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Introduction



Exclusive jet cross-sections
Gaps between jets

• We are interested in cross sections of the form




• The energy veto  introduces non-global 
logarithms  


• What does “out” mean?


• Fixed cone cross section: “out” depends only on the 
hard scale dynamics 


• Sequential clustering: “out” also depends on the soft 
scale dynamics.
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Non-Global v.s. Clustering Logs
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NG

Due to correlated 
emissions.

Due to uncorrelated 
emissions. Even exist 
in QED.

CL
First emission 
changes gap for 
second emission



Non-Global and Clustering Logarithms (an incomplete history)

• NGLs first discovered by  Dasgupta and Salam in 2001 (hep-ph/0104277) 


•NLL NG resummation recently achieved. (GNOLE: 2111.02413, SCET: 2307.02283,PANSCALES: 
2307.11142) 


• LL Beyond leading color:                                                                                                     
(Weigert: hep-ph/0312050, Hatta,Ueda: 2011.04154, Plätzer et. al.: 1312.2448, 1802.08531,1905.08686)


•Resummation of Super Leading Logs (SLL): (Becher et. al. 2107.01212 and follow-up papers)


•Clustering Logarithms (CL): Discovered shortly after NGLs (Appleby, Seymour: hep-ph/
0211426])


• Analysed in SCET: (R. Kelley, J.R. Walsh and S. Zuber: 1202.2361,1203.2923) A factorisation theorem 
for CL in SCET as a product of a hard and soft function was thought to be 
impossible
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What does “out” mean?

• We run an inclusive -type jet clustering on the partons  , which 
yields the jet momenta .


• For each jet, decide whether it is “in” or “out”, e.g.,


• only the  hardest jets are “in” for  jet cross sections or (Such vetos are 
very common at the LHC)


• only the jets which are in a cone with (half)-opening angle  around the 
thrust axis are “in”


• Then define 

kT {p1, …, pn}
{P1, …, PnJ

}

M M

α

Eout  =
nJ

∑
j=1

P0
j Θout (Pj)
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-type clustering algorithmkT
1. For a list of partons with momenta , determine the distances  

                                                                                 
:      : C/A   : Anti- 


2. Find the minimum of the  and .


3. If it is a , combine the two partons into a single one with combined momentum  
and return to step 1. 


4. Otherwise, if the minimum is a , declare the corresponding particle to be a jet, remove it from 
the list of particles, and return to 1.


5. Stop when no particles remain.

{p1, …, pn}

p = 1 kT p = 0 p = − 1 kT

dij di

dij pij = pi + pj

di
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Determines the 
clustering distance
Gives an approximate order 
in which things cluster



Factorisation and Resummation



Factorisation Theorem
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Factorisation for clustering:

It is convenient to 
have the hard 
particles ordered 
by energy

We need the energy fractions               to solve .  is not a 
simple product anymore

Θin Θin



RG Evolution and Resummation
Anomalous dimensions
• The renormalised hard function satisfies an RGE: 




• The anomalous dimension is a matrix in multiplicity space 




•  is obtained from the soft emission limit of 


•  is obtained from the soft gluon loop limit of 

Rm 𝓗(0)
m+1

Vm 𝓗(1)
m
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RG Evolution and Resummation
Anomalous dimensions
• At NLO, the anomalous dimensions are given by 


• At NNLO the structure of the anomalous dimension gets more complicated:
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Strong energy ordering!

• New and interesting


• Contains 4-parton correlators


• Depends on details of clustering, e.g. 
WTA or E scheme



Parton Shower (@Leading Color)

• Shower time  


• Shower generates real emissions by randomly choosing dipoles and emission 
times according to . 


• Stops, once a new emission does not satisfy the “in”-condition.


• Angular integrals are done with the MC-sampling


• Energy integrals are trivial at LL due to the  term in 


• The only additional difficulty related to the clustering is to determine the “in”
condition for each new emission

t =
αS

4π
log(

Q
Q0

)

Vm

δ(zi) Rm
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Strongly Ordered Clustering



Example Situation for diet production
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LL Features



Clustering Effects With Jet Veto On Extra Jets
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1. Why does this flatten off?

2. Why are primary 
approximations decent?

Does this flatten off or not?!

Σ(t) =
σ(t)
σB



Effective Gap Area
• Note, if there is no gap then there is no veto and there are no large logs


• With the clustering, the gap becomes smaller with each emission. At some 
shower time it should vanish completely and the shower should evolve 
unitarily.


• Cross section becomes independent of t(Q0)
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Effective Gap Area



How good is the primary approximation?

19

 The table lists the ratio  at (Σprimary(t) − ΣLL(t))/ΣLL(t) t = 0.07

Just ignoring the non-global 
effects due to “new” dipoles 
(pretending the gluons are 
photons) gets you within 10% 
of the correct result for 
-clustering!


Note that 10% is also roughly 
the effect of subleading color 
or NLL corrections!


kt



Reduction of NG Effects
The strong suppression of the gap fraction due to NGL is driven by collinear 
emissions into the gap:
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Without clustering, 
collinear emissions soon 
dominate 

At shower times of  roughly 10% of the 
gluons emitted into the gap are emitted with 

, i.e. 

t ∼ 0.07

0.3 < cos θ < 0.4 66∘ < θ < 73∘

θ

The plots show at which angle from the emitting dipole gluons are radiated 
into the gap.



Reduction of NG Effects
The strong suppression of the gap fraction due to NGL is driven by collinear 
emissions into the gap:
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The plots show at which angle from the emitting dipole gluons are radiated into the 
gap.

Without clustering, 
collinear emissions soon 
dominate 

For  clustering, there is 
a strict bound on 
collinear emission
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Conclusion
• Presented a first factorisation theorem applicable to NG observables with 

clustering effects


• Derived the 1-Loop anomalous dimension


• Simplified sequential clustering algorithms at LL


• LL result was implemented in a parton shower. Our result agrees with results 
previously calculated with different methods. Using the shower we


• analysed how the “effective gap” seen by emissions shrinks with larger  
(smaller )


• shed light on how clustering suppresses the importance of collinear emissions 

t
Q0

22



Outlook
• calculate the two loop anomalous dimension to go to NLL


• expand our analysis to more general, possibly double logarithmic, 
observables (like jet masses)


• analyse the effect of subleading color


• look at hadron collider observables including also SLL
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Back-up slides

24





Global, Non-Global, Clustering, Super-Leading
What is what?

• All of these are logarithms of


• In general, one has all of those and they mix. Instead of listing which types of logs 
exists for a given observable, one should rather state which logs are absent. 

26

Global Non-Global Super-leading Clustering

Towers of             expected 
from naive exponentiation 
of the fixed order result. 

We only need to consider 
the primary hard partons 

as emitters. (Concept does 
not really make sense 

beyond LL) 
 

Even at LL, non-abelian 
strongly ordered emissions  

destroy the naive 
exponentiation starting 

from     . With every 
additional emission one 

gets new dipoles that can 
again radiate and generate 

new “non-global” logs.       

At hadron colliders, 
starting at      and beyond 
LC, collinear singularities 

do no longer cancel 
exactly between real and 
virtual emissions due to 

Glauber exchanges. 
Starting from     these 

effects are super-leading.

If the shape of the gap 
changes with every 
emission, then even 

abelian emissions do not 
exponentiate. Leading to 

additional non-global logs 
at     .   



RG Evolution and Resummation
• The resummed cross section becomes 

                     
with the evolution kernel 


• We implement this equation in a Parton shower with the shower time


• Define


• Iterative solution


• And combine everything as   


• At leading color, one can reformulate the solution as a parton shower (LL: Becher 
et. al.: 1803.07045,2006.00014, NLL: Becher,  Schalch, Xu: 2307.02283)
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Strongly Ordered Clustering

• Note: If the jet clustering on  yields the jets , then 
the clustering on  either 


1. yields the same jets 


2. or 


• In case 1., the “in” condition is satisfied


• In case 2., we only need to check the new jet


• How to simplify the clustering, taking into account the strung ordering?

{p1, …, pm} {P1, …, PnJ
}

{p1, …, pm, pm+1}

{P1, …, PnJ
}

{P1, …, PnJ
, pm+1}
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Factorisation Theorem
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Factorisation for fixed cones:

Note, that 
 

is very simple
Θin({p}) = Θin(n1)Θin(n2)…



-Clustering With Central Rapidity GapkT
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Effect of  jet-clustering on the gap fraction for a fixed   
central rapidity gap of . In this set-up, emissions 
can never cluster with the primary jets.

kt
Δη = 1

As a check, we compared with 
(Delenda, Appleby, Dasgupta, Banfi hep-ph/0610242) 
and reproduced their result.

Here and in the 
following, we always 
plot the gap fraction for 
diet production: 

Σ(t) =
σ(t)
σB



Example Situation for diet production
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Example Situation for diet production

32

Primary particles
First emission “in”
Second emission “in”
Second emission “out”

Phase space, where the 
second emission would be in

2

2

12

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

C/A



Example Situation for diet production
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Take Away
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The “in” region for  is obtained by pm+1

Anti  

Putting a “circle” of 
radius  around every 

jet 


No growth! (Like fixed 
cones)

kT

R
{P1, …, PnJ

}




Putting a “circle” of 
radius  around every 
particle :


Fast growth!

kT

R
{p1, …, pm}

C/A 

Putting a “circle” of 
radius  around 

every particle 
, where  

is the distance with 
which  became a jet 
or was clustered with 

a harder parton


Steady growth!

δi ≤ R

{p1, …, pm} δi

pi


