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Outline

1. Numerical scattering amplitudes with pySecDec 

2. Application to                 production

3. Constructing an amplitude grid
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1. Numerical Scattering Amplitudes with pySecDec
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● Generation: Write amplitude as sum of Feynman diagrams

– This results in a very large number of linearly dependent Feynman integrals

● Reduction: Find basis of linearly independent master integrals through IBP relations

● Evaluation: Evaluate the master integrals

– With many loops, scales and legs this is very hard analytically 

– Resort to numerical solutions (pySecDec) 

Calculating an amplitude
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Evaluating with pySecDec

● Targets dimensionally regulated Feynman integrals

● Two-step process:

1. Sector decomposition: Isolate and extract singularities as expansion in the regulator, do once

2. Quasi-Monte Carlo (QMC) integration, do once for each phase space point
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● Transforms integral into sums of expansions in the regulator

● Singularities are extracted as poles in regulator with simple subtraction terms

Sector Decomposition

Finite piece, integrate numerically!

Parameter integrals
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Contour Deformation

● Sector decomposition extracts endpoint singularities only

– Kinematic (bulk) singularities are avoided with contour deformation 

● Contour deformation works in most cases, but is computationally very expensive

– New ideas to avoid having to use contour deformation [2407.06973], (see talk by Stephen Jones)

Complicates integrand massively
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● Observation:      ,    take          from a low discrepancy sequence (R1SL-rule)

● Estimate of integral is achieved through random shifts

● Error convergence:   and

QMC Integration

Random samples (MC) Quasi-random samples (QMC) Random shifts (RQMC)
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2. Application to        production
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Motivation

● Why is this an interesting process?
– Direct sensitivity to the top-quark Yukawa coupling yt

– Probe CP properties of yt   [2208.02686 (CMS) 2303.05974 (ATLAS)]

● Projected statistical uncertainties for HL-LHC ~2-3% [Snowmass ‘22]

– Systematics will dominate

● At NLO QCD scale uncertainties ~10-15%

– NNLO QCD amplitude necessary to match precision

– Approximations exist [2210.07846, 2402.00431] (see talks by Chiara Savoini and Guoxing Wang)
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Generation

● Generate Feynman diagrams and insert Feynman rules  (Qgraf [1])

● Project amplitude onto the Born 

– Also: 

● Spinor and colour summations (Form [2], COLOR.H [3], Alibrary [4])

● For the Nf – part [2402.03301] of the amplitude, this yielded ~20 000 scalar integrals

– For the full       channel ~90 000 integrals 
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● Generation produces many linearly dependent integrals

– IBP reduction reveals linear relations and allows construction of a basis of master integrals

● Ideally: solve the system of IBP equations symbolically once and for all

● In reality: 

– we have

– Symbolic reductions are at the moment not possible 

● Solution: plug in numbers for each variable and solve system numerically [5-7]

– Need to solve the IBP system repeatedly for each phase space point ~ O(minutes)

● Evaluate linear combination of reduced integrals with pySecDec ~ O(minutes)

– New in 1.6: Optimized for sums of integrals [2305.19768]

Reduction and Evaluation
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3. Constructing an Amplitude Grid
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Amplitude Grids

● Amplitudes are used to compute physical observables

● These integrals require millions of MC samples

– Evaluation time of amplitude at 1 point ~ O(minutes)

– Evaluation time of 1 observable ~ O(years)

● The solution is to evaluate the amplitude at a few points and interpolate for values in between

– This implies there will be interpolation/grid uncertainties

– How do these uncertainties propagate to observables?

Phase space differential

Amplitude PDFs
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● Our goal: approximate                   with some     defined on the whole phase space, based on the 
knowledge of      at some data points

– When the approximation error of      is “small enough”, the calculation is finished

● Two main questions:

1. What should      be? (polynomial, spline, neural network etc.)

2. Where to evaluate    ? (selecting interpolation nodes)

● Promising approximation methods we have investigated:

– Chebyshev polynomials (global)

– Sparse grids

– Spline interpolation

– Neural networks (GATr) [2405.14806]

The Interpolation Problem

Spatially adaptive sparse grid



16

Why is this difficult?

● 2  2 : Usually 2 phase space variables→

● 2  3 : Usually 5 phase space variables→

● Points with increasing dimension:

– Curse of dimensionality
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● Naive estimate:      ,  this often overestimates the error

– A flat MC over-samples physically irrelevant regions of phase space

● Weight samples toward “relevant” phase space regions

● Define the “error” as the variational distance of the probability distributions

,      ; target probability density for 

● Ensures the error on              

● If    then take     and MC integrate: 

Error Estimation
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Error convergence: tt̄H at NLO
How many validation points are required?

● “Waste” as few points as possible on validation : errors defined as 1-norms stabilize quickly



19

Comparison of Interpolation Methods
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Amplitude grid uncertainty: qq̄→tt̄H at NLOB-SplineChebyshev Poly.Sparse GridNeural Network (GATr)
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Summary

● pySecDec is used to compute scattering amplitudes numerically

– Current goal is the virtual amplitude to                    at NNLO

● Amplitude grids are required for combination with MC event generators

– Especially for 2  3 processes with slow numerical evaluation times→

– This requires careful consideration of grid uncertainties

– Grids can be optimized towards specific observables through physical arguments

● Our goal is to have an interpolation framework that can handle 2  3 scattering problems→

● Next: apply to        production and other processes 
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● Classical QMC error bound:       (Star disc. ; Hardy and Krause variation) 

● Smooth integrands have:       (dimension dependent?!)

● In certain weighted function spaces convergence becomes independent of dimension

● Example: Korobov space of periodic smooth functions

– Our integrands are usually smooth but not periodic: Apply Korobov transformation

– Differentiable integrands after Korobov transformation have:

– Convergence is independent of dimension 

Backup: QMC Integration
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Backup: Latest pySecDec Release

● New QMC integrator “Disteval” (distributed evaluation)

– Code improvements on CPU and GPU side

– Up to an order of magnitude performance increase compared to previous versions

● Median generating vectors (new QMC lattice rule)

– Avoids unlucky lattices

● Automated detection and insertion of extra regulators in EBR

– Resolves spurious singularities introduced by EBR

● Increased practicality of amplitude calculations (sums of integrals)
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Backup: Disteval speed-up sources
● Reasons for speedup:

– Separated GPU and CPU code generation enable hardware specific optimizations

– Integrand samples are summed up on the GPU using the Nvidia CUB library

– Support for the Single Instruction, Multiple Data (SIMD) instruction set

– Reduced overhead (very significant for small integrands)
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Backup: Selecting an IBP basis

● An IBP basis is not unique, which master integrals should be selected?

● Four criteria: 1. finiteness, 2. D-factorising, 3. fast to evaluate with pySecDec,         
4. simple denominators in IBP coefficients

● Finiteness and D-factorisation is achieved by dimension shifts and dotted propagators
– d=4,6,8 for most integrals (d=2 for some easy ones with 4 propagators)

– 2 dots in most sectors, in some lower sectors there are more dots (up to 6 for a three propagator integral)

● Fast evaluation and simple denominators is done through trial and error
– Generate a basis that fulfills finiteness and D-factorisation

– Perform reductions while neglecting sub-sectors for sets of master integrals, select the set with smallest 
denominator factors

– Benchmark which master integrals in this set are fast to evaluate with pySecDec

– Repeat the process while restricting the basis to include the fast to evaluate masters
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Backup: Training Data

● Interpolation nodes (“data points”) can be selected freely

– Depends on the interpolation method

● Also: target function can be freely modified, try to get as flat function as possible!

– Include/exclude phase space factors, PDF weights, flux factor

– Other flattening techniques such as Korobov transformations?

– Use symmetries of amplitude to get rid of some peaks

● We are creating amplitude grids: Undo all modifications to target function at evaluation

– This can be difficult if certain integral transformations have been applied
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Backup: Low dimensional case
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Amplitude grid uncertainty: gg→gH at LO

Sparse Grid



27
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