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Factorization for High Precision

O(s, t, M2, m2, ⋯

typical scales

) ⋮

HLP(M, μ) = ∑
n

αn
s H(n)

LP (M, μ)

SLP(m, μ) = ∑
n

αn
s S(n)

LP (m, μ)

HNLP, i(M, μ) = ∑
n

αn
s H(n)

NLP, i(M, μ)

SNLP, i(m, μ) = ∑
n

αn
s S(n)

NLP, i(m, μ)

 (loop) expansion (w./  limit)αs m ≪ M

 expansionλ

๏ Typical scales are usually widely separated 

‣ Leads to factorization when  

‣ Large log's  need to be resummed to improve  
precision predictions by RGE

λ = m/M ≪ 1
αi

s lnj λ

O(m, M, ⋯) = λ0 HLP(M, μ) ⊗ ⋯ ⊗ SLP(m, μ) + λ ∑
i

HNLP, i(M, μ) ⊗ ⋯ ⊗ SNLP, i(m, μ) + 𝒪 (λ2)
leading-power (LP) next-to-leading-power (NLP)
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A Glimpse of NLP Factorization
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multi. fields in a sector power-suppressed 
interaction, e.g., soft 

quark

‣ At LP, soft functions are built from (semi-infinite) Wilson lines, 
e.g., Drell-Yan threshold [Korchemsky, Marchesini, 1993]: 

                        

‣ At NLP, soft operators contain soft fields on the light-cone, 

e.g., , from NLP SCET Lagranigian insertsions.  

soft-quark (soft) functions appear as building blocks.

1
Nc

⟨0 |Tr T̄(Y†
n−

(x0)Yn+
(x0)) T(Y†

n+
(0)Yn−

(0)) |0⟩

qs(x−)
↪

‣ Soft-quark functions are key ingredients in NLP factorizations and phenomenologically relevant.  

‣ Large log's generated by soft-quark functions can be systematically obtained from RGE: 

d
d ln μ

S ({ω}, μ) = ∫ {dω′￼} γS ({ω}; {ω′￼}) S ({ω′￼}, μ)



Outline
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๏  form factor induced by light quarks 
‣ basic tools: position-space formalism + background-field method 

๏  form factor induced by light quarks 
‣ supplement: extra regulator for IR (rapid) divergence in the appearance of semi-

infinite Wilson lines 

๏  anomalous dimensions beyond one-loop 
‣ conformal techniques come into play 

๏ Drell-Yan  channel @ NLP

γγ → h

gg → h

γγ(gg) → h

gq̄



Higgs Form Factors via Light Quarks
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s

c

h

h h
H1,γγ ·

H2,γγ(z)⊗
c c

H3,γγ ·

Jγ Jγ

c h

hc hc

Sγ

z

c

J

s

c

h

h h H1 ·

H2(z)⊗
c

H3 ·

J

c h

hc hc

S3

z

[Liu, Neubert, 1912.08818; Liu, Neubert, Schnubel, XW, 2212.10447]

Oγ(s, t) = T {q̄(tn−)Yn−
(t)Y†

n−
(0)

n−n+

4
Yn+

(0)Y†
n+

(s)q(sn+)}
= T {q̄(tn−)[tn−,0]

n−n+

4
[0,sn+]q(sn+)}/ /

/ / Ouns
g (s, t) = T {q̄(tn−)Yn−

(t)TaY†
n−

(0)
n−n+

4
Yn+

(0)TbY†
n+

(s)q(sn+)}
= T {q̄(tn−)(𝒴n−

(tn−))ac Tc[tn−,0]
n−n+

4
[0,sn+](𝒴n+

(sn+))
bd

Tdq(sn+)}

/ /

/ /



“abelian” γγ → h
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๏ Anomalous dimension / RG kernel originally [Liu, Mecaj, Neubert, XW, Fleming, 2005.03013] inferred 
from RG consistency of the factorization formula; 

๏ Direct computation by [Bodwin, Ee, Lee, X.P. Wang, 2101.04872] by a complicated excursion into 
transverse-momentum dependent soft functions. 

๏ Our method: 

‣ Background-field method [Abbott, 1980; Balitsky, Braun 1988/89]  at the operator level 

‣ Calculate directly in the position space  compact and easier for conformal techniques

⟹
⟹

(a)

tn
−

sn+

0

most complicated one in our case

= (igs)2 ∫ dDz q̄(z)A(z)q(z) q̄(tn−)∫
1

0
du tn− ⋅ A(utn−)

n−n+

4
q(sn+)

= −g2
s CFμ2ε eεγE

(4π)ε ∫
1

0
du t∫

dDp
(2π)D ∫

dDl
(2π)D

eit(ūn−⋅l−un−⋅p) q̄(p) n−l
l2(p + l)2

n−n+

4
q(sn+)

=
αs(μ)

4π
2CF

ε ∫
1

0
du

u
1 − u [q̄(utn−) − q̄(tn−)] n−n+

4
q(sn+) + 𝒪(ε0)

=
αs(μ)

4π
2CF

ε ∫
1

0
du [ u

1 − u ]
+

Oγ(s, ut) + 𝒪(ε0)

/ /

/ /

/ /

/

/

/

/

εUV



“abelian” γγ → h
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0

tn� sn+

(a) (b) (c) (d)

Figure 1. One-loop corrections to O�(s, t). Double lines denote the two finite Wilson

line segments, the two solid lines the soft quark fields and the wiggle lines are gluon

propagators. Mirror diagrams to (a) and (c) as well as the self-energy of the external

quarks are not shown. The self-energy of the lightlike Wilson lines vanishes in Feynman

gauge and therefore are neglected.

background gauge (2.12) and the associated Feynman rules can be found in [32].

Since (2.11) is invariant under local gauge transformations of soft background fields,

the background technique allows us to choose gauges for the soft background and

quantum fields independently.

3 Renormalization of O�(s, t)

[• Q4 The above figure is still not a single pdf that can be scaled.]

Since Wilson lines are finite-length ones in O�(s, t), only ultraviolaet (UV) singu-

larities exist. The potential infrared singularities are naturally regularized by the

non-vanishing o↵-shellness (or mass) of the soft quark. In this section, we provide

details on renormalizing the soft operator directly in the position space, which turns

out to be rather compact and easy to generalize to higher loops. The one-loop con-

tributions to O�(s, t) are depicted in Fig. 1. There are also mirror parts for diagrams

(a) and (c). Diagram (a) and its mirror give rise to non-local parts.2, and diagram

(b) gives rise to the local cusp terms, while (c) and (d) do not have UV poles. To

simplify the notation, we also use q(p) and q̄(p) to denote the external quark and

anti-quark fields in momentum space. We can put either the quark mass or the o↵-

shellness (but not both) to zero from the start since we focus on UV poles, and we

choose to drop the quark mass.

3.1 Coordinate-space calculation

Inserting the QCD interaction Lagrangian once, expanding the n�-Wilson line to first

order and performing Wick contractions, diagram (a) reads (We drop the subscripts

2The terminology here refers to the form of the contribution in position space, either simply
multiplicative (local), or as a convolution (non-local).

– 6 –

Oγ(s, t; μ) = Obare
γ (s, t) +

αs(μ)CF

4π ∫
1

0
du[( 1

ε2
+

2 ln (stμ2e2γE) − 1+ξ
2ε

(b)

+
1−ξ

ε
(c)

+
ξ
2ε⏟
Zq

)δ(1 − u)

−
2
ε [ u

1 − u ]
+

(a)

][Obare
γ (us, t) + Obare

γ (s, ut)] + 𝒪(α2
s )

d
d ln μ

Oγ(s, t, μ) = − [γγOγ](s, t; μ) ⟸ [γγOγ](s, t; μ) = −
αsCF

π { − (ln (stμ2e2γE) +
1
2 ) Oγ(s, t; μ)

+∫
1

0
du [ u

1 − u ]
+
(Oγ(us, t; μ) + Oγ(s, ut; μ))} + 𝒪(α2

s )



“non-abelian” gg → h
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(a) (b) (c) (d)

correlations involving semi-infinite Wilson lines  rapidity div.↝
similar as the abelian case, with replacement of color factors

(𝒴n±
(x))

ab
= ̂P exp [−gs f abc ∫

0

−∞
dλ eλ(−iδ±+0+)n± ⋅ Ac(x + λn±)]

 regulators in WL's are related to off-shell regulators in the full theory!δ

in+ ⋅ pc

(pc + ℓ)2 + i0+
⟶

i

n− ⋅ ℓ + p2
c

n+ ⋅ pc
+ i0+

≡
i

n− ⋅ ℓ + δ− + i0+
,

in− ⋅ pc̄

(pc̄ + ℓ)2 + i0+
⟶

i

n+ ⋅ ℓ + p2
c̄

n− ⋅ pc̄
+ i0+

≡
i

n+ ⋅ ℓ + δ+ + i0+
.



“non-abelian” gg → h
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I(δ±,ξ)
Ouns

g
= Ouns

g (s, t) +
αs(μ)

4π
2
ε (CF −

CA

2 )∫
1

0
du [ u

1 − u ]
+
(Ouns

g (us, t) + Ouns
g (s, ut))

+
αs(μ)

4π [ CA

ε (2 + ln (stμ2e2γE)+2 ln
−δ−δ+

μ2
−ln

∂s∂t

μ2 )
−2CF ( 1

ε2
+

ln (stμ2e2γE)
ε )+

CA

ε
(1 − ξ)−

CF

ε ] Ouns
g (s, t) + 𝒪(α2

s ) .

ε = εUV

𝕊g(0) = (𝒴n−
(0))ac(𝒴n+

(0))cb = [− ∞n−,0n−]ac[0n+, − ∞n+]cb

⟨𝕊g(0)⟩ = 1 +
αs(μ)

4π
CA [−

2
ε2

+
2 ln(−δ−δ+/μ2)+(1−ξ)

ε ] + 𝒪(α2
s )

0 0

Figure 3. Double lines superposed by wiggly lines represent light-like adjoint Wilson

lines. Simple wiggly line denotes the gluon propagator.

= 1 +
↵s(µ)

4⇡
CA


� 2

"2
+

2 ln(��1�2/µ2)

"

�
, (4.9)

where all divergences in either " ! 0 or �± ! 0 limit (or both) are kept. [•
Q15 sound like “and” but should be “or”?] Combined with (4.5), we see that

the rapidity regulators cancel entirely as expected and the correct double pole for

the non-abelian part is acquired,

IOg ⌘
I(�1,�2)
Og

R�R+
=

↵s(µ)

4⇡"

(
2

✓
CF � CA

2

◆ Z 1

0

du
hu

ū

i

+

⇣
Og(us, t) + Og(s, ut)

⌘

+


CA

✓
2

"
+ 2 + ln

�
stµ̃2

�◆
� 2CF

✓
1

"
+ ln

�
stµ̃2

�◆�
Og(s, t)

� CA ln
@t@s

µ2
Og(s, t)

)
+ O(↵2

s
) . (4.10)

Note that the subtraction factor R�R+ is in the same form of [21, 31], in which case

the QED counterpart of (4.6) was constructed. We will demonstrate in Sec. 4.4 their

relations to the two radiative jet functions calculated in [16].

The one-loop renormalization for the subtracted gluon operator Og (4.6) can then

be obtained immediately from (4.10). In position space, it takes the following form,

Oren
g

(s, t) = Obare
g

(s, t) +
↵s

4⇡

⇢
2

✏

✓
CF � CA

2

◆ Z 1

0

du
hu

ū

i

+

⇣
Obare

g
(us, t) + Obare

g
(s, ut)

⌘

+


2

✏2
(CF � CA) +

CA

✏
ln

✓
@s@t

µ2

◆
+

2

✏

✓
CF � CA

2

◆
ln(stµ̃2)

+
CF � 2CA

✏

�
Obare

g
(s, t)

�
+ O(↵2

s
) , (4.11)

and like in the photon case, we have added the quark self-energy (3.9). The ap-

pearance of ln(@s@t/µ2) in (4.10) in the momentum space is local, giving rise to

ln
`�`+

µ2
= ln

w

µ2
⌘ Lw in momentum space via (2.9). It is then straightforward

to find the renormalization constant in momentum space Zg(w, w0) by applying the

Fourier transform identities (3.12) and (3.13),

Zg(w, w0) = �(w � w0) +
↵s(µ)

4⇡

( 
2(CF � CA)

✓
1

"2
� Lw

"

◆
� 3CF

"

�
�(w � w0)

– 14 –

Og(s, t) ≡
Ouns

g (s, t)
⟨𝕊g(0)⟩

‣ subtract (divide out) Wilson lines for the “charges from/to infinity”, and rearrange to other parts 
in the factorization formula: IR rearrangement [MB, Bobeth, Szafron, 1908.0711];  

‣ reproduce the AD from consistency in [Liu, Neubert, Schnubel, XW, 2212.10447].



“non-abelian” gg → h
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ℳgg→h ⊇ H3 ⋅ [Jg(Mhℓ−)Jg(−Mhℓ+)] ⊗ Suns
g (ℓ−ℓ+) 𝔄+,(ξ)

g (k2
1) 𝔄−,(ξ)

g (k2
2)

= H3 ⋅ [Jg(Mhℓ−)Jg(−Mhℓ+)] ⊗ [
Suns

g (ℓ−ℓ+)

R(ξ)
+ R(ξ)

− ] [R(ξ)
+ 𝔄+,(ξ)

g (k2
1)] [R(ξ)

− 𝔄−,(ξ)
g (k2

2)]
[Liu, Neubert, Schnubel, XW, 2212.10447]

equal 1 to all oders if onshell

Sg(ℓ−ℓ+)

⟨𝕊g(0)⟩ = R(ξ)
− R(ξ)

+

‣ Each part in the bracket is well defined and gauge independent.

equal  if onshellSg



beyond one-loop

11

๏ At one loop, both AD's factorize in position space: ; 

๏ Factorized pieces can be rewritten by collinear conformal generators 

γi(s, t) = γi(s) + γi(t), i = γ, g

↪ ̂S + = s2∂s + 2js = sθs + 2js, ̂S 0 = s∂s + j = θs + j, ̂S − = − ∂s

̂T+ = t2∂t + 2jt = tθt + 2jt, ̂T0 = t∂t + j = θt + j, ̂T− = − ∂t

γγ(s, t) =
αs(μ)

4π [4CF ln (μ2e4γE ̂S + ̂T+) − 6CF] + 𝒪(α2
s )

γg(s, t) =
αs(μ)

4π [4 (CF −
CA

2 ) ln (μ2e4γE ̂S + ̂T+) + 2CA ln
̂S − ̂T−

μ2
− 6CF] + 𝒪(α2

s )

↪
γγ(s) =

αs(μ)
4π [4CF ln (μe2γE ̂S +) − 3CF] + 𝒪(α2

s )

γg(s) =
αs(μ)

4π [4 (CF −
CA

2 ) ln (μe2γE ̂S +) + 2CA ln
− ̂S −

μ
− 3CF] + 𝒪(α2

s )



beyond one-loop
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Oγ(s, t) = T {q̄(tn−)[tn−,0]
n−

2
n−

n+

2
[0,sn+]q(sn+)

n+

}/ /

twist-2 -LCDA operator:B T {q̄(tn−)[tn−,0]
n−

2
hv(0)}/

tn
−

0

sn+

“double-copy” of twist-2 -LCDAB

๏ The “abelian” case is essentially a “double-copy” of twist-2 -LCDA AD! B

๏ AD of the twist-2 -LCDA case is calculated to two loops [Braun, Ji, Manashov, 1905.04998].                                         
 Two-loop AD for the “abelian” case is for free. Agree with [Liu, Mecaj, Neubert, XW, Fleming, 2005.03013].

B
↪

γγ(s, t, μ) = ℋB(s, μ) + ℋB(t, μ)−2γQ

๏ No “double-copy” for the “non-abelian” case due to . A two-loop ansatz in the position space  
with the indirect constraint from [Liu, Neubert, Schnubel, XW,  2112.00018 ] on the constant :

̂S − ̂T−
Γg(αs)

ℋB(s, μ) = Γcusp (αs) ln (𝒦 (αs; s) μe2γE) + Γ+ (αs), 𝒦 (αs; s) = ̂S + + 𝒪(αs)

γg(s, t) = (ΓF
cusp(αs) −

1
2

ΓA
cusp(αs)) ln (𝒦 (αs; s) μe2γE) +

1
2

ΓA
cusp(αs)ln

̂S −

μ
+ Γg(αs) + (s → t)



Drell-Yan  channel @ NLPgq̄
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ONLP
gq̄,uns(x0, {s}) =

g2
s

NcCF
Tr T̄ [q̄s(x0 + s1n−)𝒴ca

n−
(x0 + s1n−)Tc [x0 + s1n−, x0] Yn+

(x0)] n−

4

× T [Y†
n+

(0)[0,s2n−] Td 𝒴ad
n−

(s2n−) qs(s2n−)]
0

−∞n−

−∞n+

tn−

x0

−∞n−

−∞n+

sn−

γgq̄(x0; s, t) =
αs(μ)

4π [4 (CF −
CA

2 ) ln (μ2e4γE ̂S + ̂T+) + 2CA ln
̂S − ̂T−

μ2
− 6CF

−4(CF + CA)ln (iμeγEx0/2) + β0] + 𝒪(α2
s )

DY LP-like

gg → h

๏ LP-like contribution factorizes from the NLP one; 

๏ The soft-quark effect is universal!

/
[Beneke, Broggio, Jaskiewicz, Vernazza, 1912.01585]



Conclusion and Outlook
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๏ NLP SCET is important in the precision era, and the soft-quark effect plays a 
key role; 

๏ Position-space formalism, together with the background-field method, is 
powerful in deriving the anomalous dimensions directly at the operator level; 

๏ Immediate steps for deriving AD's may involve IR (rapidity) divergences.  
regulators have a deep connection with factorization. 

➡ Apply the formalism to more NLP observables and try to classify the involved          
building blocks of AD's; 

➡  How much can conformal symmetry techniques help us on QCD and its EFTs?

δ

Thank you!


