Decomposing Feynman integrals with intersection numbers

Seva Chestnov

Based on joined work with: Giacomo Brunello, Giulio Crisanti, Hjalte Frellesvig, Federico Gasparotto, Manoj Mandal, Pierpaolo Mastrolia + Andrzej Pokraka

[2401.01897] [2408.16668] + ongoing

HP², Torino September 12, 2024

Pictures at an Exhibition

1 Introduction

2 Companion matrices

3 Intersection numbers

4 Conclusion

Introduction

Feynman twisted period integrals

Amplitude at fixed loop order = sum of families. Each family = sum of master integrals

$$\mathcal{A} = \sum_{i} c_{i} \mathcal{I}_{i}$$

Master decomposition formula (abusing notation)

Mastrolia FGLMMMM '19

$$\langle \mathcal{A} | = \sum_{ij} \langle \mathcal{A} | \mathcal{I}_j^{\vee} \rangle (C^{-1})_{ji} \langle \mathcal{I}_i |$$

of a vector $\langle \mathcal{A} |$ into a basis $\langle \mathcal{I}_i |$ using metric

$$C_{ij} := \langle \mathcal{I}_i \mid \mathcal{I}_j^{\vee} \rangle$$

- The scalar product (● | ●) is called the intersection number
- Decomposition agrees with traditional IBP-based methods! Tkachov '81 Tkachov '81 Laporta '00

Baikov representation

Parametric representation of Feynman integrals:

$$\mathcal{I} = \int d^d k \, \frac{1}{\mathcal{D}_1^{a_1} \dots \mathcal{D}_n^{a_n}} \Longrightarrow \, \mathcal{I} = \int_{\Gamma} (\mathcal{B}(z; \, x))^{\gamma} \, \frac{d^n z}{z_1^{a_1} \dots z_n^{a_n}} = \int_{\Gamma} u \, \varphi$$

Features:

- 1. Holomorphic measure $d^n z := dz_1 \wedge \ldots \wedge dz_n$
- 2. Baikov polynomial $\mathcal{B}(z;x) \in \mathbb{C}[z,x]$ with $x = \{p_i \cdot p_j, m^2, \ldots\}$
- 3. $\gamma = (d \text{\#loops} \text{\#legs} 1)/2 \in \mathbb{C} \Longrightarrow \mathcal{B}^{\gamma}$ is multivalued!
- 4. Integration contour $\Gamma \subset \mathbb{C}^n$ such that $\mathcal{B}(\partial \Gamma) = 0$
- 5. Soon will find out how to compute it!

Hjalte's talk

Twisted cohomology

Twist, connection, and covariant derivative

Mastrolia] Mizera '18]

$$u := \prod_i (\mathcal{B}_i(z))^{\gamma_i} \,, \; \omega := \mathrm{d} \log(u) \,, \; \mathsf{and} \;
abla \psi := \mathrm{d} \psi + \omega \, \psi$$

• Intersection number integral

$$\langle \varphi \mid \varphi^{\vee} \rangle = \int_{\mathbb{C}} \operatorname{reg}(\varphi) \wedge \varphi^{\vee}$$

Regularization in subtraction scheme . . .

Cho '95 Matsumoto

$$\operatorname{reg}(\varphi) = \varphi - \sum_{p} \nabla(h_{p} \psi_{p}) , \quad \nabla \psi_{p} = \varphi \quad \operatorname{near} \, z = p$$

• ... localizes on singularities of $\omega = \textit{zeroes}$ of $\mathcal{B}(z)$

$$\langle \varphi \mid \varphi^{\vee} \rangle = \sum_{p} \operatorname{Res}_{z=p} (\psi_{p} \varphi^{\vee})$$

Polynomial reduction and p(z)-adic expansion

• Ansatz for p(z)-adic expansion and the β -deformation

[Fontana '22] [Fontana Peraro '23]

$$\psi = \sum_{n \in \mathbb{Z}} \sum_{i=0}^{\deg \mathcal{B}-1} (\mathcal{B}(z))^n z^i \psi_{ni} \quad \iff \quad \psi = \sum_{n \in \mathbb{Z}} \sum_{i=0}^{\deg \mathcal{B}-1} \beta^n z^i \psi_{ni}$$

• Differential equation with polynomial reduction

$$\left[\left(\mathcal{B}'(z) \, \partial_{\beta} + \partial_{z} + \omega \right) \psi - \varphi \right]_{\langle \mathcal{B}(z) - \beta \rangle} = 0$$

Polynomial reduction and p(z)-adic expansion

• Ansatz for p(z)-adic expansion and the β -deformation

[Fontana '22] [Fontana Peraro '23]

$$\psi = \sum_{n \in \mathbb{Z}} \sum_{i=0}^{\deg \mathcal{B}-1} (\mathcal{B}(z))^n z^i \psi_{ni} \quad \iff \quad \psi = \sum_{n \in \mathbb{Z}} \sum_{i=0}^{\deg \mathcal{B}-1} \beta^n z^i \psi_{ni}$$

• Differential equation with polynomial reduction

$$\left[\left(\mathcal{B}'(z) \, \partial_{\beta} + \partial_{z} + \omega \right) \psi - \varphi \right]_{\langle \mathcal{B}(z) - \beta \rangle} = 0$$

ullet Sum over poles via the global residue $\mathrm{Res}_{\langle\mathcal{B}
angle}$

Weinzierl '20

$$\langle \varphi \mid \varphi^{\vee} \rangle = \sum_{p} \operatorname{Res}_{z=p} (\psi_{p} \varphi^{\vee})$$

Polynomial reduction and p(z)-adic expansion

• Ansatz for p(z)-adic expansion and the β -deformation

 $\begin{bmatrix} \mathsf{Fontana} \ '22 \end{bmatrix} \begin{bmatrix} \mathsf{Fontana} \\ \mathsf{Peraro} \ '23 \end{bmatrix}$

$$\psi = \sum_{n \in \mathbb{Z}} \sum_{i=0}^{\deg \mathcal{B}-1} (\mathcal{B}(z))^n z^i \psi_{ni} \quad \longleftrightarrow \quad \psi = \sum_{n \in \mathbb{Z}} \sum_{i=0}^{\deg \mathcal{B}-1} \beta^n z^i \psi_{ni}$$

• Differential equation with polynomial reduction

$$\left[\left(\mathcal{B}'(z) \, \partial_{\beta} + \partial_{z} + \omega \right) \psi - \varphi \right]_{\langle \mathcal{B}(z) - \beta \rangle} = 0$$

ullet Sum over poles via the global residue $\mathrm{Res}_{\langle\mathcal{B}
angle}$

Weinzierl '20

$$\langle \varphi \mid \varphi^{\vee} \rangle = \operatorname{Res}_{\langle \mathcal{B} \rangle} (\psi \varphi^{\vee}) = \tilde{c}_{-1, \deg \mathcal{B} - 1}, \quad \psi \varphi^{\vee} = \sum_{n} (\mathcal{B}(z))^n z^i \, \tilde{c}_{ni}$$

• Ansatz issues: many variables and expressions ⇒ replace everything with matrices!

- Polynomial ideals are constraint equations: $\mathcal{B}(z) = 0$
- Reaccuring theme: roots of Baikov polynomial, changes of variables, expansions near singularities of DEQs . . .
- Running example:

$$\langle \mathcal{B}(z) \rangle = \langle z^2 + b_1 z + b_0 \rangle := \{ \text{poly } p(z) \mid p(z) = \mathcal{B}(z) \times \text{other poly} \}$$

• Remainders of polynomial division modulo $\mathcal{B}(z)$ form a linear space

$$Q = {\text{polys in } z}/\langle \mathcal{B}(z) \rangle = \text{Span}(\{1, z\})$$

Polynomial reduction is a set of replacement rules:

$$\mathcal{B}(z) = z^2 + b_1 z + b_0 = 0 \implies z^2 = -b_1 z - b_0$$

- ullet Polynomial ideals are constraint equations: $\mathcal{B}(z)=0$
- Reaccuring theme: roots of Baikov polynomial, changes of variables, expansions near singularities of DEQs . . .
- Running example:

$$\langle \mathcal{B}(z) \rangle = \langle z^2 + b_1 z + b_0 \rangle := \{ \text{poly } p(z) \mid p(z) = \mathcal{B}(z) \times \text{other poly} \}$$

• Remainders of polynomial division modulo $\mathcal{B}(z)$ form a linear space

$$Q = \{ polys in z \} / \langle \mathcal{B}(z) \rangle = Span(\{1, z\})$$

• Polynomial reduction is a set of replacement rules:

$$\mathcal{B}(z) = z^2 + b_1 z + b_0 = 0 \implies \lfloor z^2 \rfloor_{\langle \mathcal{B}(z) \rangle} = -b_1 z - b_0$$

- ullet Polynomial ideals are constraint equations: $\mathcal{B}(z)=0$
- Reaccuring theme: roots of Baikov polynomial, changes of variables, expansions near singularities of DEQs . . .
- Running example:

$$\langle \mathcal{B}(z) \rangle = \langle z^2 + b_1 z + b_0 \rangle := \{ \text{poly } p(z) \mid p(z) = \mathcal{B}(z) \times \text{other poly} \}$$

• Remainders of polynomial division modulo $\mathcal{B}(z)$ form a linear space

$$Q = \{ polys in z \} / \langle \mathcal{B}(z) \rangle = Span(\{1, z\})$$

• Polynomial reduction is a set of replacement rules: $z^2 \mapsto -b_1 \, z - b_0$

$$\mathcal{B}(z) = z^2 + b_1 z + b_0 = 0 \implies \lfloor z^2 \rfloor_{\langle \mathcal{B}(z) \rangle} = -b_1 z - b_0$$
$$z \, \mathcal{B}(z) = z^3 + b_1 z^2 + b_0 z = 0 \implies \lfloor z^3 \rfloor_{\langle \mathcal{B}(z) \rangle} = \lfloor -b_1 z^2 - b_0 z \rfloor_{\langle \mathcal{B}(z) \rangle}$$

- Polynomial ideals are constraint equations: $\mathcal{B}(z) = 0$
- Reaccuring theme: roots of Baikov polynomial, changes of variables, expansions near singularities of DEQs . . .
- Running example:

$$\langle \mathcal{B}(z) \rangle = \langle z^2 + b_1 z + b_0 \rangle := \{ \text{poly } p(z) \mid p(z) = \mathcal{B}(z) \times \text{other poly} \}$$

• Remainders of polynomial division modulo $\mathcal{B}(z)$ form a linear space

$$Q = \{ polys in z \} / \langle \mathcal{B}(z) \rangle = Span(\{1, z\})$$

ullet Polynomial reduction is a set of replacement rules: $z^2\mapsto -b_1\,z-b_0$

$$\mathcal{B}(z) = z^{2} + b_{1} z + b_{0} = 0 \implies \lfloor z^{2} \rfloor_{\langle \mathcal{B}(z) \rangle} = -b_{1} z - b_{0}$$
$$z \,\mathcal{B}(z) = z^{3} + b_{1} z^{2} + b_{0} z = 0 \implies \lfloor z^{3} \rfloor_{\langle \mathcal{B}(z) \rangle} = -b_{1} (-b_{1} z - b_{0}) - b_{0} z$$

• Space of remainders $\mathcal{Q} = \mathrm{Span} (\{1,\,z\})$ is populated with vectors

$$\psi = \psi_0 + z \, \psi_1 = \begin{bmatrix} 1 & z \end{bmatrix} \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}$$

 \bullet Companion matrices $Q_f=$ operators f acting on ψ

• Space of remainders $\mathcal{Q} = \operatorname{Span}(\{1,\,z\})$ is populated with vectors

$$\psi = \psi_0 + z \, \psi_1 = \begin{bmatrix} 1 & z \end{bmatrix} \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}$$

 \bullet Companion matrices $Q_f=$ operators f acting on ψ

• Space of remainders $\mathcal{Q} = \mathrm{Span} \big(\{1,\,z\}\big)$ is populated with vectors

$$\psi = \psi_0 + z \, \psi_1 = \begin{bmatrix} 1 & z \end{bmatrix} \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}$$

- ullet Companion matrices $Q_f=$ operators f acting on ψ
- ullet Example: using the reduction rule $z^2\mapsto -b_1\,z-b_0$

$$\left[z\,\psi\right]_{\langle\mathcal{B}(z)\rangle} = \left[z\,\psi_0 + z^2\,\psi_1\right]_{\langle\mathcal{B}(z)\rangle}$$

• Space of remainders $\mathcal{Q} = \mathrm{Span} (\{1,\,z\})$ is populated with vectors

$$\psi = \psi_0 + z \, \psi_1 = \begin{bmatrix} 1 & z \end{bmatrix} \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}$$

- ullet Companion matrices $Q_f=$ operators f acting on ψ
- ullet Example: using the reduction rule $z^2\mapsto -b_1\,z-b_0$

$$\left[z\,\psi\right]_{\langle\mathcal{B}(z)\rangle} = z\,\psi_0 - b_1\,z\,\psi_1 - b_0\,\psi_1$$

• Space of remainders $\mathcal{Q} = \mathrm{Span} \big(\{1,\,z\}\big)$ is populated with vectors

$$\psi = \psi_0 + z \, \psi_1 = \begin{bmatrix} 1 & z \end{bmatrix} \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}$$

ullet Example: using the reduction rule $z^2\mapsto -b_1\,z-b_0$

$$\left\lfloor z\,\psi\right\rfloor_{\langle\mathcal{B}(z)\rangle} = z\,\psi_0 - b_1\,z\,\psi_1 - b_0\,\psi_1 = \left[\begin{array}{cc} 1 & z\end{array}\right] \cdot \left[\begin{array}{cc} 0 & -b_0 \\ 1 & -b_1\end{array}\right] \cdot \left[\begin{array}{cc} \psi_0 \\ \psi_1\end{array}\right]$$

• Space of remainders $\mathcal{Q} = \mathrm{Span} \big(\{1,\,z\}\big)$ is populated with vectors

$$\psi = \psi_0 + z \, \psi_1 = \begin{bmatrix} 1 & z \end{bmatrix} \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}$$

- Companion matrices $Q_f = \text{operators } f \text{ acting on } \psi$
- Example: using the reduction rule $z^2 \mapsto -b_1 z b_0$

$$[z\,\psi]_{\langle\mathcal{B}(z)\rangle} = \begin{bmatrix} 1 & z \end{bmatrix} \cdot Q_z \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}, \quad Q_z = \begin{bmatrix} 0 & -b_0 \\ 1 & -b_1 \end{bmatrix}$$

• Space of remainders $\mathcal{Q} = \mathrm{Span} \big(\{1,\,z\}\big)$ is populated with vectors

$$\psi = \psi_0 + z \, \psi_1 = \left[\begin{array}{cc} 1 & z \end{array} \right] \cdot \left[\begin{array}{c} \psi_0 \\ \psi_1 \end{array} \right]$$

- Companion matrices $Q_f = \text{operators } f \text{ acting on } \psi$
- Example: using the reduction rule $z^2 \mapsto -b_1 z b_0$

$$\begin{bmatrix} z \, \psi \end{bmatrix}_{\langle \mathcal{B}(z) \rangle} = \begin{bmatrix} 1 & z \end{bmatrix} \cdot Q_z \cdot \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}, \quad Q_z = \begin{bmatrix} 0 & -b_0 \\ 1 & -b_1 \end{bmatrix}$$

- Form commutative matrix algebra
- Polynomial reduction done with matrix multiplication!
- But how can we reach this space of remainders Q?

For $\mathcal{B}(z)-\beta=0$ two roots $z^\pm(\beta)=-b_1/2\pm\sqrt{b_1^2-4b_0+4\beta}/2$ give two Riemann sheets

For $\mathcal{B}(z)-\beta=0$ two roots $z^\pm(\beta)=-b_1/2\pm\sqrt{b_1^2-4b_0+4\beta}/2$ give two Riemann sheets

For $\mathcal{B}(z)-\beta=0$ two roots $z^\pm(\beta)=-b_1/2\pm\sqrt{b_1^2-4b_0+4\beta/2}$ give two Riemann sheets

For $\mathcal{B}(z)-\beta=0$ two roots $z^\pm(\beta)=-b_1/2\pm\sqrt{b_1^2-4b_0+4\beta/2}$ give two Riemann sheets

For $\mathcal{B}(z)-\beta=0$ two roots $z^\pm(\beta)=-b_1/2\pm\sqrt{b_1^2-4b_0+4\beta/2}$ give two Riemann sheets

Gauging away the roots

- Variable change $z \mapsto \beta = \mathcal{B}(z)$ leads to roots $z^{\pm}(\beta)$
- Turning a function $\psi(z)$ into a *vector*

$$\left[\begin{array}{c} \psi^{+}(\beta) \\ \psi^{-}(\beta) \end{array}\right] := \left[\begin{array}{c} \psi(z^{+}(\beta)) \\ \psi(z^{-}(\beta)) \end{array}\right]$$

ullet Vandermonde gauge transformation to the quotient space ${\mathcal Q}$

$$\begin{bmatrix} \psi^{+}(\beta) \\ \psi^{-}(\beta) \end{bmatrix} = \begin{bmatrix} 1 & z^{+}(\beta) \\ 1 & z^{-}(\beta) \end{bmatrix} \cdot \begin{bmatrix} \psi_{0}(\beta) \\ \psi_{1}(\beta) \end{bmatrix}$$

In case of linear DEQs

$$\left(\partial_z - \omega\right)\psi(z) = \varphi$$

this implies

- $lackbox{}\psi^+$ and ψ^- obey non-rational diagonal system of DEQs
- $lackbox{}\psi_0$ and ψ_1 obey rational non-diagonal system of DEQs

Rational DEQs from companion matrices

• Consider an example: $u=z^{\rho}\left(\mathcal{B}(z)\right)^{\gamma}$ and the DEQ

$$\left(\partial_z + \frac{\rho}{z} + \gamma \frac{\mathcal{B}'(z)}{\mathcal{B}(z)}\right) \psi(z) = \varphi(z)$$

• Change of variables $z\mapsto \beta=\mathcal{B}(z)$ introduces roots z^\pm into a diagonal DEQ

$$\left(\mathcal{B}'(z^{\pm})\,\partial_{\beta} + \frac{\rho}{z^{\pm}} + \gamma \frac{\mathcal{B}'(z^{\pm})}{\mathcal{B}(z^{\pm})}\right)\psi^{\pm}(\beta) = \varphi^{\pm}(\beta)$$

Rational DEQs from companion matrices

• Consider an example: $u=z^{\rho}\left(\mathcal{B}(z)\right)^{\gamma}$ and the DEQ

$$\left(\partial_z + \frac{\rho}{z} + \gamma \frac{\mathcal{B}'(z)}{\mathcal{B}(z)}\right) \psi(z) = \varphi(z)$$

• Change of variables $z\mapsto \beta=\mathcal{B}(z)$ introduces roots z^\pm into a diagonal DEQ

$$\left(\begin{bmatrix} \mathcal{B}'(z^{+}) & 0 \\ 0 & \mathcal{B}'(z^{-}) \end{bmatrix} \partial_{\beta} + \begin{bmatrix} \rho/z^{+} + \gamma \mathcal{B}'/\mathcal{B}^{+} & 0 \\ 0 & \rho/z^{-} + \gamma \mathcal{B}'/\mathcal{B}^{-} \end{bmatrix} \right) \cdot \begin{bmatrix} \psi^{+} \\ \psi^{-} \end{bmatrix} = \begin{bmatrix} \varphi^{+} \\ \varphi^{-} \end{bmatrix}$$

Rational DEQs from companion matrices

• Consider an example: $u=z^{\rho}\left(\mathcal{B}(z)\right)^{\gamma}$ and the DEQ

$$\left(\partial_z + \frac{\rho}{z} + \gamma \frac{\mathcal{B}'(z)}{\mathcal{B}(z)}\right) \psi(z) = \varphi(z)$$

• Change of variables $z\mapsto \beta=\mathcal{B}(z)$ introduces roots z^\pm into a diagonal DEQ

$$\left(\begin{bmatrix} \mathcal{B}'(z^{+}) & 0 \\ 0 & \mathcal{B}'(z^{-}) \end{bmatrix} \partial_{\beta} + \begin{bmatrix} \rho/z^{+} + \gamma \mathcal{B}'/\mathcal{B}^{+} & 0 \\ 0 & \rho/z^{-} + \gamma \mathcal{B}'/\mathcal{B}^{-} \end{bmatrix} \right) \cdot \begin{bmatrix} \psi^{+} \\ \psi^{-} \end{bmatrix} = \begin{bmatrix} \varphi^{+} \\ \varphi^{-} \end{bmatrix}$$

Rational DEQ system after gauging

$$\left(Q_{\mathcal{B}'} \, \partial_{\beta} + Q_{\partial_{z}} + \rho \, Q_{1/z} + \gamma \, Q_{\mathcal{B}'} / \beta \right) \left[\begin{array}{c} \psi_{0} \\ \psi_{1} \end{array} \right] = \left[\begin{array}{c} \varphi^{+} \\ \varphi^{-} \end{array} \right]$$

with companion matrices

$$Q_{\mathcal{B}'} = \begin{bmatrix} b_1 & 2(-b_0 + \beta) \\ 2 & -b_1 \end{bmatrix}, \ Q_{1/z} = \frac{1}{-b_0 + \beta} \begin{bmatrix} b_1 & -b_0 + \beta \\ 1 & 0 \end{bmatrix}, \ Q_{\partial_z} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Intersection numbers

Expanding and taking the residue

- To finish the story, let's compute the intersection $\langle \varphi \mid \varphi^{\vee} \rangle = \langle 1/\mathcal{B}(z)^2 \mid 1/\mathcal{B}(z) \rangle$
- Multiply with the inverse $Q_{\mathcal{B}'}^{-1}$, series expand $\beta \to 0$

$$\left(\partial_{\beta} + \frac{\gamma}{\beta} + \mathcal{O}(1)\right) \cdot \left(\begin{bmatrix} \psi_{00} \\ \psi_{10} \end{bmatrix} + \beta \begin{bmatrix} \psi_{01} \\ \psi_{11} \end{bmatrix}\right) - \left(\frac{1}{\beta(b_1^2 - 4b_0)} + \mathcal{O}(1)\right) \cdot \begin{bmatrix} b_1 \\ 2 \end{bmatrix} = 0$$

• Tensor Q_f with matrix "representation" of Weyl algebra \Rightarrow final block-triangular system

$$\begin{bmatrix} \frac{1}{0} & 0 & 0 & 0 & -1 \\ 0 & \gamma & 0 & 0 & 0 \\ 0 & 0 & \gamma & 0 & 0 \\ 0 & * & * & \gamma + 1 & 0 \\ 0 & * & * & 0 & \gamma + 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{\langle \varphi \mid \varphi^{\vee} \rangle}{\psi_{00}} \\ \psi_{10} \\ \psi_{01} \\ \psi_{11} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{b_1}{b_1^2 - 4b_0} \\ \frac{2}{b_1^2 - 4b_0} \\ * \\ * \end{bmatrix}$$

The solution

Crisanti Smith '24

$$\langle \varphi \mid \varphi^{\vee} \rangle = \psi_{11} = \frac{4(2\gamma - 1)}{(b_1^2 - 4b_0)^2 \gamma(\gamma - 1)}$$

• Companion matrices and tensor avoid the auxiliary variables z and β

Promenade: The multivariate case

• Use fibration method: integrate one variable at a time

• Each layer of this recursion will have its own set of masters

ullet Leads to a similar univariate DEQ system for vector-valued $\psi(z)$

• Similar to transition from QED to QCD: one new non-abelian tensor index

Application to 2-loop 5-point reduction

Result of recent efforts

Decomposition into 62 masters (no symmetry relations)

$$\mathcal{I} = \int u \, \frac{z_9^2}{z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8} \, \mathrm{d}z \equiv \mathcal{I}_{11111111-200}$$

- Computed intersections of 11-variate integrals
- Used spanning cuts strategy
- Intermediate dimensions: $\{1, 1, 2, 2, 4, 12, 28, 31\}$, $\{1, 1, 2, 3, 6, 18, 26, 27\}$ and easier
- Automatic intermediate (candidate) bases generation GetBasis.m 🔾
- Extensive usage of tensors in FINITEFLOW

[Peraro '19] [FiniteFlow]

• For now only numerical: s_{ij} set to \mathbb{Q} -numbers

The FiniteFlow data graph

Conclusion

Conclusion

- **Twisted cohomology** describes multivariate integrals of multivalued functions, which are commonly encountered in perturbative analysis.
- **Intersection number** is a scalar product on the space of twisted periods, allowing for the direct decomposition of Feynman integrals via the master decomposition formula.
- Today we explored tensor structures of intersection numbers that arise from the companion matrix representation.
- This new formulation enabled the full reduction to master integrals of the massless 5-point 2-loop Feynman integral family.

Backup

Feynman integrals

A popular tool to compute theoretical predictions for scattering processes

$$\begin{array}{c}
P_1 \\
P_2
\end{array} = C_{\text{II}} \cdot
\begin{array}{c}
T_{1111} \\
\downarrow k_1
\end{array} + C_{\text{O}} \cdot
\begin{array}{c}
T_{0101} \\
\downarrow k_2
\end{array} + C_{\text{O}} \cdot
\begin{array}{c}
T_{1010} \\
\downarrow k_3
\end{array}$$

Integrals over loop momenta of rational functions

$$\mathcal{I}_{a_1...a_n}^{(\ell)}(p_1,\ldots,p_{E+1}) = \int \prod_{j=1}^{\ell} d^d k_j \, \frac{1}{\mathcal{D}_1^{a_1} \ldots \mathcal{D}_n^{a_n}}$$

- 1. E = #legs 1 = independent external momenta
- 2. Exponents $a_i \in \mathbb{Z}$
- 3. Dimensional regularization: $d=4-2\varepsilon\in\mathbb{C}$
- 4. \mathcal{D}_i is either propagator or scalar product: e.g. $k^2 m^2$ or $k \cdot p$
- 5. Number of factors $n = \ell(\ell+1)/2 + E\ell$

A glimpse of twisted cohomology

• Finite dimensional vector space of Feynman integrals with *intersection number* as metric

```
Mastrolia Mizera '18] [FGLMMMM '19] [FGMMMM '19] [Weinzierl '20] [FGLMMMM '20] [2209.01997] [Cacciatori] [Fontana Peraro '23] [2401.01897] [Crisanti Smith '24]
```

Many ways to count master integrals m:

```
1. Laporta algorithm
2. Number of critical points d \log \mathcal{B}(z) = 0
```

- 3. Number of independent integration contours
- 4. Number of independent integrands
- 5. Holonomic rank of GKZ system (volume of Δ_A polytope) $\left[\text{de la Cruz '19}\right]\left[\text{Klausen '21}\right]\left[\text{2204.12983}\right]$

```
Laporta '00]

[Baikov '05] [Lee '13]
[Pomeransky]

[Bosma, Sogaard] [Primo '17] [Frellesvig '21]

Zhang '17] [Mastrolia Mizera '18]

[de la Cruz '19] [Klausen '21] [2204.12983]
```

Benefits from finite fields techniques [Peraro '19 FiniteFlow]

```
Some nice reviews: [MathemAmplitudes'19] [Cacciatori '21] Conti. Trevisan
```

Companion matrices in FiniteFlow

To get Q_p of a polynomial $p(z)=p_0+z\,p_1+\ldots+z^n\,p_n$ with the ideal $\langle b_0-\beta+z\,b_1+\ldots+z^{\kappa-1}\,b_{\kappa-1}+z^\kappa\rangle$ row-reduce the augmented Sylvester matrix

