog

- \bullet Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- \bullet $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

 $h_1(p_1,m_1) + h_2(p_2,m_2) \rightarrow h_3(p_3,m_3) + h_4(p_4,m_4) + \cdots + h_{n+2}(p_{n+2},m_{n+2}) + X(\lbrace p_X \rbrace, \lbrace m_X \rbrace)$

• High energy limit: $|s_{ij}| \gg m_k^2$, $i \neq j$

Mitov and Moch: *JHEP* 05 (2007) 001 **GW** , Xia, Yang and Ye: JHEP 05 (2024) 082

$$
|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\rangle = \prod_{i} \left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle \quad i=q,\,Q,\,g
$$

• **Up to NNLO**

$$
\mathcal{Z}^{(1)}_{[Q]} \qquad \qquad \mathcal{Z}^{(m|0)}_{[i]}(\{m\}) = 1 + \left(\frac{\alpha_s}{4\pi}\right)^2 \sum_{j,l,\,j\neq l} (-\mathbf{T}_j \cdot \mathbf{T}_l) \sum_h \mathcal{S}^{(2)}(s_{jl},m_h^2) + \mathcal{O}(\alpha_s^3)
$$

Czakon, Mitov and Moch: Nucl.Phys.B 798 (2008) 210-250

 000

mm

 $\mathcal{Z}^{(1)}_{[Q]}$

- Determine soft function and \mathcal{Z} -factor:
	- p_1, m $F_2\!\propto\! m_Q^{\,2}$ • $q\overline{q}$ -vector vertex
 $\Gamma^\mu(p_1,p_2) = F_1(s,m_Q^2,m_h^2) \, \gamma^\mu + \frac{1}{2m_Q} F_2(s,m_Q^2,m_h^2) \, i \, \sigma^{\mu\nu}(p_1+p_2)_\nu \qquad \hbox{and}$ $I_{\{a_i\}}\!\equiv\!\mu^{\,4\epsilon}\!\int\! \frac{dk_1}{(2\pi)^{\,d}}\frac{dk_2}{(2\pi)^{\,d}}\frac{1}{\left[k_1^{\,2}\!-\!m_h^{\,2}\right]^{\,a_1}}\frac{1}{\left[k_2^{\,2}\!-\!m_h^{\,2}\right]^{\,a_2}}\frac{1}{\left[\,(k_1\!+\!k_2)^{\,2}\,\right]^{\,a_3}}\frac{1}{\left[\,(k_1\!+\!k_2\!-\!p_1)^{\,2}\!-\!m_1^{\,2}\,\right]^{\,a_4}}$ $\frac{(-\tilde{\mu}^2)^{\nu}}{\lceil (k_1+k_2+p_2)^2-m_2^2\rceil^{a_5+\nu}}\frac{1}{\lceil (k_1-p_1)^2\rceil^{a_6}}\frac{1}{\lceil (k_1+p_2)^2\rceil^{a_7}},$ $n^{\mu} = n_1^{\mu} = (1, 0, 0, 1)$ • Light-cone coordinate $n_i^2 = \overline{n}_i^2 = 0$, $n_i \cdot \overline{n}_i = 2$ $\overline{n}^{\mu} = n_2^{\mu} = (1, 0, 0, -1)$
	- Region expansion $\mathbf{hard}: k^{\mu} \sim \sqrt{|s|}$, $q^\mu\!=\!q^-\frac{\overline{n}^\mu}{2}+q^+\frac{n^\mu}{2}+q^\mu_\perp$ n_i collinear: $(n_i \cdot k, \overline{n}_i \cdot k, k_\perp) \sim \sqrt{|s|} (\lambda^2, 1, \lambda),$ soft: $k^{\mu} \sim \sqrt{|s|} \lambda$.
 $\lambda = \frac{m}{\sqrt{|\hat{s}|}}$ cc: $(k_1 + k_2 + p_2)^2 - m_2^2 \rightarrow \overline{n} \cdot (k_1 + k_2) n \cdot p_2$, $(k_1 + p_2)^2 \rightarrow \overline{n} \cdot k_1 n \cdot p_2$

• Determine soft function and \mathcal{Z} -factor:

•
$$
q\bar{q}
$$
-vector vertex
\n
$$
\Gamma^{\mu}(p_{1},p_{2}) = F_{1}(s,m_{Q}^{2},m_{h}^{2}) \gamma^{\mu} + \frac{1}{2m_{Q}} F_{2}(s,m_{Q}^{2},m_{h}^{2}) i\sigma^{\mu\nu}(p_{1}+p_{2}) \sim \frac{1}{2m_{Q}} \left\{ \frac{dk_{1}}{(2\pi)^{d}} \frac{dk_{2}}{(2\pi)^{d}} \frac{1}{(k_{1}^{2}-m_{h}^{2})^{d_{1}}} \frac{1}{[k_{1}^{2}-m_{h}^{2}]^{d_{2}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{d_{2}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{d_{1}}} \right\}
$$
\n
$$
= \frac{1}{2m_{Q}} \left\{ \frac{dk_{1}}{(2\pi)^{d}} \frac{dk_{2}}{(2\pi)^{d}} \frac{1}{(2\pi)^{d}} \frac{1}{[k_{1}^{2}-m_{h}^{2}]^{d_{1}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{d_{2}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{d_{1}}} \right\}
$$
\n
$$
= \frac{1}{2m_{Q}} \left\{ \frac{2}{m_{Q}} \frac{2}{m_{Q}} \frac{1}{m_{Q}} \frac{1}{m_{Q}} \frac{1}{m_{Q}} \frac{1}{[(k_{1}+k_{2})^{2}]^{d_{2}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{d_{2}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{d_{2}}} \right\}
$$
\n
$$
= \frac{1}{2m_{Q}} \left\{ \frac{2}{m_{Q}} \frac{1}{m_{Q}} \frac{1}{m_{Q
$$

 $+1$

12/09/2024 Two-loop QCD amplitudes for $tt\bar{t}$ production from high energy limit

 $\overline{\mathscr{A}}$

• Determine soft function and \mathcal{Z} -factor:

$$
\mathcal{Z}_{[Q]}^{(2),h} = F_{1,cc}^{(2),\text{bare}}(s,m_Q^2,m_h^2) + F_{1,cc}^{(2),\text{bare}}(s,m_Q^2,m_h^2) \n+ Z_{\alpha_s}^{(1),h}[F_{1,0}^{(1),\text{bare}}(s,m_Q^2) + F_{1,c}^{(1),\text{bare}}(s,m_Q^2)] + Z_{Q}^{(2)} - C_F \mathcal{S}^{(2)}(s,m_h^2), \n\mathcal{Z}_{[Q]}^{(2),Q} = \mathcal{Z}_{[Q]}^{(2),h}|_{x\to 1} \n\mathcal{Z}_{[q]}^{(2),h} = F_{1,cc}^{(2),\text{bare}}(s,0,m_h^2) + F_{1,cc}^{(2),\text{bare}}(s,0,m_h^2) + Z_{q}^{(2)} - C_F \mathcal{S}^{(2)}(s,m_h^2), \n\mathcal{Z}_{[g]}^{(2),h} = F_{gg,cc}^{(2),\text{bare}}(s,m_h^2) + F_{gg,cc}^{(2),\text{bare}}(s,m_h^2) + Z_{g}^{(2)} - C_A \mathcal{S}^{(2)}(s,m_h^2), \n\bullet \text{ Soft function:} \quad \mathcal{S}^{(2)}(s,m_h^2) = T_F \left(\frac{\mu^2}{m_h^2}\right)^{2\epsilon} \left(-\frac{4}{3\epsilon^2} + \frac{20}{9\epsilon} - \frac{112}{27} - \frac{4\zeta_2}{3}\right) \ln \frac{-s}{m_h^2} \n\bullet \mathcal{Z}\text{-factor:} \qquad \mathcal{Z}_{[Q]}^{(2),Q} = C_F T_F \left[\frac{2}{\epsilon^3} + \frac{1}{\epsilon^2} \left(\frac{4}{3} \ln \frac{\mu^2}{m_Q^2} + \frac{8}{9}\right) + \frac{1}{\epsilon} \left(\frac{4}{9} \ln \frac{\mu^2}{m_Q^2} - \frac{65}{27} - 2\zeta_2\right) \n- \frac{4}{9} \ln^3 \frac{\mu^2}{m_Q^2} - \frac{2}{9} \ln^2 \frac{\mu^2}{m_Q^2} - \left(\frac{274}{27} + \frac{16\zeta_2}{3}\right) \ln \frac{\mu^2}{m_Q} + \frac{51
$$

• Validation: full form factor, top quark pair production and IR structures.

Catalog

- \bullet Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- \bullet $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

 $t.b$ • The partonic processes: $q_\beta(p_1)+\overline{q}_\alpha(p_2) \rightarrow t_k(p_3)+\overline{t}_\iota(p_4)+H(p_5)$ **Accocooo** $g_a(p_1) + g_b(p_2) \to t_k(p_3) + \overline{t}_1(p_4) + H(p_5) \; ,$ $s_{ij} \equiv (\sigma_i\,p_i + \sigma_j\,p_j)^{\,2}\,,\quad \tilde s_{ij} \,{=}\,2\sigma_i\sigma_j\,\tilde p_i\cdot\tilde p_j$ • UV and IR singularities: $p_1^2 = p_2^2 = 0$, $p_3^2 = p_4^2 = m_t^2$, $p_5^2 = m_H^2$ $\left|\mathcal{M}_{q,g}^{R}(\alpha_s, g_Y, m_t, \mu, \epsilon)\right\rangle = \left(\frac{\mu^2 e^{\gamma_E}}{4\pi}\right)^{-3\epsilon/2} Z_{q,g} Z_Q \left|\mathcal{M}_{q,g}^{\text{bare}}(\alpha_s^0, g_Y^0, m_t^0, \epsilon)\right\rangle$ $\left\langle \mathbf{Z}_{a,q}^{-1}(\epsilon,m_t,\mu)\right. \left\vert \mathcal{M}_{a,q}^{R}(\alpha_s,g_Y,m_t,\mu,\epsilon)\right\rangle =\text{finite}.$ $\left|\mathcal{M}_{q,q}^{(1),\,\rm sing}\right\rangle = \mathbf{Z}_{q,q}^{(1)}\left|\mathcal{M}_{q,q}^{(0)}\right\rangle,$

$$
\left|\mathcal{M}^{(2),\,\text{sing}}_{q,g}\right\rangle=\left[\boldsymbol{Z}^{(2)}_{q,g}-\left(\boldsymbol{Z}^{(1)}_{q,g}\right)^2\right]\left|\mathcal{M}^{(0)}_{q,g}\right\rangle+\left(\boldsymbol{Z}^{(1)}_{q,g}\left|\mathcal{M}^{(1)}_{q,g}\right\rangle\right)_\text{poles}
$$

Chen, Ma, **GW** , Yang and Ye, JHEP 04 (2022) 025

- The partonic processes:
- Massive cases:

$$
\begin{aligned} q_{\beta}(p_1) + \overline{q}_{\alpha}(p_2) \to t_k(p_3) + \, t_{\,\,l}(p_4) + H(p_5)\,, \\ g_a(p_1) + g_b(p_2) \to t_k(p_3) + \, \overline{t}_{\,\,l}(p_4) + H(p_5) \end{aligned}
$$

$$
\left| \mathcal{M}_{q,g}^{(l)} \right\rangle = \sum_{I,i} c_{Ii}^{(l)q,g} \left| c_I^{q,g} \right\rangle \otimes \left| d_i^{q,g} \right\rangle
$$
\n
$$
\left| d_i^g \right\rangle : 28
$$
\n
$$
\left| d_i^g \right\rangle : 40
$$

$$
c_{Ii}^{R;q,g} = \sum_{j} \frac{\left(D_{q,g}^{-1}\right)_{ij}}{\left\langle c_{I}^{q,g} \middle| c_{I}^{q,g} \right\rangle} \left[\left\langle d_{j}^{q,g} \middle| \otimes \left\langle c_{I}^{q,g} \middle| \mathcal{M}_{q,g}^{R} \right\rangle \right] \qquad D_{ij}^{q,g} = \left\langle d_{i}^{q,g} \middle| d_{j}^{q,g} \right\rangle
$$

• Massless cases:

$$
\begin{aligned}\n\left| \tilde{\mathcal{M}}_{q,g}^{R} \right\rangle &= \sum_{I,i} \tilde{c}_{Ii}^{R;q,g} \left| c_{I}^{q,g} \right\rangle \otimes \left| \tilde{d}_{i}^{q,g} \right\rangle \\
\left| \tilde{d}_{i}^{q} \right\rangle &:\ 14 \\
\left| \tilde{d}_{i}^{g} \right\rangle &:\ 20 \\
\tilde{c}_{Ii}^{R;q,g} &= \sum_{j} \frac{\left(\tilde{D}_{q,g}^{-1} \right)_{ij}}{\left\langle c_{I}^{q,g} \right| c_{I}^{q,g} \right\rangle} \left[\left\langle \tilde{d}_{j}^{q,g} \right| \otimes \left\langle c_{I}^{q,g} \right| \tilde{\mathcal{M}}_{q,g}^{R} \right\rangle\n\end{aligned}
$$

• Amplitudes in high energy limit:

Massless
\nscheme\n
$$
\begin{aligned}\n\mathcal{M}^R_{q,g}(\epsilon, \{p\}, m_t, m_H, \mu) &= \mathcal{Z}^{(m|0)}_{[q,g]}(\epsilon, m_t, \mu) \mathcal{Z}^{(m|0)}_{[t]}(\epsilon, m_t, \mu) \\
&\times \mathcal{S}(\epsilon, \{\tilde{p}\}, m_t, \mu) \sum_{I,i} \tilde{c}^{R;q,g}_{Ii} | c^{q,g}_I \rangle \otimes |\tilde{d}^{q,g}_i \rangle \\
\mathcal{M}^R_{q,g}(\epsilon, \{p\}, m_t, m_H, \mu) &= \mathcal{Z}^{(m|0)}_{[q,g]}(\epsilon, m_t, \mu) \mathcal{Z}^{(m|0)}_{[t]}(\epsilon, m_t, \mu) \\
&\times \mathcal{S}(\epsilon, \{\tilde{p}\}, m_t, \mu) \sum_{I,i} \tilde{c}^{R;q,g}_{Ii} | c^{q,g}_I \rangle \otimes |\tilde{d}^{q,g}_i \rangle\n\end{aligned}
$$

• Squared Amplitudes:

$$
\langle \mathcal{M}_{q,g}^{R} | \mathcal{M}_{q,g}^{R} \rangle \qquad \langle \mathcal{M}_{q,g}^{R} | \mathcal{M}_{q,g}^{R} \rangle \qquad \langle \mathcal{M}_{q,g}^{R} | \mathcal{M}_{q,g}^{R} \rangle
$$
\n
$$
\langle \mathcal{M}_{q,g}^{(0)R} | \mathcal{M}_{q,g}^{(2)R} \rangle \qquad \langle \mathcal{M}_{q,g}^{(0)R} | \mathcal{M}_{q,g}^{(2)R} \rangle \qquad \langle \mathcal{M}_{q,g}^{(0)R} | \mathcal{M}_{q,g}^{(2)R} \rangle
$$

• Calculation of massless form factors:
 $\langle \hat{\mathcal{M}}_{q,g}^R(\epsilon,\{p\},m_t,m_H,\mu) \rangle = \mathcal{Z}_{[q,g]}^{(m|0)}(\epsilon,m_t,\mu) \mathcal{Z}_{[t]}^{(m|0)}(\epsilon,m_t,\mu)$ $\mathcal{S} \times \mathcal{S} (\epsilon, \{\tilde{p}\}, m_t, \mu) \sum \tilde{c}_{Ii}^{R;q,g} |c_I^{q,g} \rangle \otimes |\hat{d}_i^{q,g} \rangle$ $\vec{\mathbf{D}}_{a,\sigma_0}$ $\vec{\mathbf{D}}_{b,\sigma_0}$ $\vec{\mathbf{D}}_{c,\sigma_0}$ $\vec{\mathbf{D}}_{d,\sigma_0}$ $\frac{1}{(l_1)^2}$ $\overline{(l_1)^2}$ $\overline{(l_1)^2}$ $\overline{(l_1)^2}$ $\overline{1}$ $(l_1+p_1)^2$ $(l_1-p_1)^2$ $(l_1-p_1)^2$ $(l_1-p_1)^2$ 2 $(l_1+p_1+p_2)^2$ $(l_1-p_1-p_2)^2$ $(l_1-p_1-p_2)^2$ $(l_1-p_1-p_2)^2$ 3 $(l_1-p_4-p_5)^2$ $(l_1+p_4+p_5)^2$ $(l_2)^2$ $(l_2)^2$ $\overline{4}$ (a) PB (b) HB $(l_2+p_4+p_5)^2$ $(l_2+p_4+p_5)^2$ $(l_2)^2$ $(l_2)^2$ $\overline{5}$ $(l_2 - p_4 - p_5)^2$ $(l_2 + p_5)^2$ $(l_2 + p_5)^2$ $(l_2 - p_1 - p_2)^2$ 6 $(l_2-p_5)^2$ $(l_1-l_2)^2$ $(l_1-l_2)^2$ $(l_2+p_5)^2$ $\overline{7}$ $\frac{(l_1-l_2)^2}{(l_1-p_5)^2}$ $\frac{(l_1-l_2+p_4)^2}{(l_2-p_1)^2}$ $\frac{(l_1-l_2+p_3)^2}{(l_1+p_5)^2}$ $\frac{(l_1-l_2)^2}{(l_1-l_2+p_3)^2}$ $8\,$ $\overline{9}$ $(l_2-p_1-p_2)^2$ $(l_2-p_1)^2$ $(l_1+p_5)^2$ $(l_2+p_1)^2$ 10 (c) DP $(d) HT$ $(l_2+p_1+p_2)^2$ $(l_2+p_4+p_5)^2$ $(l_2-p_1-p_2)^2$ $(l_2-p_1)^2$ 11 D. Chicherin and V. Sotnikov, JHEP 12 (2020) 167

$$
\theta_3\!=\!14\pi/29\,,\phi_3\!=\!34\pi/29\,,\theta_5\!=\!15\pi/29\,\,\text{and}\,\,q_5\!=\!20\,q_{5,\max}/29
$$

$$
\theta_3 = 14\pi/29, \phi_3 = 34\pi/29, \theta_5 = 15\pi/29
$$
 and $q_5 = 20 q_{5, max}/29$

$$
\theta_3\!=\!14\pi/29\;\! ,\phi_3\!=\!34\pi/29\;\! ,\theta_5\!=\!15\pi/29\;\text{and}\;q_5\!=\!20\,q_{5,\max}/29
$$

Catalog

- \bullet Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- \bullet $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

- Region expansion in the high energy limit beyond LP
	- Mssive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$
	- High energy expansion

Hoeve, Laenen, Marinissen, Vernazza and **GW** JHEP 02 (2024) 024

See talks by, e.g., H. Zhang, K. Schönwald, R. Groeber.

• Factorization at NLP in the high energy

• Massive quark form factor in QED
$$
Q\overline{Q} \rightarrow \gamma^*
$$

\n
$$
\mathcal{M}_{\text{coll}}^{\text{NLP}} = \left(\prod_{i=1}^{n} J_{(f)}^{i} \right) H_{(f)} S + \sum_{i=1}^{n} \left(\prod_{j \neq i} J_{(f)}^{j} \right) \left[J_{(f\gamma)}^{i} \otimes H_{(f\gamma)}^{i} + J_{(f\partial\gamma)}^{i} \otimes H_{(f\gamma)}^{i} \right] S
$$
\n
$$
+ \sum_{i=1}^{n} \left(\prod_{j \neq i} J_{(f)}^{j} \right) J_{(f\gamma)}^{i} \otimes H_{(f\gamma)}^{i} S + \sum_{i=1}^{n} \left(\prod_{j \neq i} J_{(f)}^{j} \right) J_{(ff)}^{i} \otimes H_{(ff)}^{i} S
$$
\n
$$
+ \sum_{1 \leq i \leq j \leq n} \prod_{k \neq i,j} J_{(f)}^{k} J_{(f\gamma)}^{i} J_{(f\gamma)}^{j} \otimes H_{(f\gamma)(f\gamma)}^{i} S.
$$
\n
$$
| \mathcal{M}^{\text{massive}}(\{p\}, \{m\}) \rangle = \prod_{i} \left(z_{[i]}^{(m|0)}(\{m\}) \right)^{1/2} \mathcal{S}(\{p\}, \{m\}) \Big| \mathcal{M}^{\text{massless}}(\{p\}) \Big| \math
$$

Summary and outlook

- The factorization in the high energy limit at LP.
- Two-loop amplitudes for the production of a Higgs boson associated with a top-quark pair in the high energy limit at LP.
- The factorization or expansion in the high energy limit at NLP
- \bullet Resummation in the high energy limit at LP $\,$ for $t\bar{t}H.$
- Combing the real correction with our two-loop results to present the NNLO contribution to the ttH .
- NLP factorization effect in the high energy limit to a process at the collider.

Thanks!

Introduction to factorization

- Mitov and Moch: *JHEP* 05 (2007) 001 • High energy limit: $|s_{ij}| \gg m_k^2$, $i \neq j$ **GW** , Xia, Yang and Ye: JHEP 05 (2024) 082 $\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2}\mathcal{S}(\{p\},\{m\})\left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle\quad i=q,\,Q,\,g$
- In QED case (Bhabha scattering at NNLO): Becher and Melnikov: JHEP 06 (2007) 084

$$
S(\lbrace p \rbrace, \lbrace m \rbrace) = 1 + \sum_{i=e,\mu} \delta S(s, m_i^2)
$$

\n
$$
\delta S(s, m_i^2, N_i) = -N_i (4\pi\alpha_0)^2 \int \frac{d^d k}{(2\pi)^d} \frac{p_1 \cdot p_2}{(p_1 \cdot k) (p_2 \cdot k) k^2} i \Pi(k^2, m_i^2)
$$

\n
$$
= N_i a_0^2 m_i^{-4\epsilon} \ln\left(\frac{Q^2}{m_e^2}\right) \left(-\frac{1}{12\epsilon^2} + \frac{5}{36\epsilon} - \frac{7}{27} - \frac{\pi^2}{72} + \mathcal{O}(\epsilon)\right),
$$

\n• Not a complete region expansion
\n• Dependence on the external mass
\n• Invalid for massless external legs
\n• Analyticity divergence
\n
$$
\sum_{p_1 \vdash p_2}^{m_1 m_2} \sum_{p_2 \vdash m_2}^{m_2 m_2} \delta S(s, m_i^2)
$$

• Determine soft function and \mathcal{Z} -factor:

GW , Xia, Yang and Ye: JHEP 05 (2024) 082

• Gluon scalar form factor $\mathcal{L}_{int} = -\frac{\lambda}{4} H G_a^{\mu\nu} G_{a,\mu\nu} \rightarrow F_{gg} = \frac{p_1 \cdot p_2 g_{\mu\nu} - p_{1,\mu} p_{2,\nu} - p_{1,\nu} p_{2,\mu}}{2(1-\epsilon)} \Gamma_{gg}^{\mu\nu}$

• High energy limit: $|s_{ij}| \gg m_k^2$, $i \neq j$ Mitov and Moch: *JHEP* 05 (2007) 001 **GW** , Xia, Yang and Ye: JHEP 05 (2024) 082

$$
\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2}\mathcal{S}(\{p\},\{m\})\left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle\quad i=q,\,Q,\,g
$$

- Top-pair production at NNLO:
	- 8-fold MB representation

Not contribute at LP?

Czakon, Mitov and Moch: Nucl. Phys. B 798 (2008) 210

$$
M_{PP} = (-1)^{a}(-s)^{-a-2\epsilon+4} \int_{-i\infty}^{i\infty} \prod_{i=1}^{8} \frac{dz_{i}}{\Gamma(a_{i})} \left(-\frac{s}{m^{2}}\right)^{z_{1}} \left(-\frac{t}{m^{2}}\right)^{z_{2}} \left(-\frac{u}{m^{2}}\right)^{z_{3}}
$$
\n
$$
\times \Gamma(-z_{3})\Gamma(-z_{4})\Gamma(-z_{5})\Gamma(-z_{6})\Gamma(-z_{7})\Gamma(-z_{8})\Gamma(-z_{2}+z_{4}+z_{5})\Gamma(z_{1}+z_{2}+z_{3}+z_{6})
$$
\n
$$
\times \Gamma(a+2\varepsilon-z_{1}+z_{7}+z_{8}-4)\Gamma(z_{2}+z_{3}-z_{4}-z_{5}+z_{8}+a_{1})\Gamma(z_{5}+z_{8}+a_{4})\Gamma(z_{7}+z_{8}+a_{6})
$$
\n
$$
\times \Gamma(-2z_{1}-2z_{2}-2z_{3}+z_{4}+z_{5}-2z_{6}+a_{7})\Gamma(z_{2}-z_{5}+a_{8})\Gamma(-\varepsilon-z_{6}-a_{13}+2)
$$
\n
$$
\times \Gamma(-\varepsilon-z_{6}-a_{24}+2)\Gamma(-2z_{1}-z_{2}-z_{3}+z_{4}-2z_{6}+a_{78})
$$
\n
$$
\times \Gamma(-\varepsilon+z_{1}+z_{2}+z_{3}-z_{4}+z_{6}-z_{7}-a_{5678}+2)\Gamma(-2\varepsilon+z_{1}-z_{8}-a_{1234678}+4)
$$
\n
$$
\times \Gamma(-2\varepsilon+z_{1}+z_{2}+z_{3}-z_{4}-z_{5}-z_{7}-z_{8}-a_{1345678}+4)
$$
\n
$$
\times \Gamma(-a-3\varepsilon-z_{6}+6)\Gamma(-2z_{1}-z_{2}-2z_{2}+z_{4}-2z_{6}+a_{78})\Gamma(-2\varepsilon-2z_{6}-a_{1324}+4)
$$
\n
$$
\times \left(\Gamma(-a-3\varepsilon-z_{6}+6)\Gamma(-2z_{1}-z_{2}-2z_{2}+z_{4}-2z_{6}+a_{78})\Gamma(-2\varepsilon-2z_{6}-a_{1324}+4\right)
$$

 $\times\Gamma(-2\varepsilon+z_1+z_2+z_3-z_4-z_7-a_{135678}+4)$

 $\times\Gamma(-2\varepsilon+z_1+z_2+z_3-z_4-z_7-a_{245678}+4)\Big)^{-1},$

$$
\left(\begin{aligned}\mathcal{Z}^{(1)}_{[g]}=&\sum_{h}T_{F}\left(\frac{\mu^{2}}{m_{h}^{2}}\right)^{\epsilon}\left(-\frac{4}{3\epsilon}-\frac{2\zeta_{2}}{3}\epsilon+\frac{4\zeta_{3}}{9}\epsilon^{2}\right)\\&=Z_{3}\end{aligned}\right)
$$

Q Q Q S

 $QQQQ$

 0000

• Phase space point:

$$
p_{1} = \frac{\sqrt{s_{12}}}{2} (1, 0, 0, 1)^{T},
$$
\n
$$
p_{2} = \frac{\sqrt{s_{12}}}{2} (1, 0, 0, -1)^{T},
$$
\n
$$
p_{3} = \left(\sqrt{m_{t}^{2} + q_{3}^{2}}, q_{3} \sin \theta_{3} \sin \phi_{3}, q_{3} \sin \theta_{3} \cos \phi_{3}, q_{3} \cos \theta_{3}\right)^{T},
$$
\n
$$
p_{4} = \left(\sqrt{m_{t}^{2} + q_{4}^{2}}, q_{4} \sin \theta_{4} \sin \phi_{4}, q_{4} \sin \theta_{4} \cos \phi_{4}, q_{4} \cos \theta_{4}\right)^{T},
$$
\n
$$
p_{5} = \left(\sqrt{q_{5}^{2} + m_{H}^{2}}, q_{5} \sin \theta_{5}, 0, q_{5} \cos \theta_{5}\right)^{T},
$$
\n
$$
p_{6} = \left(\sqrt{q_{6}^{2} + m_{H}^{2}}, q_{5} \sin \theta_{5}, 0, q_{5} \cos \theta_{5}\right)^{T},
$$
\n
$$
p_{7} = \left(\tilde{q}_{8}, \tilde{q}_{8} \sin \tilde{\theta}_{4} \sin \tilde{\phi}_{4}, \tilde{q}_{4} \sin \tilde{\theta}_{4} \cos \tilde{\phi}_{4}, \tilde{q}_{4} \cos \tilde{\theta}_{4}\right)^{T},
$$
\n
$$
p_{8} = \left(\tilde{q}_{5}, \tilde{q}_{5} \sin \tilde{\theta}_{5}, 0, \tilde{q}_{5} \cos \tilde{\theta}_{5}\right)^{T},
$$
\n
$$
p_{9} = \left(\tilde{q}_{5}, \tilde{q}_{5} \sin \tilde{\theta}_{5}, 0, \tilde{q}_{5} \cos \tilde{\theta}_{5}\right)^{T},
$$
\n
$$
p_{1} = \left(\tilde{q}_{3}, \tilde{q}_{3} \sin \tilde{\theta}_{3} \sin \tilde{\phi}_{3}, \tilde{q}_{3} \sin \tilde{\theta}_{3} \cos \tilde{\phi}_{3}\right)^{T},
$$
\n
$$
p_{9} = \left(\tilde{q}_{4}, \tilde{q}_{4} \sin \tilde{\theta}_{4} \sin \tilde{\phi}_{4},
$$

$$
s_{12}\,{=}\,5~{\rm TeV},\phi_3\,{=}\,34\pi/29\,,\theta_5\,{=}\,15\pi/29\,\,\text{and}\,\,q_5\,{=}\,20\,q_{5,\,\text{max}}/29
$$

 $s_{12} = 5 \text{ TeV}, \theta_3 = 14\pi/29, \phi_3 = 34\pi/29, \theta_5 = 15\pi/29 \text{ and } q_5 = 20 q_{5,\text{max}}/29$

 $\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle =\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2}\mathcal{S}(\{p\},\{m\})\left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle$ • Validation by using form factor **GW** , Xia, Yang and Ye: JHEP 05 (2024) 082

$$
\begin{aligned} F^{(2),h}_{1,Q\overline{Q}}(s,m^2_h,m^2_h,m^2_h) &= F^{(2),l}_{1,q\overline{q}}(s) + C_F \mathcal{S}^{(2)}(s,m^2_h) + \mathcal{Z}^{(2),h}_{[Q]}(m^2_h,m^2_h) \\ F^{(2),h}_{Q\overline{q}}(s,m^2_h,m^2_h) &= F^{(2),l}_{q\overline{q}}(s) + C_F \mathcal{S}^{(2)}(s,m^2_h) + \frac{1}{2} \mathcal{Z}^{(2),h}_{[Q]}(m^2_h,m^2_h) + \frac{1}{2} \mathcal{Z}^{(2),h}_{[q]}(m^2_h) \\ F^{(2),h}_{q\overline{q}}(s,m^2_h) &= F^{(2),l}_{q\overline{q}}(s) + C_F \mathcal{S}^{(2)}(s,m^2_h) + \mathcal{Z}^{(2),h}_{[q]}(m^2_h) \\ F^{(2),h}_{gg}(s,m^2_h) &= F^{(2),l}_{gg}(s) + \mathcal{Z}^{(1)}_{[g]}(m^2_h) \, F^{(1),\mathrm{no-quark}}_{gg}(s) + \mathcal{Z}^{(2),h}_{[g]}(m^2_h) + N_c \, \mathcal{S}^{(2)}(s,m^2_h) \end{aligned}
$$

• Validation by using top-pair production

$$
\mathcal{M}_I^{\text{massive}} = \sum_J \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)} \right)^{1/2} \mathcal{S}_{IJ} \mathcal{M}_J^{\text{massless}}
$$
\n
$$
\mathcal{S}_{IJ} = \frac{\langle c_I | \mathcal{S} | c_J \rangle}{\langle c_I | c_I \rangle}
$$
\n
$$
\mathcal{T}_1 \cdot \mathcal{T}_2|_{gg} = \begin{pmatrix} -N_c & 0 & 0 \\ 0 & -\frac{N_c}{2} & 0 \\ 0 & 0 & -\frac{N_c}{2} \end{pmatrix}
$$
\n
$$
\mathcal{T}_1
$$

Moch, et al: JHEP 08 (2005) 049 Bernreuther, et al: Nucl. Phys. B 706 (2005) 245 9 inciani, *et al: JHEP* 11 (2008) 065 akon, et al: Nucl.Phys.B 798 (2008) 210 astasiou, et al: Nucl.Phys.B 605 (2001) 486

$$
\boldsymbol{T}_1\cdot \boldsymbol{T}_2|_{q\overline{q}}=\begin{pmatrix}-C_F&0\\0&\frac{1}{2N_c}\end{pmatrix}
$$

 $\left|\mathcal{M}^{\text{massive}}(\epsilon,\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\epsilon,\{m\})\right)^{1/2}\mathcal{S}(\epsilon,\{p\},\{m\})\left|\mathcal{M}^{\text{massless}}(\epsilon,\{p\})\right\rangle$ • Validation by IR pole **GW** , Xia, Yang and Ye: JHEP 05 (2024) 082 • IR singularities of QCD renormalized amplitudes $\mathbf{Z}_{\text{massive}}^{-1}\left(\epsilon, \{p\}, \{m\}\right) | \mathcal{M}^{\text{massive}}(\epsilon, \{p\}, \{m\})\rangle = \text{finite}$ $\mathbf{Z}_{\text{massless}}^{-1}(\epsilon, \{p\})\left|\mathcal{M}^{\text{massless}}(\epsilon, \{p\})\right\rangle = \text{finite}$ $\Gamma(\{\underline{p}\},\{\underline{m}\},\mu) = \left[\sum_{(i,j)} \frac{\bm{T}_i\cdot\bm{T}_j}{2}\,\gamma_{\text{cusp}}(\alpha_s)\,\ln\frac{\mu^2}{-s_{ij}} + \sum_i\,\gamma^i(\alpha_s)\,\right] = \Gamma\big(\{\,p\,\},\mu\big)$ $\boldsymbol{Z}^{-1} \frac{d}{d \ln \mu} \boldsymbol{Z} = -\Gamma$ $-\sum_{\langle I, J\rangle}\frac{\bm{T}_I\cdot\bm{T}_J}{2}\gamma_{\text{cusp}}(\beta_{IJ}, \alpha_s)+\sum_{I}\gamma^I(\alpha_s)+\sum_{I,i}\bm{T}_I\cdot\bm{T}_j\,\gamma_{\text{cusp}}(\alpha_s)\,\ln\frac{m_I\mu}{-s_{Ij}}$ Becher, et al, Phys. Rev. D 79 (2009) 125004 Ferroglia, et al, Phys. Rev. Lett. 103 (2009) 201601 $+ \sum i f^{abc} T_I^a T_J^b T_K^c F_1(\beta_{IJ}, \beta_{JK}, \beta_{KI})$ Ferroglia, et al, JHEP 11 (2009) 062 (I, J, K) $+ \sum \sum i f^{abc} T_I^a T_J^b T_k^c f_2\left(\beta_{IJ}, \ln \frac{-\sigma_{Jk} v_J \cdot p_k}{-\sigma_{Ik} v_I \cdot p_k}\right) + \mathcal{O}(\alpha_s^3).$ Collinear divergences: $\Big| \boldsymbol{Z}^{-1}_{\text{massive}}(\epsilon,\{p\},\{m\}) \prod (\mathcal{Z}^{(m|0)}_{[i]}(\epsilon,\{m\}))^{1/2} \boldsymbol{S}(\epsilon,\{p\},\{m\}) \boldsymbol{Z}_{\text{massless}}(\epsilon,\{p\}) = \text{finite} \Big|$ $\ln(m^2) \leftrightarrow \frac{1}{\epsilon}$

- Massive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$
	-

• Left hand side **Hoeve, Laenen, Marinissen, Vernazza and GW** : JHEP 02 (2024) 024

- Massive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$
	-

• Left hand side **Hoeve, Laenen, Marinissen, Vernazza and GW** : JHEP 02 (2024) 024

$$
\mathcal{I}^{X} = (4\pi)^{4} \hat{s}^{2} I_{x_{1},1,1,1,1,1,1,0}^{y_{1},y_{2},y_{2}} \\
= (4\pi)^{4} \hat{s}^{2} \int [dk_{1}] [dk_{2}] \frac{1}{k_{1}^{2}} \frac{1}{k_{2}^{2}} \frac{\tilde{\mu}_{1}^{2v_{1}}}{[(k_{2}-p_{1})^{2}-m^{2}]^{1+\nu_{1}}} \frac{\tilde{\mu}_{1}^{2v_{1}}}{[(k_{1}+k_{2}-p_{1})^{2}-m^{2}]^{1+\nu_{1}}} \\
\times \frac{\tilde{\mu}_{2}^{2v_{2}}}{[(k_{1}+p_{2})^{2}-m^{2}]^{1+\nu_{2}}} \frac{\tilde{\mu}_{2}^{2v_{2}}}{[(k_{1}+k_{2}+p_{2})^{2}-m^{2}]^{1+\nu_{2}}}, \\
\mathcal{I}_{\text{full}}^{X} \big|_{\text{NLP}} = \left(\frac{\mu^{2}}{m^{2}}\right)^{2\epsilon} \left[-\frac{1}{\epsilon} \left(\frac{1}{3}L^{3}+\zeta_{2}L+\zeta_{3}\right) - \frac{1}{2}L^{4}+\zeta_{2}L^{2}-\zeta_{3}L - \frac{37\zeta_{2}^{2}}{10} - \frac{m^{2}}{\delta} \left(4L^{2}-8L+4\zeta_{2}\right) + \mathcal{O}(\epsilon)\right], \\
\mathcal{I}^{X} \big|_{\vec{e}c} = \left(\frac{\mu^{2}}{m^{2}}\right)^{2\epsilon} \left(\frac{\tilde{\mu}_{1}^{2}}{-m^{2}}\right)^{\nu_{1}} \left(\frac{\tilde{\mu}_{2}^{2}}{\hat{s}}\right)^{\nu_{2}} \left(\frac{\tilde{\mu}_{2}^{2}}{\hat{s}}\right)^{\nu_{2}} \left[\frac{1}{4\epsilon^{4}} + \frac{1}{\epsilon^{3}} \left(\frac{1}{2\nu_{2}} + \frac{1}{2\nu_{1}}\right) + \frac{1}{\epsilon^{2}} \left(\frac{5\zeta_{2}}{4} - \frac{1}{\nu_{1}\nu_{2}}\right) + \frac{1}{\epsilon} \left(\frac{3\zeta_{2}}{2\nu_{1}} + \frac{3\zeta_{2}}{2\nu_{2}} + \frac{17\zeta_{3}}{6}\right) - \frac{\zeta_{2}}{\
$$

- Massive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$
	-

• Right hand side Bijleveld, Laenen, Marinissen, Vernazza and **GW** : on progress