

New tools for N-jettiness computations

High Precision for Hard Processes (HP2 2024)

Ivan Pedron in collaboration with Prem Agarwal, Kirill Melnikov and Philip Pfohl | 12. September 2024

www.kit.edu

Talk plan

This talk is based in our work presented in hep-ph/2403.03078 and ongoing research on power corrections

1. Introduction

- 2. Soft function calculation
- 3. Numerical checks
- 4. Power Corrections
- 5. Conclusions

00000 00000000 000 00000 00 00000 00	Introduction	Soft function calculation	Numerical checks	Power Corrections	Conclusions
--------------------------------------	--------------	---------------------------	------------------	-------------------	-------------

Introduction

Higher-order QCD corrections (at NNLO)

Subtraction methods

Analytically removes $1/\epsilon^n$ poles by constructing integrable counterterms

Antenna subtraction

Gehrmann-De Ridder, Gehrmann, Glover - hep-ph/0505111

CoLoRFul subtraction

Somogyi, Trócsányi, Del Duca - hep-ph/0502226

Sector subtraction

Czakon - hep-ph/1005.0274, Boughezal et al. - hep-ph/1111.7041

Catani, Grazzini - hep-ph/0703012

Projection-to-Born

Cacciari et al. - hep-ph/1506.02660

- Nested soft-collinear subtraction Caola, Melnikov, Röntsch - hep-ph/1702.01352
- Local analytic sector subtraction

Magnea et al. - hep-ph/1806.09570

Slicing methods

Imposes cuts in some variable to split the phase space. Below the cut a soft-collinear approximation is used

q_t-subtraction

- N-jettiness subtraction
 - Boughezal et al. hep-ph/1504.02131, Gaunt et al. hep-ph/1505.04794

Introduction

Soft function calculation

Numerical checks

Power Corrections

N-jettiness subtraction

The *N*-jettiness variable is defined by

$$\mathcal{T}(\mathcal{R},\mathcal{U}) = \sum_{x \in \mathcal{U}} \min\left\{\frac{2p_x p_{h_1}}{P_{h_1}}, \frac{2p_x p_{h_2}}{P_{h_2}}, \frac{2p_x p_{h_3}}{P_{h_3}}, \ldots\right\}$$

Can be used to perform a slicing of the phase space (like in q_T subtraction)

$$\sigma = \int^{\mathcal{T}_0} d\mathcal{T} rac{d\sigma}{d\mathcal{T}} + \int_{\mathcal{T}_0} d\mathcal{T} rac{d\sigma}{d\mathcal{T}}$$

and, thanks to the factorization theorem from SCET, we can calculate

00000

Karlsruher Institut für Technologie

N-jettiness subtraction

$$\int^{\mathcal{T}_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} = \int B \otimes B \otimes S \otimes H \otimes \prod_i^N J_i + \mathcal{O}(\mathcal{T}_0)$$

- The Beam and Jet functions (B, J_i) describe initial- and final-state collinear radiation, the Soft function S the soft radiation, and the (process dependent) Hard function H encodes the virtual corrections
- Small cutoff \mathcal{T}_0 required so that power corrections in \mathcal{T}_0/Q are under control
- At NNLO, all ingredients are known. S was available for 0-, 1- and 2-jettiness, but only recently for generic N-jettiness
 (hep-ph/2312.11626, hep-ph/2403.03078)
- At N3LO, only S is missing. The N3LO 0-jettiness soft function is almost here

(see Pikelner's and Chen's talks)

Introduction	Soft function calculation	Numerical checks	Power Corrections	Conclusions
--------------	---------------------------	------------------	-------------------	-------------

N-jettiness subtraction - power corrections

$$\int^{\overbrace{\mathcal{T}_0}} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} = \int B \otimes B \otimes S \otimes H \otimes \prod_i^N J_i + \mathcal{O}(\mathcal{T}_0)$$

- Slicing methods suffer from instabilities due to large cancellations between contributions if the slicing parameter (cutoff) is not sufficiently small
- To improve this we need to include more terms in the approximate computation of the singular contribution
- Power-suppressed terms, particularly *subleading* ones, were studied in recent years, mostly at NLO (hep-ph/1802.00456, hep-ph/1807.10764, hep-ph/1907.12213, hep-ph/1905.08741)

Introduction ○○○○●	Soft function calculation	Numerical checks	Power Corrections	Conclusions

Soft function calculation

In our soft function calculation

 Previous NNLO calculations mainly based on mapping the available phase space of soft-gluon emissions onto hemispheres and computing numerically.
 (Boughezal et al. - hep-ph/1504.02540, Campbell et al. - hep-ph/1711.09984, Bell et al. - hep-ph/2312.11626)

We use subtraction methods to calculate this ingredient of a slicing method, showing the explicit analytical cancellation of divergences. Also, N is treated genuinely as a parameter.

We show that borrowing ideas from NNLO QCD subtraction schemes is beneficial for computing ingredients of modern slicing calculations.

Introduction Soft function calculation	Numerical checks	Power Corrections	Conclusions
--	------------------	-------------------	-------------

Soft function renormalization

Loop-corrections are not present, so IR divergences turn into UV ones that require renormalization It is convenient to work in Laplace space

~

$$S(u) = \int_0^\infty d\mathcal{T} \; S_\mathcal{T}(\mathcal{T}) e^{-u\mathcal{T}}$$

Since the renormalization is multiplicative (with matrices in color space)

f we write the expansion in powers of
$$\alpha_s$$

$$S = Z \tilde{S} Z^{\dagger}$$

$$Z = 1 + Z_{1} + Z_{2},$$

$$S = 1 + S_{1} + S_{2},$$

$$\tilde{S} = 1 + \tilde{S}_{1} + \tilde{S}_{2},$$

$$\tilde{S} = 1 + \tilde{S}_{2},$$

$$\tilde{S} = 1 + \tilde{S}_{1} + \tilde{S}_{2},$$

$$\tilde{S} = 1 + \tilde{S}_{2},$$

$$\tilde{$$

4

Soft function at NLO

If we take $P_{h_i} = 2E_i$ with an unresolved gluon *m*, the *N*-jettiness is given by

$$\mathcal{T}(m) = E_m \psi_m = E_m \min\{\rho_{1m}, \rho_{2m}, \rho_{3m}, \dots, \rho_{Nm}\},\$$

where $\rho_{ij} = 1 - \vec{n}_i \cdot \vec{n}_j$. Then, the soft function is given by

$$S(\tau) = -\sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} g_{s}^{2} \int \frac{d\Omega_{m}^{(d-1)}}{2(2\pi)^{d-1}} \frac{dE_{m}}{E_{m}^{1+2\epsilon}} E_{m}^{2} \delta(\tau - E_{m}\psi_{m}) \langle S_{ij}(m) \rangle_{m}, \qquad S_{ij}(m) = \frac{1}{E_{m}^{2}} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}}$$

We integrate over energy and use that we know the limit $\lim_{m \mid i} \psi_m = \rho_{im}$, so we can rewrite

$$\psi_m^{2\epsilon} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} = \left(\frac{\psi_m\rho_{ij}}{\rho_{im}\rho_{jm}}\right)^{2\epsilon} \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}} = \left(1 + 2\epsilon g_{ij,m}^{(2)}\right) \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}}$$

Soft function at NLO

Knowing that ($\eta_{ij}=
ho_{ij}/$ 2)

Introduction

$$\left\langle \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}} \right\rangle_{m} = \frac{2\eta_{ij}^{\epsilon}}{\epsilon} K_{ij}^{(2)} = \frac{2\eta_{ij}^{\epsilon}}{\epsilon} \frac{\Gamma(1+\epsilon)^{2}}{\Gamma(1+2\epsilon)} \, _{2}F_{1}\left(\epsilon,\epsilon,1-\epsilon,1-\eta_{ij}\right),$$

in Laplace space we arrive to the following bare soft function

$$S_{1} = a_{s} (\mu \bar{u})^{2\epsilon} \frac{\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)e^{\epsilon\gamma_{E}}} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[\frac{\eta_{ij}^{\epsilon}}{\epsilon^{2}} \mathcal{K}_{ij}^{(2)} + \left\langle g_{ij,m}^{(2)} \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}} \right\rangle_{m} \right].$$

By combining S_1 with the renormalization matrices Z_1 and Z_1^{\dagger} , we finally obtain $(L_{ij} = \ln (\mu \bar{u} \sqrt{\eta_{ij}}))$

$$\tilde{S}_{1} = a_{s} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[2L_{ij}^{2} + \text{Li}_{2}(1 - \eta_{ij}) + \frac{\pi^{2}}{12} + \left\langle \ln \left(\frac{\psi_{m}\rho_{ij}}{\rho_{im}\rho_{jm}} \right) \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right\rangle_{m} + \mathcal{O}(\epsilon) \right]$$
Soft function calculation
Numerical checks
Power Corrections
Corrections

Soft function at NNLO

The NNLO contribution to the bare soft function is

$$S_2 = S_{2,RR} + S_{2,RV} - a_s \, rac{eta_0}{\epsilon} S_1$$

We further split the double-real contribution into correlated and uncorrelated pieces

$$S_{2,RR,\tau} = S_{2,RR,T^4} + S_{2,RR,T^2} = \frac{1}{2} \sum_{(ij),(k,l)} \{\mathbf{T}_i \cdot \mathbf{T}_j, \mathbf{T}_k \cdot \mathbf{T}_l\} I_{T^4,ij,kl} - \frac{C_A}{2} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j I_{T^2,ij}$$

The real-virtual contribution reads

$$S_{2,RV,\tau} = S_{RV,T^2} + S_{RV,tc} = \frac{[\alpha_s] \, 2^{-\epsilon}}{\epsilon^2} C_A A_K(\epsilon) \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ I_{RV,ij} + [\alpha_s] \frac{4\pi N_\epsilon}{\epsilon} \sum_{(kij)} \kappa_{ij} F^{kij} I_{kij}$$

where $\kappa_{ij} = \lambda_{ij} - \lambda_{im} - \lambda_{jm}$, with $\lambda_{ij} = 1$ if both *i* and *j* refer to incoming/outgoing partons and zero otherwise. We have defined $F^{kij} = f_{abc} T^a_k T^b_i T^c_j$, while $A_K(\epsilon)$ and N_{ϵ} are normalization factors.

Introduction	Soft function calculation	Numerical checks	Power Corrections	Conclusions
00000	000000000	000	000000	00

Soft function at NNLO

The calculation of the renormalized soft function is organized as follows

$$ilde{S}_2 = ilde{S}_2^{ ext{uncorr}} + ilde{S}_2^{ ext{corr}} + ilde{S}_2^{ ext{tc}}$$

Where the pieces are given by the following contributions

Uncorrelated emissionCorrelated emission $\tilde{S}_2^{\text{uncorr}} = \frac{1}{2}\tilde{S}_1\tilde{S}_1$ $\tilde{S}_2^{\text{corr}} = S_{2,RR,T^2} + S_{RV,T^2} - Z_{2,r} - Z_{2,r}^{\dagger} - \frac{a_s\beta_0}{\epsilon}S_1,$

Triple color terms

$$\tilde{S}_{2}^{\text{tc}} = \frac{1}{2} \left[Z_{1}, Z_{1}^{\dagger} \right] + \frac{1}{2} \left[S_{1}, Z_{1} - Z_{1}^{\dagger} \right] + S_{\text{RV,tc}}$$

Introduction ocooceeoo Numerical checks ocooceeoo Conclusions

Soft function at NNLO

Uncorrelated emission

$$ilde{S}_2^{ ext{uncorr}} = rac{1}{2} ilde{S}_1 ilde{S}_1$$

\rightarrow Easy to relate to iterations of NLO

Correlated emission

$$\tilde{S}_2^{\text{corr}} = S_{2,\textit{RR},\textit{T}^2} + S_{\textit{RV},\textit{T}^2} - Z_{2,\textit{r}} - Z_{2,\textit{r}}^\dagger - \frac{a_s\beta_0}{\epsilon}S_1,$$

→ Use nested soft-collinear subtraction, reuse results from calculation without jettiness-constraint

Triple color terms

$$ilde{S}_2^{ ext{tc}} = rac{1}{2} \left[Z_1, Z_1^\dagger
ight] + rac{1}{2} \left[S_1, Z_1 - Z_1^\dagger
ight] + S_{RV, ext{tc}}$$

→ Similar to NLO, reuse results from calculation without jettiness-constraint

Introduction Soft function calculation Ocooooooooooooooooooooooooooooooooooo	Corrections Conclusions
--	-------------------------

The final result

The NLO contribution was

$$\begin{split} \tilde{S}_{1} &= a_{s} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[2L_{ij}^{2} + \mathrm{Li}_{2}(1 - \eta_{ij}) + \frac{\pi^{2}}{12} + \left\langle L_{ij,m}^{\psi} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right\rangle_{m} \right], \\ \text{where } L_{ij} &= \ln(\bar{u}\sqrt{\eta_{ij}}\mu) \text{ and } L_{ij,m}^{\psi} = \ln\left(\frac{\psi_{m}\rho_{ij}}{\rho_{im}\rho_{jm}}\right). \end{split}$$

The NNLO one is

$$\tilde{S}_2 = \frac{1}{2} \tilde{S}_1^2 + a_s^2 C_A \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ G_{ij} + a_s^2 \ n_f \ T_R \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ Q_{ij} + a_s^2 \pi \sum_{(kij)} F^{kij} \ \kappa_{kj} G_{kij}^{\text{triple}},$$

where G_{ij} , Q_{ij} and G_{kij}^{triple} are finite functions with analytical terms along with a *low number numerical four-dimensional integrations* over one- and two-particle phase space

Introduction Soft function calculation Ocococoo	Introduction	Soft function calculation ○○○○○○○●	Numerical checks	Power Corrections	Conclusion
---	--------------	---------------------------------------	------------------	-------------------	------------

Numerical checks

Karlsruher Institut für Technologie

Numerical checks

• We compared our results with (see Rahn's talk):

The NNLO soft function for N-jettiness in hadronic collisions Bell, Dehnadi, Mohrmann, Rahn, arXiv hep-ph/2312.11626.

• We focus in the "new" 3-jettiness case, with two back-to-back beams. The five directions are

$$n_1 = (0, 0, 1), \quad n_2 = (0, 0, -1), \quad n_3 = (\sin \theta_{13}, 0, \cos \theta_{13}),$$

$$n_4 = (\sin \theta_{14} \cos \phi_4, \sin \theta_{14} \sin \phi_4, \cos \theta_{14}), \quad n_5 = (\sin \theta_{15} \cos \phi_5, \sin \theta_{15} \sin \phi_5, \cos \theta_{15}),$$

in the following phase-space point

$$\theta_{13} = rac{3\pi}{10}, \quad heta_{14} = rac{6\pi}{10}, \quad heta_{15} = rac{9\pi}{10}, \quad \phi_4 = rac{3\pi}{5}, \quad \phi_5 = rac{6\pi}{5}$$

15/22 12.9.2024 Ivan Pedron: New tools for N-jettiness computations

Numerical checks

Dipole configurations

Dipolee	Gluons		Quarks	
Dipoles	G_{ij}^{nl}	Bell et al.	Q_{ij}^{nl}	Bell et al.
12	116.20 ± 0.01	116.20 ± 0.16	-36.249 ± 0.001	$\textbf{-36.244} \pm 0.009$
13	38.13 ± 0.03	37.63 ± 0.03	-21.717 ± 0.007	-21.732 ± 0.005
14	63.63 ± 0.01	63.66 ± 0.06	-25.189 ± 0.003	-25.192 ± 0.006
15	107.17 ± 0.01	106.99 ± 0.12	-35.268 ± 0.001	$\textbf{-35.256} \pm 0.009$
23	97.11 ± 0.01	96.97 ± 0.10	-32.875 ± 0.002	-32.872 ± 0.008
24	67.36 ± 0.02	67.51 ± 0.08	-26.821 ± 0.003	-26.815 ± 0.007
25	30.87 ± 0.03	30.73 ± 0.04	-21.561 ± 0.009	-21.561 ± 0.005
34	69.43 ± 0.01	69.24 ± 0.07	-25.854 ± 0.002	-25.861 ± 0.006
35	106.13 ± 0.02	105.97 ± 0.13	-34.799 ± 0.002	-34.796 ± 0.008
45	74.45 ± 0.02	74.36 ± 0.09	-28.247 ± 0.004	-28.251 ± 0.007

Tripole sums

	$\widetilde{c}_{tripoles}$	Bell et al.
$\tilde{c}_{tripoles}^{(2,124)}$	$\textbf{-683.25} \pm 0.01$	$\textbf{-683.23}\pm0.04$
$\tilde{c}_{tripoles}^{(2,125)}$	-2203.3 ± 0.2	$\textbf{-2203.5}\pm0.1$
$\tilde{c}_{\text{tripoles}}^{(2,145)}$	$\textbf{-6.324} \pm \textbf{0.004}$	$\textbf{-6.325} \pm \textbf{0.04}$
$\tilde{c}_{tripoles}^{(2,245)}$	$\textbf{-0.837} \pm \textbf{0.008}$	$\textbf{-0.830} \pm \textbf{0.039}$

The tripole sums correspond to the four independent color structures as specified in hep-ph/2312.11626

Introduction

Soft function calculation

Numerical checks

Power Corrections

Power Corrections

Power corrections to color-singlet production

In the process with LO $f_a(p_a) + f_b(p_b) \rightarrow X(\tilde{P}_X)$, at NLO we have

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \mathcal{N} \int [\mathrm{d}\tilde{P}_X]_m [\mathrm{d}k] \delta(p_a + p_b - k - \tilde{P}_X) \delta(\mathcal{T} - \mathcal{T}_0(p_a, p_b, k)) \ \mathcal{O}(\tilde{P}_X) \sum_{\mathrm{col, pol}} |\mathcal{M}|^2(p_a, p_b, k, \tilde{P}_X)$$

Power corrections require the expansion in \mathcal{T} of two building blocks:

The soft and collinear contributions

Expansion in \mathcal{T} controlled by gluon emission angle θ_k

- If θ_k is $\mathcal{O}(1)$, the gluon energy is $\mathcal{O}(\tau)$ and so the expansion is the soft expansion
- If θ_k is $\mathcal{O}(\tau/m_V)$, then the angle is small and we expand in θ_k (collinear expansion)

The two distinct integration regions – soft and collinear – are associated with two "branches" of the cross section with respect to τ :

$$\frac{d\Sigma}{d\tau} \sim \tau^{-1-2\epsilon} f_{s}(\tau) + \tau^{-1-\epsilon} f_{c}(\tau)$$

The soft contribution

For Phase space: use mapping that absorbs the gluon k into the colorless final state (hep-ph/1910.01024)

$$P^{\mu}_{ab} = \lambda^{-1} \Lambda^{\mu}_{\nu} (P^{\nu}_{ab} - k^{\nu}), \qquad \lambda = \sqrt{1 - rac{2P_{ab} \cdot k}{P^2_{ab}}} \approx 1 - rac{P_{ab} \cdot k}{P^2_{ab}} + \mathcal{O}(k^2).$$

For Matrix element: we can use the LBK theorem to get the subleading terms

We arrive to the general expression:

$$\begin{aligned} \frac{\mathrm{d}\sigma^{(s)}}{\mathrm{d}\tau} &= \mathcal{N} \int [\mathrm{d}\Phi_m(p_a, p_b, P_X)] \left\{ \mathcal{O}(P_X) \left[I_1 - \kappa_m I_2 \right. \\ &\left. - I_2 \sum_{i \in L_I} p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \right] |\mathcal{M}|^2(p_a, p_b, P_X) - I_2 |\mathcal{M}|^2(p_a, p_b, P_X) \sum_{i=1}^m p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \mathcal{O}(P_X) \right\} \end{aligned}$$

Introduction

Soft function calculation

Numerical checks

Power Corrections

Karlsruher Institut für Technologie

The soft contribution

We arrive to the general expression in terms of the LO cross section:

$$\begin{split} \frac{\mathrm{d}\sigma^{(s)}}{\mathrm{d}\tau} &= \mathcal{N}\int [\mathrm{d}\Phi_m(p_a, p_b, P_X)] \left\{ \mathcal{O}(P_X) \left[I_1 - \kappa_m I_2 \right. \\ &\left. - I_2 \sum_{i \in L_l} p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \right] |\mathcal{M}|^2(p_a, p_b, P_X) - I_2 |\mathcal{M}|^2(p_a, p_b, P_X) \sum_{i=1}^m p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \mathcal{O}(P_X) \right\} \end{split}$$

Where the integrals I_i and the constant κ_m are

$$I_{1} = [\alpha_{s}] \left(\frac{Q}{\sqrt{s}}\right)^{-2\epsilon} \frac{4}{\epsilon \tau^{1+2\epsilon}}, \quad I_{2} = [\alpha_{s}] \left(\frac{Q\tau}{\sqrt{s}}\right)^{-2\epsilon} \frac{4Q}{s} \left(\frac{1}{2\epsilon} - \frac{1}{2} - \frac{\epsilon}{2} + \mathcal{O}(\epsilon^{2})\right), \quad \kappa_{m} = m(d-2) - d\epsilon$$

Introduction
occooSoft function calculation
occooNumerical checks
occooPower Corrections
occooConclusions
oc

The collinear contribution

For Phase space: we use a mapping that absorbs the transverse momentum of k into the colorless final state through a Lorentz Transformation

$$k^{\mu} = (1-x) p^{\mu}_{a} + ilde{k}^{\mu} \quad \Rightarrow \quad P^{\mu}_{X} = \Lambda^{\mu}_{
u} \left(ilde{P}^{
u}_{X} + ilde{k}^{
u}
ight)$$

For Matrix element: we have no analogous theorem (yet) available to get the subleading terms

Use the real emission matrix element, but some simplifications can be applied

This is still ongoing work...

Introduction Soft function calculation Numerical checks OCON Conclusion	Introduction	Soft function calculation	Numerical checks	Power Corrections	Conclusions
---	--------------	---------------------------	------------------	-------------------	-------------

Conclusions

In our work

- Calculated the *N*-jettiness soft function, demonstrating **analytical cancellation** of poles
- Derived a simple representation for finite jettiness-dependent remainder, allowing for faster implementations. In agreement with other calculations
- Showcased the benefits of using subtraction-inspired methods to derive building blocks of slicing methods
- We aim to establish a process-independent framework for power corrections in a generic color-singlet case
- Next-to-soft corrections can be obtained from LBK theorem, however, next-to-collinear term is not known in a compact form

Introduction	Soft function calculation	Numerical checks	Power Corrections	Conclusions ○●
--------------	---------------------------	------------------	-------------------	-------------------

Thank you!

Correlated emission

Introducing sectors, we arrive to

$$\begin{split} \bar{S}_{\omega}[I_{ij}^{tc}] &= \frac{N_{u}}{\epsilon} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle C_{mn} \left[d\Omega_{mn} \right] \theta^{b+d} w^{tc} \psi_{mn}^{4\epsilon} \bar{S}_{\omega} \left[\tilde{S}_{ij}^{gg} \right] \right\rangle_{mn} \\ &+ \frac{N_{u}}{\epsilon} \sum_{x \in \{i,j\}} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle (1 - \theta^{b+d} C_{mn}) \left[d\Omega_{mn} \right] C_{xmn} w^{tc} \psi_{mn}^{4\epsilon} \bar{S}_{\omega} \left[\tilde{S}_{ij}^{gg} \right] \right\rangle_{mn} \\ &+ \frac{N_{u}}{\epsilon} \sum_{x \in \{i,j\}} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle (1 - \theta^{b+d} C_{mn}) \left[d\Omega_{mn} \right] \bar{C}_{xmn} w^{mx,nx} \psi_{mn}^{4\epsilon} \bar{S}_{\omega} \left[\tilde{S}_{ij}^{gg} \right] \right\rangle_{mn}, \end{split}$$

where $\bar{C}_{xmn} = I - C_{xmn}$ and $[d\Omega_{mn}] = [d\Omega_m][d\Omega_n]$. The idea is to calculate the first two terms explicitly, and expand the last integrand in ϵ .

Back-up

24/22 12.9.2024 Ivan Pedron: New tools for N-jettiness computations