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Factorization for High Precision

O(s, t, M2, m2, ⋯

typical scales

) ⋮

HLP(M, μ) = ∑
n

αn
s H(n)

LP (M, μ)

SLP(m, μ) = ∑
n

αn
s S(n)

LP (m, μ)

HNLP, i(M, μ) = ∑
n

αn
s H(n)

NLP, i(M, μ)

SNLP, i(m, μ) = ∑
n

αn
s S(n)

NLP, i(m, μ)

 (loop) expansion (w./  limit)αs m ≪ M

 expansionλ

๏ Typicl scles re usully widely seprted 

‣ Leds to fctoriztion when  

‣ Lrge log's  need to be resummed to improve  
precision predictions by RGE

λ = m/M ≪ 1
αi

s lnj λ

O(m, M, ⋯) = λ0 HLP(M, μ) ⊗ ⋯ ⊗ SLP(m, μ) + λ ∑
i

HNLP, i(M, μ) ⊗ ⋯ ⊗ SNLP, i(m, μ) + 𝒪 (λ2)
leading-power (LP) next-to-leading-power (NLP)
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A Glimpse of NLP Factorization
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multi. fields in  sector power-suppressed 
interction, e.g., soft 

qurk

‣ At LP, soft functions re built from (semi-infinite) Wilson lines, 
e.g., Drell-Yn threshold [Korchemsky, Mrchesini, 1993]: 

                        

‣ At NLP, soft opertors contin soft fields on the light-cone, 

e.g., , from NLP SCET Lgrnigin insertsions.  

soft-qurk (soft) functions pper s building blocks.

1
Nc

⟨0 |Tr T̄(Y†
n−

(x0)Yn+
(x0)) T(Y†

n+
(0)Yn−

(0)) |0⟩

qs(x−)
↪

‣ Soft-qurk functions re key ingredients in NLP fctoriztions nd phenomenologiclly relevnt.  

‣ Lrge log's generted by soft-qurk functions cn be systemticlly obtined from RGE: 

d
d ln μ

S ({ω}, μ) = ∫ {dω′ } γS ({ω}; {ω′ }) S ({ω′ }, μ)



Outline
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๏  form fctor induced by light qurks 
‣ bsic tools: position-spce formlism + bckground-field method 

๏  form fctor induced by light qurks 
‣ supplement: extr regultor for IR (rpid) divergence in the ppernce of semi-

infinite Wilson lines 

๏  nomlous dimensions beyond one-loop 
‣ conforml techniques come into ply 

๏ Drell-Yn  chnnel @ NLP

γγ → h

gg → h

γγ(gg) → h

gq̄



Higgs Form Factors via Light Quarks
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s

c

h

h h
H1,γγ ·

H2,γγ(z)⊗
c c

H3,γγ ·

Jγ Jγ

c h

hc hc

Sγ

z

c

J

s

c

h

h h H1 ·

H2(z)⊗
c

H3 ·

J

c h

hc hc

S3

z

[Liu, Neubert, 1912.08818; Liu, Neubert, Schnubel, XW, 2212.10447]

Oγ(s, t) = T {q̄(tn−)Yn−
(t)Y†

n−
(0)

n−n+

4
Yn+

(0)Y†
n+

(s)q(sn+)}
= T {q̄(tn−)[tn−,0]

n−n+

4
[0,sn+]q(sn+)}/ /

/ / Ouns
g (s, t) = T {q̄(tn−)Yn−

(t)TaY†
n−

(0)
n−n+

4
Yn+

(0)TbY†
n+

(s)q(sn+)}
= T {q̄(tn−)(𝒴n−

(tn−))ac Tc[tn−,0]
n−n+

4
[0,sn+](𝒴n+

(sn+))
bd

Tdq(sn+)}

/ /

/ /



“abelian” γγ → h
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๏ Anomlous dimension / RG kernel originlly [Liu, Mecj, Neubert, XW, Fleming, 2005.03013] inferred 
from RG consistency of the fctoriztion formul; 

๏ Direct computtion by [Bodwin, Ee, Lee, X.P. Wng, 2101.04872] by  complicted excursion into 
trnsverse-momentum dependent soft functions. 

๏ Our method: 

‣ Bckground-field method [Abbott, 1980; Blitsky, Brun 1988/89]  t the opertor level 

‣ Clculte directly in the position spce  compct nd esier for conforml techniques

⟹
⟹

(a)

tn
−

sn+

0

most complicated one in our case

= (igs)2 ∫ dDz q̄(z)A(z)q(z) q̄(tn−)∫
1

0
du tn− ⋅ A(utn−)

n−n+

4
q(sn+)

= −g2
s CFμ2ε eεγE

(4π)ε ∫
1

0
du t∫

dDp
(2π)D ∫

dDl
(2π)D

eit(ūn−⋅l−un−⋅p) q̄(p) n−l
l2(p + l)2

n−n+

4
q(sn+)

=
αs(μ)

4π
2CF

ε ∫
1

0
du

u
1 − u [q̄(utn−) − q̄(tn−)] n−n+

4
q(sn+) + 𝒪(ε0)

=
αs(μ)

4π
2CF

ε ∫
1

0
du [ u

1 − u ]
+

Oγ(s, ut) + 𝒪(ε0)

/ /

/ /

/ /

/

/

/

/

εUV



“abelian” γγ → h
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0

tn� sn+

(a) (b) (c) (d)

Figure 1. One-loop corrections to O�(s, t). Double lines denote the two finite Wilson

line segments, the two solid lines the soft quark fields and the wiggle lines are gluon

propagators. Mirror diagrams to (a) and (c) as well as the self-energy of the external

quarks are not shown. The self-energy of the lightlike Wilson lines vanishes in Feynman

gauge and therefore are neglected.

background gauge (2.12) and the associated Feynman rules can be found in [32].

Since (2.11) is invariant under local gauge transformations of soft background fields,

the background technique allows us to choose gauges for the soft background and

quantum fields independently.

3 Renormalization of O�(s, t)

[• Q4 The above figure is still not a single pdf that can be scaled.]

Since Wilson lines are finite-length ones in O�(s, t), only ultraviolaet (UV) singu-

larities exist. The potential infrared singularities are naturally regularized by the

non-vanishing o↵-shellness (or mass) of the soft quark. In this section, we provide

details on renormalizing the soft operator directly in the position space, which turns

out to be rather compact and easy to generalize to higher loops. The one-loop con-

tributions to O�(s, t) are depicted in Fig. 1. There are also mirror parts for diagrams

(a) and (c). Diagram (a) and its mirror give rise to non-local parts.2, and diagram

(b) gives rise to the local cusp terms, while (c) and (d) do not have UV poles. To

simplify the notation, we also use q(p) and q̄(p) to denote the external quark and

anti-quark fields in momentum space. We can put either the quark mass or the o↵-

shellness (but not both) to zero from the start since we focus on UV poles, and we

choose to drop the quark mass.

3.1 Coordinate-space calculation

Inserting the QCD interaction Lagrangian once, expanding the n�-Wilson line to first

order and performing Wick contractions, diagram (a) reads (We drop the subscripts

2The terminology here refers to the form of the contribution in position space, either simply
multiplicative (local), or as a convolution (non-local).

– 6 –

Oγ(s, t; μ) = Obare
γ (s, t) +

αs(μ)CF

4π ∫
1

0
du[( 1

ε2
+

2 ln (stμ2e2γE) − 1+ξ
2ε

(b)

+
1−ξ

ε
(c)

+
ξ
2ε⏟
Zq

)δ(1 − u)

−
2
ε [ u

1 − u ]
+

(a)

][Obare
γ (us, t) + Obare

γ (s, ut)] + 𝒪(α2
s )

d
d ln μ

Oγ(s, t, μ) = − [γγOγ](s, t; μ) ⟸ [γγOγ](s, t; μ) = −
αsCF

π { − (ln (stμ2e2γE) +
1
2 ) Oγ(s, t; μ)

+∫
1

0
du [ u

1 − u ]
+
(Oγ(us, t; μ) + Oγ(s, ut; μ))} + 𝒪(α2

s )



“non-abelian” gg → h
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(a) (b) (c) (d)

correltions involving semi-infinite Wilson lines  rpidity div.↝
similr s the belin cse, with replcement of color fctors

(𝒴n±
(x))

ab
= ̂P exp [−gs f abc ∫

0

−∞
dλ eλ(−iδ±+0+)n± ⋅ Ac(x + λn±)]

 regulators in WL's are related to off-shell regulators in the full theory!δ

in+ ⋅ pc

(pc + ℓ)2 + i0+
⟶

i

n− ⋅ ℓ + p2
c

n+ ⋅ pc
+ i0+

≡
i

n− ⋅ ℓ + δ− + i0+
,

in− ⋅ pc̄

(pc̄ + ℓ)2 + i0+
⟶

i

n+ ⋅ ℓ + p2
c̄

n− ⋅ pc̄
+ i0+

≡
i

n+ ⋅ ℓ + δ+ + i0+
.



“non-abelian” gg → h
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I(δ±,ξ)
Ouns

g
= Ouns

g (s, t) +
αs(μ)

4π
2
ε (CF −

CA

2 )∫
1

0
du [ u

1 − u ]
+
(Ouns

g (us, t) + Ouns
g (s, ut))

+
αs(μ)

4π [ CA

ε (2 + ln (stμ2e2γE)+2 ln
−δ−δ+

μ2
−ln

∂s∂t

μ2 )
−2CF ( 1

ε2
+

ln (stμ2e2γE)
ε )+

CA

ε
(1 − ξ)−

CF

ε ] Ouns
g (s, t) + 𝒪(α2

s ) .

ε = εUV

𝕊g(0) = (𝒴n−
(0))ac(𝒴n+

(0))cb = [− ∞n−,0n−]ac[0n+, − ∞n+]cb

⟨𝕊g(0)⟩ = 1 +
αs(μ)

4π
CA [−

2
ε2

+
2 ln(−δ−δ+/μ2)+(1−ξ)

ε ] + 𝒪(α2
s )

0 0

Figure 3. Double lines superposed by wiggly lines represent light-like adjoint Wilson

lines. Simple wiggly line denotes the gluon propagator.

= 1 +
↵s(µ)

4⇡
CA


� 2

"2
+

2 ln(��1�2/µ2)

"

�
, (4.9)

where all divergences in either " ! 0 or �± ! 0 limit (or both) are kept. [•
Q15 sound like “and” but should be “or”?] Combined with (4.5), we see that

the rapidity regulators cancel entirely as expected and the correct double pole for

the non-abelian part is acquired,

IOg ⌘
I(�1,�2)
Og

R�R+
=

↵s(µ)

4⇡"

(
2

✓
CF � CA

2

◆ Z 1

0

du
hu

ū

i

+

⇣
Og(us, t) + Og(s, ut)

⌘

+


CA

✓
2

"
+ 2 + ln

�
stµ̃2

�◆
� 2CF

✓
1

"
+ ln

�
stµ̃2

�◆�
Og(s, t)

� CA ln
@t@s

µ2
Og(s, t)

)
+ O(↵2

s
) . (4.10)

Note that the subtraction factor R�R+ is in the same form of [21, 31], in which case

the QED counterpart of (4.6) was constructed. We will demonstrate in Sec. 4.4 their

relations to the two radiative jet functions calculated in [16].

The one-loop renormalization for the subtracted gluon operator Og (4.6) can then

be obtained immediately from (4.10). In position space, it takes the following form,

Oren
g

(s, t) = Obare
g

(s, t) +
↵s

4⇡

⇢
2

✏

✓
CF � CA

2

◆ Z 1

0

du
hu

ū

i

+

⇣
Obare

g
(us, t) + Obare

g
(s, ut)

⌘

+


2

✏2
(CF � CA) +

CA

✏
ln

✓
@s@t

µ2

◆
+

2

✏

✓
CF � CA

2

◆
ln(stµ̃2)

+
CF � 2CA

✏

�
Obare

g
(s, t)

�
+ O(↵2

s
) , (4.11)

and like in the photon case, we have added the quark self-energy (3.9). The ap-

pearance of ln(@s@t/µ2) in (4.10) in the momentum space is local, giving rise to

ln
`�`+

µ2
= ln

w

µ2
⌘ Lw in momentum space via (2.9). It is then straightforward

to find the renormalization constant in momentum space Zg(w, w0) by applying the

Fourier transform identities (3.12) and (3.13),

Zg(w, w0) = �(w � w0) +
↵s(µ)

4⇡

( 
2(CF � CA)

✓
1

"2
� Lw

"

◆
� 3CF

"

�
�(w � w0)

– 14 –

Og(s, t) ≡
Ouns

g (s, t)
⟨𝕊g(0)⟩

‣ subtrct (divide out) Wilson lines for the “chrges from/to infinity”, nd rerrnge to other prts 
in the fctoriztion formul: IR rerrngement [MB, Bobeth, Szfron, 1908.0711];  

‣ reproduce the AD from consistency in [Liu, Neubert, Schnubel, XW, 2212.10447].



“non-abelian” gg → h
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ℳgg→h ⊇ H3 ⋅ [Jg(Mhℓ−)Jg(−Mhℓ+)] ⊗ Suns
g (ℓ−ℓ+) 𝔄+,(ξ)

g (k2
1) 𝔄−,(ξ)

g (k2
2)

= H3 ⋅ [Jg(Mhℓ−)Jg(−Mhℓ+)] ⊗ [
Suns

g (ℓ−ℓ+)

R(ξ)
+ R(ξ)

− ] [R(ξ)
+ 𝔄+,(ξ)

g (k2
1)] [R(ξ)

− 𝔄−,(ξ)
g (k2

2)]
[Liu, Neubert, Schnubel, XW, 2212.10447]

equl 1 to ll oders if onshell

Sg(ℓ−ℓ+)

⟨𝕊g(0)⟩ = R(ξ)
− R(ξ)

+

‣ Ech prt in the brcket is well defined nd guge independent.

equl  if onshellSg



beyond one-loop
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๏ At one loop, both AD's fctorize in position spce: ; 

๏ Fctorized pieces cn be rewritten by colliner conforml genertors 

γi(s, t) = γi(s) + γi(t), i = γ, g

↪ ̂S + = s2∂s + 2js = sθs + 2js, ̂S 0 = s∂s + j = θs + j, ̂S − = − ∂s

̂T+ = t2∂t + 2jt = tθt + 2jt, ̂T0 = t∂t + j = θt + j, ̂T− = − ∂t

γγ(s, t) =
αs(μ)

4π [4CF ln (μ2e4γE ̂S + ̂T+) − 6CF] + 𝒪(α2
s )

γg(s, t) =
αs(μ)

4π [4 (CF −
CA

2 ) ln (μ2e4γE ̂S + ̂T+) + 2CA ln
̂S − ̂T−

μ2
− 6CF] + 𝒪(α2

s )

↪
γγ(s) =

αs(μ)
4π [4CF ln (μe2γE ̂S +) − 3CF] + 𝒪(α2

s )

γg(s) =
αs(μ)

4π [4 (CF −
CA

2 ) ln (μe2γE ̂S +) + 2CA ln
− ̂S −

μ
− 3CF] + 𝒪(α2

s )



beyond one-loop
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Oγ(s, t) = T {q̄(tn−)[tn−,0]
n−

2
n−

n+

2
[0,sn+]q(sn+)

n+

}/ /

twist-2 -LCDA operator:B T {q̄(tn−)[tn−,0]
n−

2
hv(0)}/

tn
−

0

sn+

“double-copy” of twist-2 -LCDAB

๏ The “belin” cse is essentilly  “double-copy” of twist-2 -LCDA AD! B

๏ AD of the twist-2 -LCDA cse is clculted to two loops [Brun, Ji, Mnshov, 1905.04998].                                         
 Two-loop AD for the “belin” cse is for free. Agree with [Liu, Mecj, Neubert, XW, Fleming, 2005.03013].

B
↪

γγ(s, t, μ) = ℋB(s, μ) + ℋB(t, μ)−2γQ

๏ No “double-copy” for the “non-belin” cse due to . A two-loop nstz in the position spce  
with the indirect constrint from [Liu, Neubert, Schnubel, XW,  2112.00018 ] on the constnt :

̂S − ̂T−
Γg(αs)

ℋB(s, μ) = Γcusp (αs) ln (𝒦 (αs; s) μe2γE) + Γ+ (αs), 𝒦 (αs; s) = ̂S + + 𝒪(αs)

γg(s, t) = (ΓF
cusp(αs) −

1
2

ΓA
cusp(αs)) ln (𝒦 (αs; s) μe2γE) +

1
2

ΓA
cusp(αs)ln

̂S −

μ
+ Γg(αs) + (s → t)



Drell-Yan  channel @ NLPgq̄
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ONLP
gq̄,uns(x0, {s}) =

g2
s

NcCF
Tr T̄ [q̄s(x0 + s1n−)𝒴ca

n−
(x0 + s1n−)Tc [x0 + s1n−, x0] Yn+

(x0)] n−

4

× T [Y†
n+

(0)[0,s2n−] Td 𝒴ad
n−

(s2n−) qs(s2n−)]
0

−∞n−

−∞n+

tn−

x0

−∞n−

−∞n+

sn−

γgq̄(x0; s, t) =
αs(μ)

4π [4 (CF −
CA

2 ) ln (μ2e4γE ̂S + ̂T+) + 2CA ln
̂S − ̂T−

μ2
− 6CF

−4(CF + CA)ln (iμeγEx0/2) + β0] + 𝒪(α2
s )

DY LP-like

gg → h

๏ LP-like contribution fctorizes from the NLP one; 

๏ The soft-qurk effect is universl!

/
[Beneke, Broggio, Jskiewicz, Vernzz, 1912.01585]



Conclusion and Outlook
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๏ NLP SCET is importnt in the precision er, nd the soft-qurk effect plys  
key role; 

๏ Position-spce formlism, together with the bckground-field method, is 
powerful in deriving the nomlous dimensions directly t the opertor level; 

๏ Immedite steps for deriving AD's my involve IR (rpidity) divergences.  
regultors hve  deep connection with fctoriztion. 

➡ Apply the formlism to more NLP observbles nd try to clssify the involved          
building blocks of AD's; 

➡  How much cn conforml symmetry techniques help us on QCD nd its EFTs?

δ

Thank you!


