

Two-loop QCD amplitudes for $t\bar{t}H$ production from high energy limit

G. Wang, Tianya Xia, Li Lin Yang and Xiaoping Ye, JHEP 05 (2024) 082, JHEP 07 (2024) 121

Guoxing Wang

LPTHE, CNRS, France

High Precision for Hard Processes @ Turin, Italy 12/09/2024

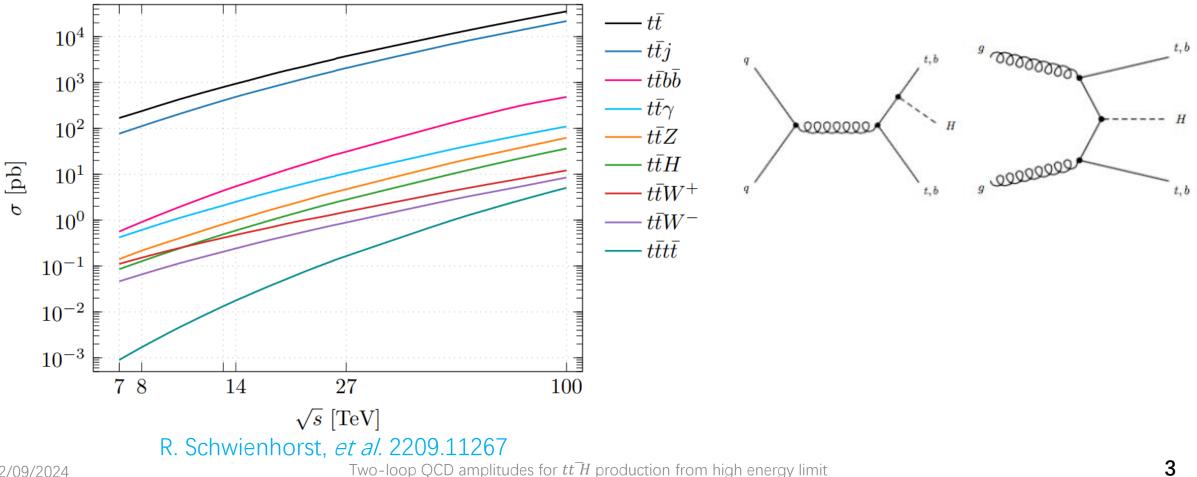
- Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

• First observation at the LHC:

CMS, 1804.02610; ATLAS, 1806.00425

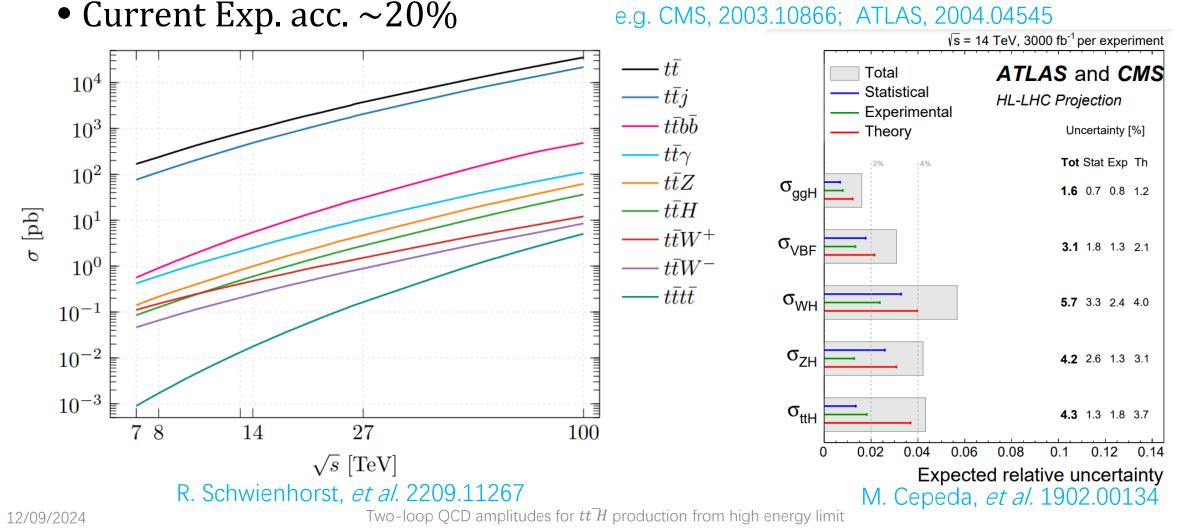
• Current Exp. acc. $\sim 20\%$

e.g. CMS, 2003.10866; ATLAS, 2004.04545



• First observation at the LHC:

CMS, 1804.02610; ATLAS, 1806.00425



• Theory	e.g. Beenakker, <i>et al, Phys. Rev. Lett</i> . 87		o, <i>et al. JHEP</i> 03 (2016) 124 LC QCD correction:): $378.7^{+31.8\%}_{-22.5\%}$	
• NLO QCD	Reina, <i>et al, Phys. Rev. Lett.</i> 87 (20 Frixione, <i>et al, JHEP</i> 06 (2015) 184		5	$\textbf{0: } 474.8^{+9.4\%}_{-10.9\%}$	
• NLO EW	Kulesza , <i>et al</i> , <i>JHEP</i> 03 (2016) 065 Ju and Yang, <i>JHEP</i> 06 (2019) 050		$ m NLO + NNLI$ $ m (NLO + NNLL)_{ m NNLOexp}$	0.0,0	
 NNLL result 	mmation	Frixione, <i>et al</i> , <i>JH</i>	$\frac{1}{100} + \frac{1}{100} + \frac{1}$		
• Toward NI	NLO			$13 {\rm TeV}$	
• Off diagonal channels at NLO: less than 1% Catani, <i>et al</i> , <i>Eur. Phys. J. C</i> 81 (2021) 491 e.g. $qg \rightarrow t \overline{t} H + q$					
• Diagonal channels at NNLO: the quark-initiated N_f -part Agarwal, <i>et al</i> , <i>JHEP</i> 05 (2024) 013					
5 minutes per phase space point in the bulk region, See talk by A. C slower in the high energy region.					

Approximation method!

- Approximation at NNLO
 - Soft Higgs approximation Catani, *et al. Phys. Rev. Lett.* 130 (2023) 111902

$$\mathcal{M}(\{p_i\},k)\simeq F(m_t)\sum_{i=t,\,\overline{t}}rac{m_t}{p_i\cdot k}\,\mathcal{M}(\{p_i\}) \qquad 2\!
ightarrow\! 2\,
ightarrow\, 2\,
ightarrow\, 2$$

σ [pb]	$\sqrt{s} = 13 \mathrm{TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$
$\sigma_{ m LO}$	$0.3910^{+31.3\%}_{-22.2\%}$	$25.38^{+21.1\%}_{-16.0\%}$
$\sigma_{ m NLO}$	$0.4875^{+5.6\%}_{-9.1\%}$	$36.43^{+9.4\%}_{-8.7\%}$
$\sigma_{ m NNLO}$	$0.5070(31)^{+0.9\%}_{-3.0\%}$	$37.20(25)^{+0.1\%}_{-2.2\%}$

See talk by C. Savoini.

• High energy limit <u>GW</u>, Xia, Yang and Ye: *JHEP* 05 (2024) 082

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle$$

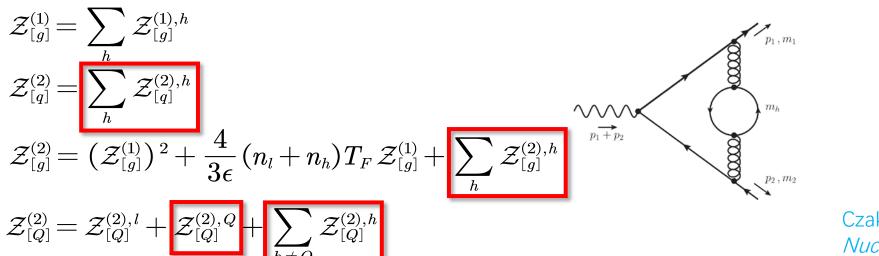
Massive amplitude \Rightarrow Massless amplitude

- Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

 $h_1(p_1,m_1) + h_2(p_2,m_2) \rightarrow h_3(p_3,m_3) + h_4(p_4,m_4) + \dots + h_{n+2}(p_{n+2},m_{n+2}) + X(\{p_X\},\{m_X\})$

• High energy limit: $|s_{ij}| \gg m_k^2$, $i \neq j$

Mitov and Moch: JHEP 05 (2007) 001 **GW**, Xia, Yang and Ye: *JHEP* 05 (2024) 082



000

0000

00

 $\mathcal{Z}^{(1)}_{[Q]}$

- Determine soft function and \mathcal{Z} -factor:
 - $q\overline{q}$ -vector vertex $\Gamma^{\mu}(p_{1},p_{2}) = F_{1}(s,m_{Q}^{2},m_{h}^{2}) \gamma^{\mu} + \frac{1}{2m_{Q}}F_{2}(s,m_{Q}^{2},m_{h}^{2}) i\sigma^{\mu\nu}(p_{1}+p_{2})_{\nu}$ $I_{\{a_{i}\}} \equiv \mu^{4\epsilon} \int \frac{dk_{1}}{(2\pi)^{d}} \frac{dk_{2}}{(2\pi)^{d}} \frac{1}{[k_{1}^{2}-m_{h}^{2}]^{a_{1}}} \frac{1}{[k_{2}^{2}-m_{h}^{2}]^{a_{2}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{a_{3}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{a_{4}}}}$ $\times \frac{(-\tilde{\mu}^{2})^{\nu}}{[(k_{1}+k_{2}+p_{2})^{2}-m_{2}^{2}]^{a_{5}+\nu}} \frac{1}{[(k_{1}-p_{1})^{2}]^{a_{6}}} \frac{1}{[(k_{1}+p_{2})^{2}]^{a_{7}}},$ • Light-cone coordinate $n_{i}^{2} = \overline{n}_{i}^{2} = 0, n_{i} \cdot \overline{n}_{i} = 2$ P_{2}, m_{2} $F_{2} \propto m_{Q}^{2}$ $F_{2} \propto m_{Q}^{2}$ $F_{2} \propto$
 - Region expansion $\begin{array}{ll} \operatorname{hard}:k^{\mu} \sim \sqrt{|s|}, \\ n_{i} \ \operatorname{collinear}: \left(n_{i} \cdot k, \, \overline{n}_{i} \cdot k, \, k_{\perp}\right) \sim \sqrt{|s|} \left(\lambda^{2}, \, 1, \, \lambda\right), \\ \operatorname{soft}:k^{\mu} \sim \sqrt{|s|} \, \lambda \cdot \qquad \lambda = \frac{m}{\sqrt{|s|}} \\ \vdots \\ \operatorname{cc}: \ \left(k_{1} + k_{2} + p_{2}\right)^{2} m_{2}^{2} \rightarrow \overline{n} \cdot \left(k_{1} + k_{2}\right) n \cdot p_{2}, \quad \left(k_{1} + p_{2}\right)^{2} \rightarrow \overline{n} \cdot k_{1} \, n \cdot p_{2} \end{array}$

• Determine soft function and \mathcal{Z} -factor:

$$\begin{array}{lll} \bullet & q\overline{q} - \text{vector vertex} \\ & \Gamma^{\mu}(p_{1},p_{2}) = F_{1}(s,m_{Q}^{2},m_{h}^{2}) \gamma^{\mu} + \frac{1}{2m_{Q}}F_{2}(s,m_{Q}^{2},m_{h}^{2}) i\sigma^{\mu\nu}(p_{1}+p_{2}) \downarrow \\ & I_{\{a_{i}\}} \equiv \mu^{4\nu} \int \frac{dk_{1}}{(2\pi)^{d}} \frac{dk_{2}}{(2\pi)^{d}} \frac{1}{[k_{1}^{2}-m_{h}^{2}]^{a_{1}}} \frac{1}{[k_{2}^{2}-m_{h}^{2}]^{a_{2}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{a_{1}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{a_{4}}} \\ & \times \frac{(-\tilde{\mu}^{2})^{\nu}}{[(k_{1}+k_{2}+p_{2})^{2}-m_{2}^{2}]^{a_{5}+\nu}} \frac{1}{[(k_{1}-p_{1})^{2}]^{a_{1}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{a_{1}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{a_{4}}} \\ & \times \frac{(-\tilde{\mu}^{2})^{\nu}}{[(k_{1}+k_{2}+p_{2})^{2}-m_{2}^{2}]^{a_{5}+\nu}} \frac{1}{[(k_{1}-p_{1})^{2}]^{a_{1}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{a_{1}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{a_{4}}} \\ & \times \frac{(-\tilde{\mu}^{2})^{\nu}}{[(k_{1}+k_{2}+p_{2})^{2}-m_{2}^{2}]^{a_{5}+\nu}} \frac{1}{[(k_{1}-p_{1})^{2}]^{a_{1}}} \frac{1}{[(k_{1}+k_{2})^{2}]^{a_{2}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{a_{4}}} \\ & \times \frac{(-\tilde{\mu}^{2})^{\nu}}{[(k_{1}+k_{2}+p_{2})^{2}-m_{2}^{2}]^{a_{5}+\nu}} \frac{1}{[(k_{1}+k_{2}+p_{2})^{2}]^{a_{5}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}]^{a_{5}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{a_{4}}} \\ & \times \frac{(-\tilde{\mu}^{2})^{\nu}}{[(k_{1}+k_{2}+k_{2}+p_{2})^{2}-m_{2}^{2}]^{a_{5}+\nu}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}]^{a_{5}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}]^{a_{5}}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}-m_{1}^{2}]^{a_{4}}} \\ & \times \frac{(-\tilde{\mu}^{2})^{\nu}}{[(k_{1}+k_{2}+k_{2}+p_{2})^{2}-m_{2}^{2}]^{a_{5}+\nu}} \frac{1}{[(k_{1}+k_{2}-p_{1})^{2}]^{a_{5}}} \frac{1}{[(k_{1}+k_{2}-k_{2}-k_{2}-k_{2}-k_{2}-k_{2}-k_{2}-k_{2}-k_{2}-k_{2}-k_{2}-k_$$

Two-loop QCD amplitudes for $t\bar{t}H$ production from high energy limit

17

• Determine soft function and \mathcal{Z} -factor:

$$\begin{split} \mathcal{Z}_{[Q]}^{(2),h} &= F_{1,cc}^{(2),\text{bare}}\left(s, m_Q^2, m_h^2\right) + F_{1,\overline{cc}}^{(2),\text{bare}}\left(s, m_Q^2, m_h^2\right) \\ &\quad + Z_{\alpha_s}^{(1),h} \left[F_{1,c}^{(1),\text{bare}}\left(s, m_Q^2\right) + F_{1,\overline{c}}^{(1),\text{bare}}\left(s, m_Q^2\right)\right] + Z_Q^{(2)} - C_F \mathcal{S}^{(2)}\left(s, m_h^2\right), \\ \mathcal{Z}_{[Q]}^{(2),Q} &= \mathcal{Z}_{[Q]}^{(2),h} \right|_{x \to 1} \\ \mathcal{Z}_{[q]}^{(2),h} &= F_{1,cc}^{(2),\text{bare}}\left(s, 0, m_h^2\right) + F_{1,\overline{cc}}^{(2),\text{bare}}\left(s, 0, m_h^2\right) + Z_q^{(2)} - C_F \mathcal{S}^{(2)}\left(s, m_h^2\right), \\ \mathcal{Z}_{[g]}^{(2),h} &= F_{gg,cc}^{(2),\text{bare}}\left(s, 0, m_h^2\right) + F_{gg,\overline{cc}}^{(2),\text{bare}}\left(s, m_h^2\right) + Z_g^{(2)} - C_A \mathcal{S}^{(2)}\left(s, m_h^2\right), \\ \mathcal{Z}_{[g]}^{(2),h} &= F_{gg,cc}^{(2),\text{bare}}\left(s, m_h^2\right) + F_{gg,\overline{cc}}^{(2),\text{bare}}\left(s, m_h^2\right) + Z_g^{(2)} - C_A \mathcal{S}^{(2)}\left(s, m_h^2\right), \\ \bullet \text{ Soft function: } \mathcal{S}^{(2)}\left(s, m_h^2\right) &= T_F \left(\frac{\mu^2}{m_h^2}\right)^{2\epsilon} \left(-\frac{4}{3\epsilon^2} + \frac{20}{9\epsilon} - \frac{112}{27} - \frac{4\zeta_2}{3}\right) \ln \frac{-s}{m_h^2} \\ \bullet \mathcal{Z}\text{-factor: } \mathcal{Z}_{[Q]}^{(2),Q} &= C_F T_F \left[\frac{2}{\epsilon^3} + \frac{1}{\epsilon^2} \left(\frac{4}{3} \ln \frac{\mu^2}{m_Q^2} + \frac{8}{9}\right) + \frac{1}{\epsilon} \left(\frac{4}{9} \ln \frac{\mu^2}{m_Q^2} - \frac{65}{27} - 2\zeta_2\right) \\ &\quad -\frac{4}{9} \ln^3 \frac{\mu^2}{m_Q^2} - \frac{2}{9} \ln^2 \frac{\mu^2}{m_Q^2} - \left(\frac{274}{27} + \frac{16\zeta_2}{3}\right) \ln \frac{\mu^2}{m_Q^2} + \frac{5107}{162} - \frac{70\zeta_2}{9} - \frac{4\zeta_3}{9} \right] \end{split}$$

• Validation: full form factor, top quark pair production and IR structures.

Catalog

- Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

t.b • The partonic processes: $q_{\scriptscriptstyleeta}(p_1)+\overline{q}_{\scriptscriptstylelpha}(p_2) \,{ o}\, t_k(p_3)+\overline{t}_{\:l}(p_4)+H(p_5)$ 20000000 $g_a(p_1)+g_b(p_2)
ightarrow t_k(p_3)+\overline{t}_l(p_4)+H(p_5)$ $s_{ii}\!\equiv(\sigma_i\,p_i\!+\!\sigma_j\,p_j)^{\,2}\,,~~ ilde{s}_{ij}\!=\!2\sigma_i\sigma_j\, ilde{p}_i\cdot ilde{p}_j$ • UV and IR singularities: $p_1^2 = p_2^2 = 0$, $p_3^2 = p_4^2 = m_t^2$, $p_5^2 = m_H^2$ $\left|\mathcal{M}_{q,g}^{R}(\alpha_{s},g_{Y},m_{t},\mu,\epsilon)\right\rangle = \left(\frac{\mu^{2}e^{\gamma_{E}}}{4\pi}\right)^{-3\epsilon/2} Z_{q,g} Z_{Q} \left|\mathcal{M}_{q,g}^{\text{bare}}(\alpha_{s}^{0},g_{Y}^{0},m_{t}^{0},\epsilon)\right\rangle$ $Z_{a,a}^{-1}(\epsilon, m_t, \mu) \left| \mathcal{M}_{a,a}^R(\alpha_s, g_Y, m_t, \mu, \epsilon) \right\rangle = \text{finite}$

$$\begin{vmatrix} \mathcal{M}_{q,g}^{(1),\,\mathrm{sing}} \end{pmatrix} = \mathbf{Z}_{q,g}^{(1)} \left| \mathcal{M}_{q,g}^{(0)} \right\rangle, \\ \left| \mathcal{M}_{q,g}^{(2),\,\mathrm{sing}} \right\rangle = \left[\mathbf{Z}_{q,g}^{(2)} - \left(\mathbf{Z}_{q,g}^{(1)} \right)^2 \right] \left| \mathcal{M}_{q,g}^{(0)} \right\rangle + \left(\mathbf{Z}_{q,g}^{(1)} \left| \mathcal{M}_{q,g}^{(1)} \right\rangle \right)_{\mathrm{poles}} \end{aligned}$$

Chen, Ma, <u>GW</u>, Yang and Ye, JHEP 04 (2022) 025

- The partonic processes: $q_{eta}(p_1) + \overline{q}_{lpha}(p_2)$
 - Massive cases:

$$egin{aligned} q_eta(p_1) + \overline{q}_lpha(p_2) & o t_k(p_3) + \overline{t}_l(p_4) + H(p_5)\,, \ g_a(p_1) + g_b(p_2) & o t_k(p_3) + \overline{t}_l(p_4) + H(p_5) \end{aligned}$$

$$c_{Ii}^{R;q,g} = \sum_{j} \frac{\left(D_{q,g}^{-1}\right)_{ij}}{\left\langle c_{I}^{q,g} \middle| c_{I}^{q,g} \right\rangle} \left[\left\langle d_{j}^{q,g} \middle| \otimes \left\langle c_{I}^{q,g} \middle| \mathcal{M}_{q,g}^{R} \right\rangle \right] \qquad D_{ij}^{q,g} = \left\langle d_{i}^{q,g} \middle| d_{j}^{q,g} \right\rangle$$

• Massless cases:

$$\begin{split} \left| \tilde{\mathcal{M}}_{q,g}^{R} \right\rangle &= \sum_{I,i} \tilde{c}_{Ii}^{R;q,g} \left| c_{I}^{q,g} \right\rangle \otimes \left| \tilde{d}_{i}^{q,g} \right\rangle \\ \tilde{c}_{Ii}^{R;q,g} &= \sum_{j} \frac{\left(\tilde{D}_{q,g}^{-1} \right)_{ij}}{\left\langle c_{I}^{q,g} \right| c_{I}^{q,g}} \left[\left\langle \tilde{d}_{j}^{q,g} \right| \otimes \left\langle c_{I}^{q,g} \right| \tilde{\mathcal{M}}_{q,g}^{R} \right\rangle \right] \\ \tilde{D}_{ij}^{q,g} &= \left\langle \tilde{d}_{i}^{q,g} \right| \tilde{d}_{j}^{q,g} \end{split}$$

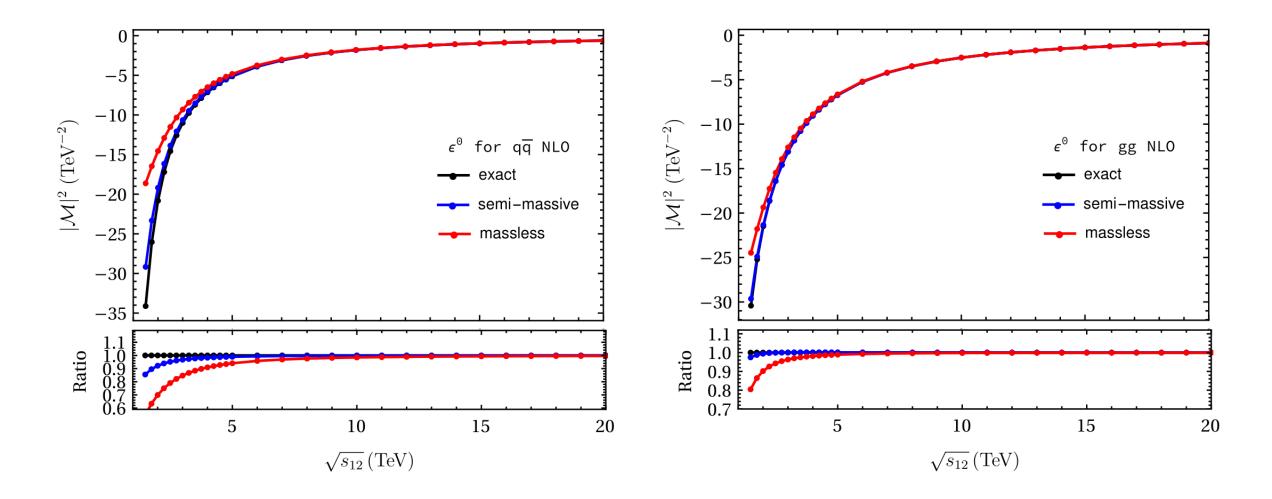
• Amplitudes in high energy limit:

$$\begin{aligned} & \text{Massless} \\ & \text{scheme} \end{aligned} \left| \hat{\mathcal{M}}_{q,g}^{R}\left(\epsilon, \{p\}, m_{t}, m_{H}, \mu\right) \right\rangle = \mathcal{Z}_{[q,g]}^{(m|0)}(\epsilon, m_{t}, \mu) \, \mathcal{Z}_{[t]}^{(m|0)}(\epsilon, m_{t}, \mu) \\ & \times \, \boldsymbol{\mathcal{S}}(\epsilon, \{\tilde{p}\}, m_{t}, \mu) \sum_{I,i} \tilde{c}_{Ii}^{R;q,g} \, |c_{I}^{q,g}\rangle \, \otimes \, |\tilde{d}_{i}^{q,g}\rangle \\ & \text{Massive} \\ & \text{scheme} \end{aligned} \right| \hat{\mathcal{M}}_{q,g}^{R}\left(\epsilon, \{p\}, m_{t}, m_{H}, \mu\right) \right\rangle = \mathcal{Z}_{[q,g]}^{(m|0)}(\epsilon, m_{t}, \mu) \, \mathcal{Z}_{[t]}^{(m|0)}(\epsilon, m_{t}, \mu) \\ & \times \, \boldsymbol{\mathcal{S}}(\epsilon, \{\tilde{p}\}, m_{t}, \mu) \sum_{I,i} \tilde{c}_{Ii}^{R;q,g} \, |c_{I}^{q,g}\rangle \, \otimes \, |\tilde{d}_{i}^{q,g}\rangle \end{aligned}$$

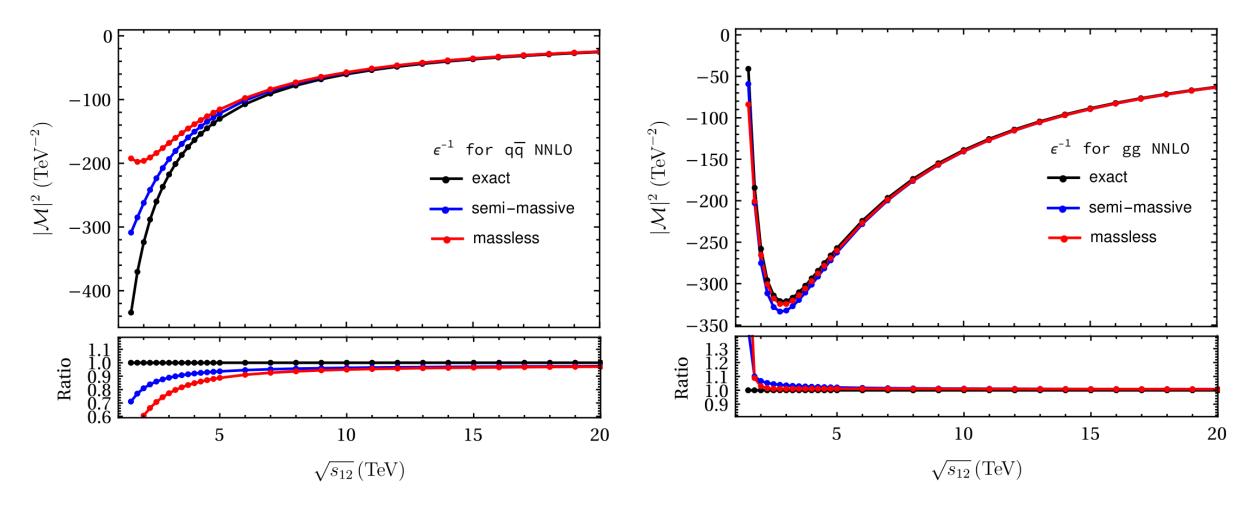
• Squared Amplitudes:

$$\left\langle \mathcal{M}_{q,g}^{R} \middle| \mathcal{M}_{q,g}^{R} \right\rangle \qquad \left\langle \bar{\mathcal{M}}_{q,g}^{R} \middle| \bar{\mathcal{M}}_{q,g}^{R} \right\rangle \qquad \left\langle \hat{\mathcal{M}}_{q,g}^{R} \middle| \hat{\mathcal{M}}_{q,g}^{R} \right\rangle \\ \left\langle \mathcal{M}_{q,g}^{(0)R} \middle| \mathcal{M}_{q,g}^{(2)R} \right\rangle \qquad \left\langle \bar{\mathcal{M}}_{q,g}^{(0)R} \middle| \bar{\mathcal{M}}_{q,g}^{(2)R} \right\rangle \qquad \left\langle \mathcal{M}_{q,g}^{(0)R} \middle| \hat{\mathcal{M}}_{q,g}^{(2)R} \right\rangle$$

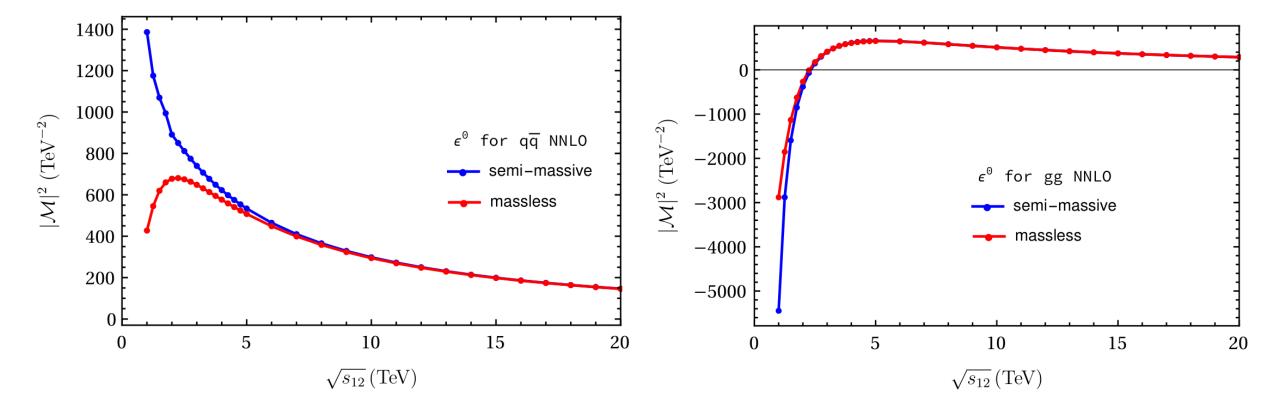
 Calculation of massless form factors: $\left|\hat{\mathcal{M}}_{q,q}^{R}\left(\epsilon, \{p\}, m_{t}, m_{H}, \mu\right)\right\rangle = \mathcal{Z}_{[q,q]}^{(m|0)}(\epsilon, m_{t}, \mu) \,\mathcal{Z}_{[t]}^{(m|0)}(\epsilon, m_{t}, \mu)$ $\times \boldsymbol{\mathcal{S}}(\epsilon, \{\tilde{p}\}, m_t, \mu) \sum \tilde{c}_{Ii}^{R;q,g} | c_I^{q,g} \rangle \, \otimes \, |\hat{d}_i^{q,g} \rangle$ $ec{\mathbf{D}}_{c, \overline{\sigma_0}}$ $\mathbf{\widetilde{D}}_{b,\sigma_{0}}$ $ec{\mathbf{D}}_{d,\sigma_0}$ $ar{\mathbf{D}}_{a,\sigma_0}$ $(l_1)^2$ $(l_1)^2$ $(l_1)^2$ $(l_1)^2$ $(l_1 + p_1)^2$ $(l_1 - p_1)^2$ $(l_1 - p_1)^2$ $(l_1 - p_1)^2$ 2 $(l_1 + p_1 + p_2)^2$ $(l_1 - p_1 - p_2)^2$ $(l_1 - p_1 - p_2)^2$ $(l_1 - p_1 - p_2)^2$ 3 $(l_2)^2$ $(l_1 - p_4 - p_5)^2$ $(l_1 + p_4 + p_5)^2$ $(l_2)^2$ (a) PB (b) HB 4 $(l_2 + p_4 + p_5)^2 \quad (l_2 + p_4 + p_5)^2$ $(l_2)^2$ $(l_2)^2$ 5 $(l_2 - p_4 - p_5)^2$ $(l_2 + p_5)^2$ $(l_2 + p_5)^2$ $(l_2 - p_1 - p_2)^2$ 6 $(l_2 - p_5)^2$ $(l_1 - l_2)^2$ $(l_1 - l_2)^2$ $(l_2 + p_5)^2$ 7 $\frac{(l_1 - l_2)^2}{(l_1 - p_5)^2} \frac{(l_1 - l_2 + p_4)^2}{(l_2 - p_1)^2} \frac{(l_1 - l_2 + p_3)^2}{(l_1 + p_5)^2} \frac{(l_1 - l_2)^2}{(l_1 - l_2 + p_3)^2}$ 8 9 $(l_2 + p_1)^2$ $(l_2 - p_1 - p_2)^2$ $(l_2 - p_1)^2$ $(l_1 + p_5)^2$ 10(c) DP (d) HT $(l_2 + p_1 + p_2)^2$ $(l_2 + p_4 + p_5)^2$ $(l_2 - p_1 - p_2)^2$ $(l_2 - p_1)^2$ 11 D. Chicherin and V. Sotnikov, JHEP 12 (2020) 167



$$\theta_3 = 14\pi/29, \phi_3 = 34\pi/29, \theta_5 = 15\pi/29 \text{ and } q_5 = 20 q_{5, \text{max}}/29$$



$$\theta_3 = 14\pi/29, \phi_3 = 34\pi/29, \theta_5 = 15\pi/29 \text{ and } q_5 = 20 q_{5,\text{max}}/29$$



$$\theta_3 = 14\pi/29, \phi_3 = 34\pi/29, \theta_5 = 15\pi/29 \text{ and } q_5 = 20 q_{5, \text{max}}/29$$

Catalog

- Introduction to $t\bar{t}H$ production
- Factorization in the high energy limit at leading power
- $t\bar{t}H$ production in the high energy limit at leading power
- Toward the high energy limit at next-to-leading power
- Summary and outlook.

- Region expansion in the high energy limit beyond LP
 - Mssive quark form factor in QED $Q\overline{Q}
 ightarrow \gamma^{*}$
 - High energy expansion

Hoeve, Laenen, Marinissen, Vernazza and <u>GW</u> *JHEP* 02 (2024) 024

See talks by, e.g., H. Zhang, K. Schönwald, R. Groeber.

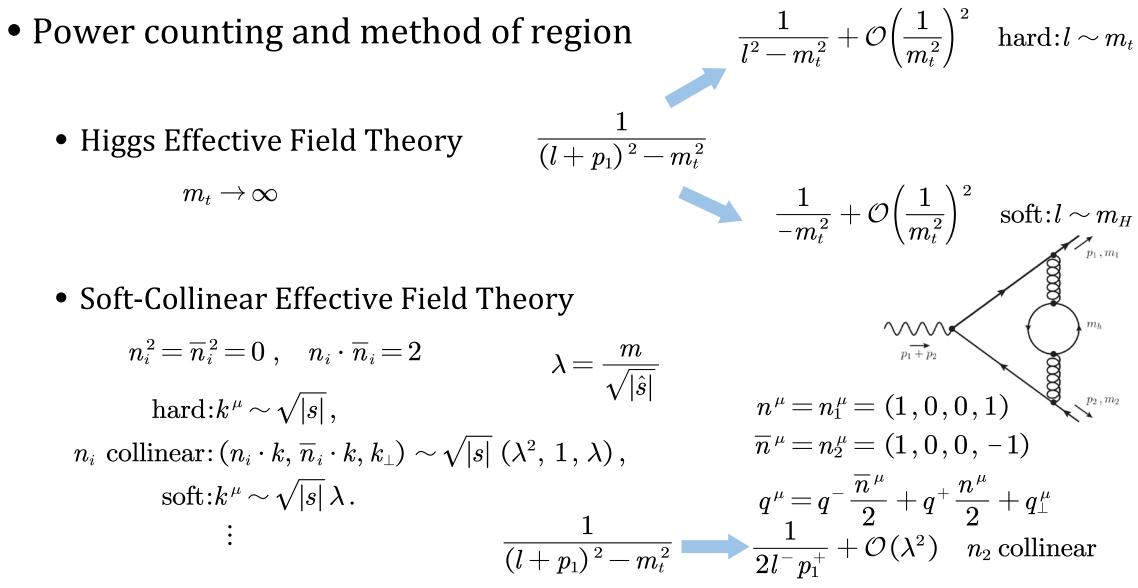
- Factorization at NLP in the high energy
 - Massive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$ $\mathcal{M}_{coll}^{\text{NLP}} = \left(\prod_{i=1}^n J_{(f)}^i \right) H_{(f)} S + \sum_{i=1}^n \left(\prod_{j \neq i} J_{(f)}^j \right) [J_{(f\gamma)}^i \otimes H_{(f\gamma)}^i + J_{(f\partial\gamma)}^i \otimes H_{(f\partial\gamma)}^i] S$ $+ \sum_{i=1}^n \left(\prod_{j \neq i} J_{(f)}^j \right) J_{(f\gamma\gamma)}^i \otimes H_{(f\gamma\gamma)}^i S + \sum_{i=1}^n \left(\prod_{j \neq i} J_{(f)}^j \right) J_{(fff)}^i \otimes H_{(fff)}^i S$ $+ \sum_{1 \le i \le j \le n} \prod_{k \neq i,j} J_{(f)}^k J_{(f\gamma)}^i J_{(f\gamma)}^j \otimes H_{(f\gamma)(f\gamma)}^{ij} S.$ $|\mathcal{M}^{\text{massive}}(\{p\}, \{m\})\rangle = \prod_i \left(Z_{[i]}^{(m|0)}(\{m\}) \right)^{1/2} S(\{p\}, \{m\}) \left| \mathcal{M}^{\text{massless}}(\{p\}) \right\rangle$ $\frac{\text{GW}}{\text{GW}}, \text{Xia, Yang and Ye: JHEP 05 (2024) 082}$

Summary and outlook

- The factorization in the high energy limit at LP.
- Two-loop amplitudes for the production of a Higgs boson associated with a top-quark pair in the high energy limit at LP.
- The factorization or expansion in the high energy limit at NLP
- Resummation in the high energy limit at LP for $t\bar{t}H$.
- Combing the real correction with our two-loop results to present the NNLO contribution to the $t\bar{t}H$.
- NLP factorization effect in the high energy limit to a process at the collider.

Thanks!

Introduction to factorization



- High energy limit: $|s_{ij}| \gg m_k^2$, $i \neq j$ $|\mathcal{M}^{\text{massive}}(\{p\}, \{m\})\rangle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\}, \{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle \quad i = q, Q, g$
- In QED case (Bhabha scattering at NNLO): Becher and Melnikov: JHEP 06 (2007) 084

$$S(\lbrace p \rbrace, \lbrace m \rbrace) = 1 + \sum_{i=e,\mu} \delta S(s,m_i^2)$$

$$\delta S(s,m_i^2,N_i) = -N_i(4\pi\alpha_0)^2 \int \frac{d^d k}{(2\pi)^d} \frac{p_1 \cdot p_2}{(p_1 \cdot k) (p_2 \cdot k) k^2} i \Pi(k^2,m_i^2)$$

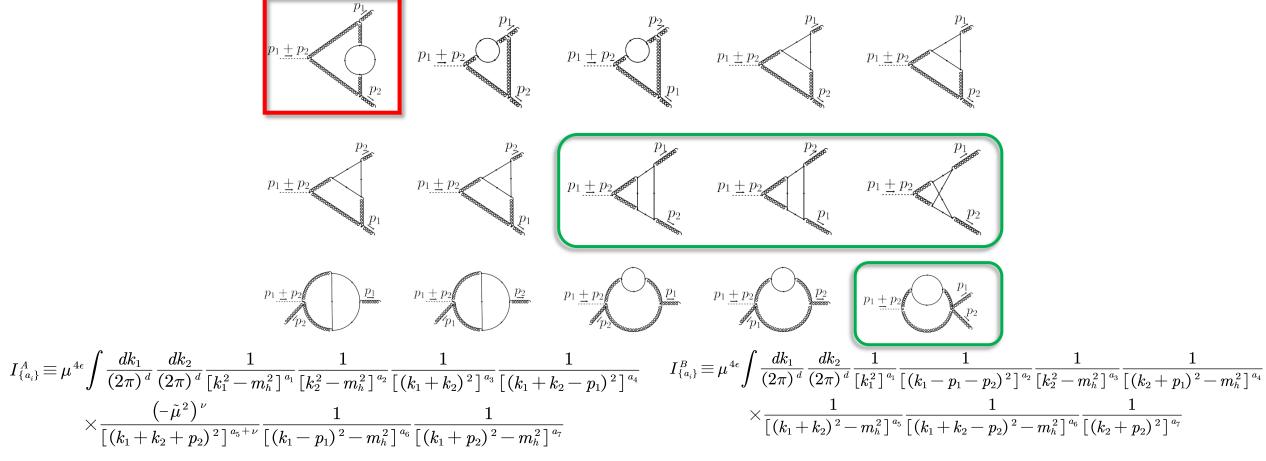
$$= N_i a_0^2 m_i^{-4\epsilon} \ln\left(\frac{Q^2}{m_e^2}\right) \left(-\frac{1}{12\epsilon^2} + \frac{5}{36\epsilon} - \frac{7}{27} - \frac{\pi^2}{72} + \mathcal{O}(\epsilon)\right),$$

• Not a complete region expansion
• Dependence on the external mass
• Invalid for massless external legs
Rapidity divergence

• Determine soft function and \mathcal{Z} -factor:

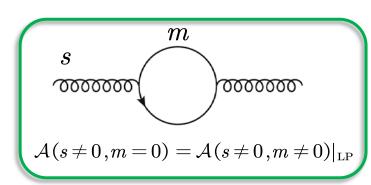
<u>GW</u>, Xia, Yang and Ye: *JHEP* 05 (2024) 082

• Gluon scalar form factor $\mathcal{L}_{int} = -\frac{\lambda}{4} H G_a^{\mu\nu} G_{a,\mu\nu} \rightarrow F_{gg} = \frac{p_1 \cdot p_2 g_{\mu\nu} - p_{1,\mu} p_{2,\nu} - p_{1,\nu} p_{2,\mu}}{2(1-\epsilon)} \Gamma_{gg}^{\mu\nu}$

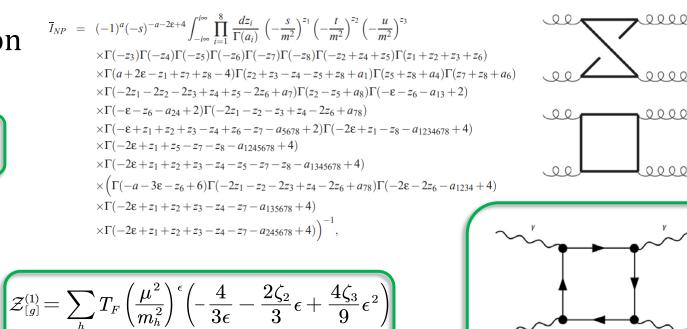


- High energy limit: $|s_{ij}| \gg m_k^2$, $i \neq j$ $|\mathcal{M}^{\text{massive}}(\{p\}, \{m\})\rangle = \prod \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\}) \right)^{1/2} \mathcal{S}(\{p\}, \{m\}) \left| \mathcal{M}^{\text{massless}}(\{p\}) \right\rangle \quad i = q, Q, g$
- Top-pair production at NNLO:
 - 8-fold MB representation

Not contribute at LP?



Czakon, Mitov and Moch: Nucl.Phys.B 798 (2008) 210



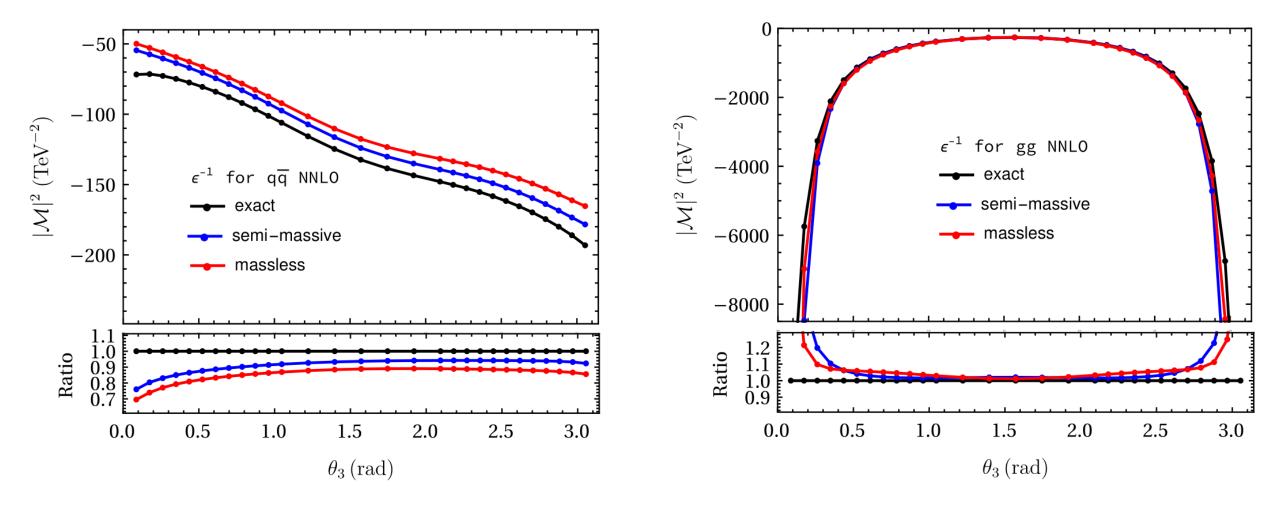
Two-loop QCD amplitudes for $t\bar{t}H$ production from high energy limit

 $=Z_3$

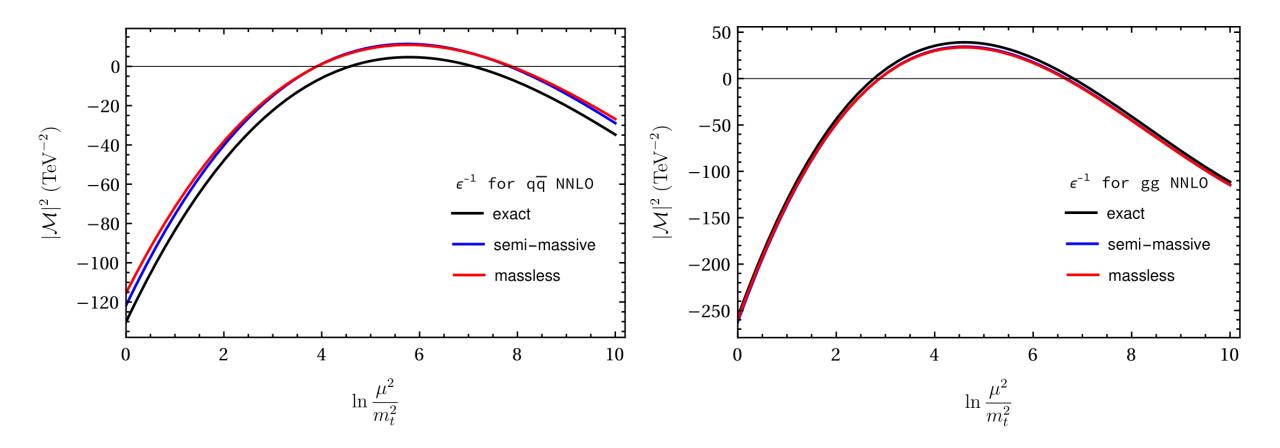
Four-photon scattering

• Phase space point:

$$\begin{split} p_{1} &= \frac{\sqrt{s_{12}}}{2} (1,0,0,1)^{\mathrm{T}} , \\ p_{2} &= \frac{\sqrt{s_{12}}}{2} (1,0,0,-1)^{\mathrm{T}} , \\ p_{3} &= \left(\sqrt{m_{t}^{2} + q_{3}^{2}}, q_{3} \sin \theta_{3} \sin \phi_{3}, q_{3} \sin \theta_{3} \cos \phi_{3}, q_{3} \cos \theta_{3}\right)^{\mathrm{T}} , \\ p_{4} &= \left(\sqrt{m_{t}^{2} + q_{4}^{2}}, q_{4} \sin \theta_{4} \sin \phi_{4}, q_{4} \sin \theta_{4} \cos \phi_{4}, q_{4} \cos \theta_{4}\right)^{\mathrm{T}} , \\ p_{5} &= \left(\sqrt{q_{5}^{2} + m_{H}^{2}}, q_{5} \sin \theta_{5}, 0, q_{5} \cos \theta_{5}\right)^{\mathrm{T}} , \\ p_{5} &= \left(\sqrt{q_{5}^{2} + m_{H}^{2}}, q_{5} \sin \theta_{5}, 0, q_{5} \cos \theta_{5}\right)^{\mathrm{T}} , \\ p_{5} &= \left(\tilde{q}_{5}, \tilde{q}_{5} \sin \tilde{\theta}_{5}, 0, \tilde{q}_{5} \cos \tilde{\theta}_{5}\right)^{\mathrm{T}} , \\ \tilde{s}_{12} &= s_{12}, \ \tilde{\theta}_{i} &= \theta_{i} \ \text{and} \ \tilde{\phi}_{i} &= \phi_{i} \end{split}$$



$$s_{12}\,{=}\,5~{
m TeV}, \phi_{3}\,{=}\,34\pi/29\,, heta_{5}\,{=}\,15\pi/29\,\,{
m and}\,\,q_{5}\,{=}\,20\,q_{5\,{
m ,max}}/29$$



 $s_{12} = 5 \text{ TeV}, \theta_3 = 14\pi/29, \phi_3 = 34\pi/29, \theta_5 = 15\pi/29 \text{ and } q_5 = 20 q_{5, \text{max}}/29$

• Validation by using form factor $|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left| \mathcal{M}^{\text{massless}}(\{p\}) \right\rangle$ <u>GW</u>, Xia, Yang and Ye: *JHEP* 05 (2024) 082

$$egin{aligned} &F_{1,Q\overline{Q}}^{(2),h}(s,m_h^2,m_h^2,m_h^2) = F_{1,q\overline{q}}^{(2),l}(s) + C_F \mathcal{S}^{(2)}(s,m_h^2) + \mathcal{Z}_{[Q]}^{(2),h}(m_h^2,m_h^2) \ &F_{Q\overline{q}}^{(2),h}(s,m_h^2,m_h^2) = F_{q\overline{q}}^{(2),l}(s) + C_F \mathcal{S}^{(2)}(s,m_h^2) + rac{1}{2} \mathcal{Z}_{[Q]}^{(2),h}(m_h^2,m_h^2) + rac{1}{2} \mathcal{Z}_{[q]}^{(2),h}(m_h^2) \ &F_{q\overline{q}}^{(2),h}(s,m_h^2) = F_{q\overline{q}}^{(2),l}(s) + C_F \mathcal{S}^{(2)}(s,m_h^2) + \mathcal{Z}_{[q]}^{(2),h}(m_h^2) \ &F_{gg}^{(2),h}(s,m_h^2) = F_{gg}^{(2),l}(s) + \mathcal{Z}_{[g]}^{(1),no-quark}(s) + \mathcal{Z}_{[g]}^{(2),h}(m_h^2) + N_c \, \mathcal{S}^{(2)}(s,m_h^2) \end{aligned}$$

• Validation by using top-pair production

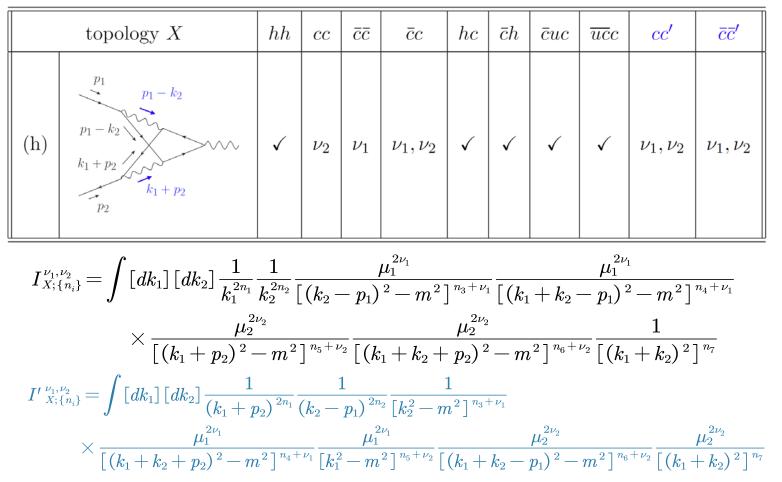
Moch, *et al*: *JHEP* 08 (2005) 049 Bernreuther, *et al*: Nucl. Phys. B 706 (2005) 245 Bonciani , *et al*: *JHEP* 11 (2008) 065 Czakon, *et al*: *Nucl.Phys.B* 798 (2008) 210 Anastasiou , *et al*: *Nucl.Phys.B* 605 (2001) 486

$$oldsymbol{T}_1\cdotoldsymbol{T}_2ert_{q\overline{q}}=egin{pmatrix} -C_F & 0\ 0 & rac{1}{2N_c} \end{pmatrix}$$

 $\left|\mathcal{M}^{\text{massive}}(\epsilon, \{p\}, \{m\})\right\rangle = \prod \left(\mathcal{Z}_{[i]}^{(m|0)}(\epsilon, \{m\})\right)^{1/2} \mathcal{S}(\epsilon, \{p\}, \{m\}) \left|\mathcal{M}^{\text{massless}}(\epsilon, \{p\})\right\rangle$ • Validation by IR pole **GW**, Xia, Yang and Ye: *JHEP* 05 (2024) 082 • IR singularities of QCD renormalized amplitudes $Z_{\text{massive}}^{-1}(\epsilon, \{p\}, \{m\}) | \mathcal{M}^{\text{massive}}(\epsilon, \{p\}, \{m\}) \rangle = \text{finite}$ $Z_{\text{massless}}^{-1}(\epsilon, \{p\}) \left| \mathcal{M}^{\text{massless}}(\epsilon, \{p\}) \right\rangle = \text{finite}$ $\Gamma(\{\underline{p}\}, \{\underline{m}\}, \mu) = \sum_{(i,j)} \frac{\mathbf{T}_i \cdot \mathbf{T}_j}{2} \gamma_{\text{cusp}}(\alpha_s) \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s) = \Gamma(\{p\}, \mu)$ $\boldsymbol{Z}^{-1}\frac{d}{d\ln\mu}\boldsymbol{Z}=-\Gamma$ $-\sum_{I,I} \frac{\boldsymbol{T}_{I} \cdot \boldsymbol{T}_{J}}{2} \gamma_{\text{cusp}}(\beta_{IJ}, \alpha_{s}) + \sum_{I} \gamma^{I}(\alpha_{s}) + \sum_{I,I} \boldsymbol{T}_{I} \cdot \boldsymbol{T}_{j} \gamma_{\text{cusp}}(\alpha_{s}) \ln \frac{m_{I} \mu}{-s_{Ij}}$ Becher, et al, Phys. Rev. D 79 (2009) 125004 Ferroglia, et al, Phys. Rev. Lett. 103 (2009) 201601 + $\sum i f^{abc} \mathbf{T}_{I}^{a} \mathbf{T}_{J}^{b} \mathbf{T}_{K}^{c} F_{1}(\beta_{IJ}, \beta_{JK}, \beta_{KI})$ Ferroglia, et al, JHEP 11 (2009) 062 (I,J,K) $+\sum \sum i f^{abc} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{k}^{c} f_{2} \Big(\beta_{IJ}, \ln \frac{-\sigma_{Jk} v_{J} \cdot p_{k}}{-\sigma_{Ik} v_{I} \cdot p_{k}}\Big) + \mathcal{O}(\alpha_{s}^{3}) \,.$ Collinear divergences: $\boldsymbol{Z}_{\text{massive}}^{-1}(\epsilon, \set{p}, \set{m}) \prod \left(\boldsymbol{\mathcal{Z}}_{[i]}^{(m|0)}(\epsilon, \set{m}) \right)^{1/2} \boldsymbol{S}(\epsilon, \set{p}, \set{m}) \boldsymbol{Z}_{\text{massless}}(\epsilon, \set{p}) = \text{finite}$ $\ln(m^2) \leftrightarrow \frac{1}{\epsilon}$ 31 Two-loop QCD amplitudes for $t\bar{t}H$ production from high energy limit 12/09/2024

- Massive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$
 - Left hand side

Hoeve, Laenen, Marinissen, Vernazza and <u>GW</u>: *JHEP* 02 (2024) 024



- Massive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$
 - Left hand side

Hoeve, Laenen, Marinissen, Vernazza and <u>GW</u> : *JHEP* 02 (2024) 024

$$\begin{split} \mathcal{I}^{X} &= (4\pi)^{4} \hat{s}^{2} I_{X;1,1,1,1,1,1,1,1,0}^{\nu_{1},\nu_{1},\nu_{2},\nu_{2}} \\ &= (4\pi)^{4} \hat{s}^{2} \int [dk_{1}] [dk_{2}] \frac{1}{k_{1}^{2}} \frac{1}{k_{2}^{2}} \frac{\tilde{\mu}_{1}^{2\nu_{1}}}{[(k_{2}-p_{1})^{2}-m^{2}]^{1+\nu_{1}}} \frac{\tilde{\mu}_{1}^{2\nu_{1}}}{[(k_{1}+k_{2}-p_{1})^{2}-m^{2}]^{1+\nu_{1}}} \\ &\times \frac{\tilde{\mu}_{2}^{2\nu_{2}}}{[(k_{1}+p_{2})^{2}-m^{2}]^{1+\nu_{2}}} \frac{\tilde{\mu}_{2}^{2\nu_{2}}}{[(k_{1}+k_{2}+p_{2})^{2}-m^{2}]^{1+\nu_{2}}}, \\ \mathcal{I}^{X}_{\text{full}}_{\text{full}} = \left(\frac{\mu^{2}}{m^{2}}\right)^{2\epsilon} \left[-\frac{1}{\epsilon} \left(\frac{1}{3}L^{3}+\zeta_{2}L+\zeta_{3}\right) - \frac{1}{2}L^{4}+\zeta_{2}L^{2}-\zeta_{3}L-\frac{37\zeta_{2}^{2}}{10} \\ &-\frac{m^{2}}{\hat{s}} (4L^{2}-8L+4\zeta_{2}) + \mathcal{O}(\epsilon) \right], \\ \mathcal{I}^{X}|_{\bar{\epsilon}c} = \left(\frac{\mu^{2}}{m^{2}}\right)^{2\epsilon} \left(\frac{\tilde{\mu}_{1}^{2}}{-m^{2}}\right)^{\nu_{1}} \left(\frac{\tilde{\mu}_{2}^{2}}{-m^{2}}\right)^{\nu_{2}} \left(\frac{\tilde{\mu}_{2}^{2}}{\hat{s}}\right)^{\nu_{2}} \left[\frac{1}{4\epsilon^{4}}+\frac{1}{\epsilon^{3}} \left(\frac{1}{2\nu_{2}}+\frac{1}{2\nu_{1}}\right) \\ &+\frac{1}{\epsilon^{2}} \left(\frac{5\zeta_{2}}{4}-\frac{1}{\nu_{1}\nu_{2}}\right) + \frac{1}{\epsilon} \left(\frac{3\zeta_{2}}{2\nu_{1}}+\frac{3\zeta_{2}}{2\nu_{2}}+\frac{17\zeta_{3}}{6}\right) - \frac{\zeta_{2}}{\nu_{1}\nu_{2}}+\frac{14\zeta_{3}}{3\nu_{1}}+\frac{14\zeta_{3}}{3\nu_{2}}+\frac{279\zeta_{2}^{2}}{40} \\ &+\frac{m^{2}}{\hat{s}} \left(\frac{1}{\epsilon} \left(\frac{2}{\nu_{2}}+\frac{2}{\nu_{1}}+4\right) - 4\zeta_{2}+\frac{2}{\nu_{1}}+\frac{2}{\nu_{2}}-4)\right] \end{split}$$

- Massive quark form factor in QED $Q\overline{Q} \rightarrow \gamma^*$
 - Right hand side

Bijleveld, Laenen, Marinissen, Vernazza and <u>GW</u> : on progress

$$\begin{split} J_{(f)}^{(1)}(p_{1}) &= (-ie\mu^{\epsilon})^{2} \int_{\infty}^{0} d\lambda \int dx \ \langle p_{1} | \, \bar{\psi}(0)n_{+}A(\lambda n_{+})\bar{\psi}(x) A(x)\psi(x) | 0 \rangle \\ &= ie^{2}\bar{u}(p_{1}) \int [dk] \frac{\not{\eta}_{+}(\not{p}_{1} + \not{k} + m)}{((p_{1} + k)^{2} - m^{2} + i\eta)(k^{2} + i\eta)(-n_{+}k + i\eta)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{\gamma^{\mu}\left(\not{p}_{1} - \not{k} + m\right)}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)} \delta(n_{+}k - n_{+}\ell) \\ &- ie^{2}\bar{u}(p_{1}) \int [dk] \frac{\not{\eta}_{+}\left(\not{p}_{1} - \not{k} + m\right)k^{\mu}}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell) \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{\not{\eta}_{+}\left(\not{p}_{1} - \not{k} + m\right)k^{\mu}}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{\not{\eta}_{+}\left(\not{p}_{1} - \not{k} + m\right)k^{\mu}}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{\not{\eta}_{+}\left(\not{p}_{1} - \not{k} + m\right)k^{\mu}}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{y}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{y}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{y}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{y}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{y}{(k^{2} + i\eta)((k - p_{1})^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{y}{(k^{2} + i\eta)(k^{2} - m^{2} + i\eta)(n_{+}k + i\eta)} \delta(n_{+}k - n_{+}\ell)} \\ &= \underbrace{J_{(f\gamma)}^{(1)\mu}(p_{1}, n_{+}\ell) = ie^{2}\bar{u}(p_{1}) \int [dk] \frac{y}{(k^{2} + i\eta$$