

Recent developments of NeatIBP

A package generating small sized integration-by-parts relations for Feynman integral reduction

Zihao Wu

Based on: Rourou Ma, Johann Usovitsch, ZW, Yingxuan Xu, Yang Zhang, 24xx.xxxx, related previous work: ZW, Janko Boehm, Rourou Ma, Hefeng Xu, Yang Zhang, Comput.Phys.Commun. 295 (2024) 108999 and important discussions with: David Kosower, Fabian Lange, Roman Lee, Yan-Qing Ma, Simone Zoia.

Multi-loop Feynman integrals in particle physics

Multi-loop Feynman integrals, frontiers

Feynman integral reduction

A linear independent basis of the scalar integrals

Computational bottle necks in integration-by-parts (IBP) reductions

A traditional IBP reductio method such as Laporta's algorithm Int. J. Mod. Phys. A, 2000, 15: 5087-5159. Computational bottle necks in frontier problems

Costing days/weeks on clusters for a cutting-edge problem

Costing hundreds of GB / several TB RAM or more

Generating small-size IBP system using NeatIBP

Contents

A brief review of NeatIBP

Review of NeatIBP, till its v1.0.2.4, the last published version (Comput.Phys.Commun. 295 (2024) 108999) at 14th May 2023

Recent developments and new features

Progress of NeatIBP from its v1.0.2.4 to the latest version, v1.0.5.1, at 6th Sep. 2024.

1. The spanning cuts method

2. The Kira+NeatIBP interface

3. Simplification of syzygy vectors using maximal cut

Contents

A brief review of NeatIBP

Review of NeatIBP, till its v1.0.2.4, the last published version (Comput.Phys.Commun. 295 (2024) 108999) at 14th May 2023

Recent developments and new features

Progress of NeatIBP from its v1.0.2.4 to the latest version, v1.0.5.1, at 6th Sep. 2024.

1. The spanning cuts method

2. The Kira+NeatIBP interface

3. Simplification of syzygy vectors using maximal cut

IBP relations in with multiple propagators

 Target integrals

 $G[1, 1, 1, \dots, 1, -1, -4]$
 $G[1, 1, 1, \dots, 1, -5, 0]$

$$\begin{array}{c} \text{IBP-Related integrals} \\ G[1,1,0,\cdots,1,-1,-2] & G[0,1,1,\cdots,2,0,-1] \\ G[2,1,0,\cdots,1,-1,-1] & G[0,1,1,\cdots,0,0,-2] \\ G[1,1,0,\cdots,1,-3,-1] & G[1,2,0,\cdots,1,-3,0] \\ \dots \end{array}$$

 $egin{array}{c} Master integrals \ G[1,1,1,\cdots,1,-1,0] \ G[1,1,1,\cdots,1,0,0] \ \ldots \end{array}$

Contains **redundant integrals** with denominator indices lifted

$$0 = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\partial}{\partial l_{k}^{\mu}} \frac{v^{\mu}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}} = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\frac{\partial v^{\mu}}{\partial l_{k}^{\mu}} - v^{\mu} \sum_{i=1}^{n} \frac{\partial D_{i}}{\partial l_{k}^{\mu}} \frac{\alpha_{k}}{D_{i}}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}}$$
Introducing multiple propagators

IBP relations from syzygy method

$$0 = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\partial}{\partial l_{k}^{\mu}} \frac{v^{\mu}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}} = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\frac{\partial v^{\mu}}{\partial l_{k}^{\mu}} - v^{\mu} \sum_{i=1}^{n} \frac{\partial D_{i}}{\partial l_{k}^{\mu}} \frac{\alpha_{k}}{D_{i}}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}}$$
Introducing multiple propagators

Janusz Gluza, Krzysztof Kajda, David A. Kosower: Phys.Rev.D 83 (2011) 045012 What if we find a good combination of *v* such that the additional *Di* cancels?

NeatIBP: syzygy method in Baikov representation

Feynman integrals in momentum space:

$$I[lpha_1, \cdots, lpha_n] = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{1}{D_1^{lpha_1} \cdots D_n^{lpha_n}}$$
 $\int \int \mathrm{Variable\ transformation}$

Baikov representation: integrates directly over propagators *zi*

$$I[lpha_1,\cdots,lpha_n]=C\int\mathrm{d} z_1\cdots\mathrm{d} z_nP(z)^lpharac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$$

IBP relations in Baikov representation

Polynomial equations in Baikov IBP relations

$$\left(\sum_{i=1}^n a_i(z) rac{\partial P}{\partial z_i}
ight) + b(z)P = 0$$

$$a_i(z)=b_i(z)z_i \ \ ext{for} \ i\in \{j|lpha_j>0\}$$

Generators of the solution module

$$egin{pmatrix} a_i \ b \end{pmatrix} \in M \ = < f_1, f_2, \cdots >$$

Specific IBP relation

(# generators) × (# seeds) = (# IBP relations)

IBP relation selection

An enough IBP system $0 = \sum_{j} c_{ij} I_j$ Column reduction (numeric + finite field)

Linearly independent system

$$0=\sum_j { ilde c}_{ij} I_j$$

Row reduction (numeric + finite field) $R_{ik} = L_{ij} \tilde{c}_{jk}$

Remove the unneeded relations for reducing the targets

Small-size IBP system minimally needed

Tail mask strategy

Performance of NeatIBP

2L5P Example

Target integrals with high-degree numerators Quantity: 2483

of IBP (FIRE6): **11207942**

Max numerator degree: 5 Max denominator power: 1 # of MI: 61 # of IBP: **14120**

Time used: 27m at

CPU threads: 20 RAM: 128GB

Contents

A brief review of NeatIBP

Review of NeatIBP, till its v1.0.2.4, the last published version (Comput.Phys.Commun. 295 (2024) 108999) at 14th May 2023

Recent developments and new features

Progress of NeatIBP from its v1.0.2.4 to the latest version, v1.0.5.1, at 6th Sep. 2024.

1. The spanning cuts method

2. The Kira+NeatIBP interface

3. Simplification of syzygy vectors using maximal cut

Generalized unitarity cuts in Baikov representation

$$I_{lpha_1,\cdots,lpha_n}|_{\mathcal{C}- ext{cut}} \propto \oint_0 \prod_{i\in\mathcal{C}} \mathrm{d} z_i \int \prod_{i
otin\mathcal{C}} \mathrm{d} z_i P^lpha rac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$$

Cuts change the integrals but preserve IBP relations

$$\sum_i c_i I_i = 0 \quad \longrightarrow \quad \sum_i c_i (I_i|_{\mathcal{C}- ext{cut}}) = 0$$

Cuts increases the number of *zero sectors* in a family

$$\mathcal{C}
ot \subseteq S \Rightarrow I|_{\mathcal{C}- ext{cut}} = 0, orall I \in ext{Sector } S$$

Spanning cuts method

A spanning cuts $\{C_i\}$ is defined so that for all nonzero sector S in a family, $\exists C_i$, such that $C_i \subseteq S$ $\{1,3\} - \operatorname{cut} \{2,4\} - \operatorname{cut}$

Step 1: Run NeatIBP on each cut

Current version of NeatIBP avoids cutting multiple propagators. Thus, for integrals such that $lpha_i=1, i\in \mathcal{C}$, $\mathcal{C} ext{-cut}$ means

 $P o P|_{z_i o 0, i \in \mathcal{C}}$

Step 2: Reduce the IBP system on each cut

Step 3: Merge the reduced IBP system of all cuts

Benefit:

1.Σ difficulty of evaluation on
spanning cuts < evaluation on the
family as a whole
2. Parallelizable

Merging the spanning cut systems

$$\begin{split} I|_{\{1,3\}\text{-cut}} &= \sum_{i} c_{\{1,3\},i}^{1234} I_{i}^{1234}|_{\{1,3\}\text{-cut}} + \sum_{i} c_{\{1,3\},i}^{13} I_{i}^{13}|_{\{1,3\}\text{-cut}} \\ I|_{\{2,4\}\text{-cut}} &= \sum_{i} c_{\{2,4\},i}^{1234} I_{i}^{1234}|_{\{2,4\}\text{-cut}} + \sum_{i} c_{\{2,4\},i}^{24} I_{i}^{24}|_{\{2,4\}\text{-cut}} \\ & \swarrow \\ & \swarrow \\ & \text{merge} \end{split}$$

$$I = \sum_i c_i^{1234} I_i^{1234} + \sum_i c_i^{13} I_i^{13} + \sum_i c_i^{24} I_i^{24} ~~ (c_i^{13})^{13}$$

Currently, NeatIBP uses a "direct" merging strategy:

$$\left\{ \begin{array}{l} c_i^{13} = c_{\{1,3\},i}^{13} \\ c_i^{24} = c_{\{2,4\},i}^{24} \\ c_i^{1234} = c_{\{1,3\},i}^{1234} = c_{\{2,4\},i}^{1234} \end{array} \right.$$

NeatIBP checks consistency conditions before merging the spanning cut systems. This step cannot be omitted because the condition is **NOT** always guaranteed according to our observation.

Automated evaluation on spanning cuts in NeatIBP

Phys.Rev.D 109 (2024) 7, L071503

Plainly running NeatIBP:

No, I cannot finish this computation. I stuck at syzygy vectors evaluation for days.... \mathfrak{S}

Running NeatIBP with spanning cuts CutIndices = "spanning cuts";

Yes, after splitting the problem into 29 pieces of different cuts, I finished the IBP relation generation on spanning cuts in 10+ hours. ^(C)

Contents

A brief review of NeatIBP

Review of NeatIBP, till its v1.0.2.4, the last published version (Comput.Phys.Commun. 295 (2024) 108999) at 14th May 2023

Recent developments and new features

Progress of NeatIBP from its v1.0.2.4 to the latest version, v1.0.5.1, at 6th Sep. 2024.

1. The spanning cuts method

2. The Kira+NeatIBP interface

3. Simplification of syzygy vectors using maximal cut

Currently, NeatIBP itself dose not perform IBP reduction

KIRA Comput.Phys.Commun. 230 (2018) 99-112, Comput.Phys.Commun. 266 (2021) 108024, etc. as a popular integral reduction software, is a very nice IBP solver for NeatIBP output.

Kira allows user to feed in linear systems of IBP relations (called user defined system) and then reduce them .

The Kira+NeatIBP interface is included in the latest version of NeatIBP (v1.0.5.1, at 6th Sep. 2024)

In NeatIBP (since v1.0.5.0), to use Kira to reduce the IBP generated by NeatIBP, add the following commands into NeatIBP "config.txt"

PerformIBPReduction=True; IBPReductionMethod="Kira"; KiraCommand="/some/path/kira" FermatPath="/some/path/fer64"

The Kira+NeatIBP interface (spanning cuts mode)

Parallelized by default

CutIndices = "spanning cuts";

A baby example of Kira+NeatIBP performance (with spanning cuts)

Two-loop five-point, with numerator degree 3

Running NeatIBP + Kira in spanning cuts mode:

- 1. NeatIBP: Generates equations on 10 spanning cuts, using 5m
- 2. Number of equations: vary from 130 ~ 624, on different cuts
- 3. Kira running time: 10m (including converting, checking consistency, reducing and merging, in parallel mode)

Running NeatIBP + Kira in normal mode:

- 1. NeatIBP: Generates 1358 equations spanning cuts, using 16m
- 2. Kira reduction time used: 27m

Another example of Kira+NeatIBP performance (with spanning cuts)

Three-loop four-point, with numerator degree 5

Running NeatIBP + Kira in spanning cuts mode:

- 1. NeatIBP: Generates equations on 22 spanning cuts, using 6h21m
- 2. Number of equations: $2k \sim 10k+$ or so, at most 35k, on different cuts
- 3. Kira running time: 7h40m (including converting, checking consistency, reducing and merging, in parallel mode)

Running NeatIBP + Kira in normal mode:

1. NeatIBP: Generates 114k equations spanning cuts, using 18h44m

2. Kira reduction: Testing in progress. Timing unknown yet. My 128GB RAM limit on the current machine is exceeded.

Contents

A brief review of NeatIBP

Review of NeatIBP, till its v1.0.2.4, the last published version (Comput.Phys.Commun. 295 (2024) 108999) at 14th May 2023

Recent developments and new features

Progress of NeatIBP from its v1.0.2.4 to the latest version, v1.0.5.1, at 6th Sep. 2024.

1. The spanning cuts method

2. The Kira+NeatIBP interface

3. Simplification of syzygy vectors using maximal cut

Generator vector of the solution module of the syzygy equations

Symbolic IBP relation

$$egin{aligned} egin{aligned} egin{aligned} a_i \ b \end{pmatrix} \in M \end{aligned} egin{aligned} & 0 = \int \mathrm{d} z_1 \cdots \mathrm{d} z_n igg(\sum_{i=1}^n igg(rac{\partial a_i}{\partial z_i} - lpha_i b_i igg) + lpha b igg) P^lpha rac{1}{z_1^{lpha_1} \cdots z_n^{lpha_n}} & & \ & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & \ & \ & & \ &$$

Specific IBP relation

(# generators) \times (# seeds) = (# IBP relations)

Generator vector of the solution module of the syzygy equations

Formal IBP relation

$$egin{aligned} egin{aligned} egin{aligned} a_i \ b \end{pmatrix} \in M \end{aligned} egin{aligned} 0 &= \int \mathrm{d} z_1 \cdots \mathrm{d} z_n igg(\sum_{i=1}^n igg(rac{\partial a_i}{\partial z_i} - lpha_i b_i igg) + lpha b igg) P^lpha rac{1}{z_1^{lpha_1} \cdots z_n^{lpha_n}} \ &igg[Seeding & ec{lpha} o (1, \cdots, 1, -2, -3) & ec{lpha} o (1, \cdots, 1, 0, -5) & ec{lpha} o (1, \cdots, 1, 0, -5) & ec{ec{lpha}} \end{array} \end{aligned}$$

Specific IBP relation

(# generators) × (# seeds) = (# IBP relations)

~ hundreds large binomial numbers Seeding cost \uparrow

Tail mask strategy

Treating tail integrals as zeros:

- 1. IBP relations containing only sub sector integrals will be discarded
- 2. This is equivalent to maximal cut (mc):

$$ext{ for } I \in ext{ sector } S\,,\,\, \left. I
ight|_{ ext{mc}} := I|_{S ext{-cut}}$$

Maximal cut

Consider IBP relations with "no-multiple-propagator" integrals in a sector *S* such that $\begin{cases} \alpha_i = 1, & i \in S, \\ \alpha_i < 0, & i \notin S, \end{cases}$

Define maximal cut on a syzygy vector

$$f:=egin{pmatrix} a_i\ b\end{pmatrix}\in M \qquad \qquad fert_{\mathrm{mc}}:=fert_{z_i o 0,i\in S}$$

From the IBP formula

$$0=\int \mathrm{d} z_1\cdots \mathrm{d} z_n igg(\sum_{i=1}^n igg(rac{\partial a_i}{\partial z_i}-lpha_ib_iigg)+lpha bigg) P^lpha rac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$$

We have

 $\|f\|_{
m mc}=0 \quad \Leftrightarrow \quad$ Corresponding IBP relation contains only integrals in sub sectors

Simplification of syzygy generators via maximal cut

Delete generators that dose not change the "maximal cut" module $M|_{mc}$ defined as

$$M|_{\mathrm{mc}}:=\langle f_1|_{\mathrm{mc}},f_2|_{\mathrm{mc}},\cdots
angle \hspace{1.5cm} ext{for}\hspace{1.5cm}M=\langle f_1,f_2,\cdots
angle$$

Step 1: Using "maximal cut" Groebner basis

$$\left| G
ight|_{
m mc} := {
m GB}(M|_{
m mc}) = \langle g_1, g_2, \cdots
angle \qquad ext{ lifting } g_i = \sum_j c_{ij} f_i |_{
m mc}$$

Delete f_j in generators of M if $c_{ij} = 0, \forall i$ Because this means $f_j|_{
m mc}$ does not contribute to $M|_{
m mc}$

Step 2: Scanning

After step 1, sort the remaining generators from complex to simple $M' = \langle f'_1, \dots, f'_n \rangle$ Scanning *i* from 1 to *n*, if deleting f'_i does not change the GB of maximal cut module, then delete it. Example

Top sector of a pentagon-box diagram

Before simplification: (# generators) = 374

After simplification: (# generators) = 14

~ 25 times shortened

More general cases

$$0 = \int \mathrm{d} z_1 \cdots \mathrm{d} z_n igg(\sum_{i=1}^n igg(rac{\partial a_i}{\partial z_i} - lpha_i b_i igg) + lpha b igg) P^lpha rac{1}{z_1^{lpha_1} \cdots z_n^{lpha_n}}$$

Consider IBP relations with generic integrals in a sector *S* such that $\begin{cases} lpha_i > 0, & i \in S \\ lpha_i \leq 0, & i \notin S \end{cases}$

modification

$$f:=egin{pmatrix} a_i\ b\end{pmatrix}\in M \quad \longrightarrow \quad f:=egin{pmatrix} ilde{a}_i\ b\end{pmatrix} ext{ where } egin{pmatrix} ilde{a}_i:=egin{pmatrix}rac{a_i}{z_i}, & i\in S\ a_i, & i
otin S \end{pmatrix}$$

Summary

The integration-by-parts (IBP) reduction is one of the bottle-neck steps in the evaluation of Feynman integrals.

NeatIBP is a automated program generating small-size IBP system. It helps to reduce the computation cost of IBP reduction.

We have introduced some new features of NeatIBP till its latest version. They include:

- 1. The spanning cuts method : Splitting the hard problem into simpler pieces.
- 2. The Kira interface: Providing automated IBP solver.
- 3. Simplification of syzygy generators using maximal cut method: Making the seeding process computational cheaper.