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Introduction



Feynman twisted period integrals

® Amplitude at fixed loop order = sum of families. Each family = sum of master integrals

A:Z C’iIi

® Master decomposition formula (abusing notation)

(Al =3 (A7) (€, (T

ij

[ Mastrolia

Mizera '18} [FGLMMMM 19}

of a vector (A] into a basis (Z;| using metric

Cij = (L | I}')

® The scalar product (e | ) is called the intersection number (Moo

Matsumoto

® Decomposition agrees with traditional IBP-based methods!  [Tkachov 1] [ {751 | [Laporta 00]
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Baikov representation

Frellesvig '17}
Papadopoulos,

Parametric representation of Feynman integrals: [Baikov '96] |

1 d”z
I=|d% g — I—/B )Y /
/ Dy ... Dy P BE ) e = [

Features:

1. Holomorphic measure d"z :=dz; A ... Adz,
Baikov polynomial B(z; z) € C[z,z] with z = {p; - p;, m?,...}
v = (d — #loops — #legs — 1)/2 € C = B" is multivalued!
Integration contour I' C C™ such that B(9T') =0

Soon will find out how to compute it! [ Hiatee's talk
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http://arxiv.org/abs/hep-ph/9604254
http://arxiv.org/abs/1701.07356
https://agenda.infn.it/event/35067/contributions/242206/

Twisted cohomology

[ Mastrolia ]

Twist, connection, and covariant derivative Mg

U= H(Bl(z))% , w:=dlog(u), and Vi) := do) + w
Intersection number integral

(oY) = /Creg(w) A Y

Cho '95 ]
Matsumoto

Regularization in subtraction scheme . .. |

reg(gp)zgp—ZV(hpwp), Vi, =¢ nearz=p
P

... localizes on singularities of w = zeroes of B(z)

(ple") =3 Resiep (v ¢")
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Polynomial reduction and p(z)-adic expansion

® Ansatz for p(z)-adic expansion and the -deformation [Fontana '22] [ poomea3. |
deg B—1 ' deg B—1 '
v=2 Y (B()" 2 i s =) > B2
nezZ =0 nezZ =0

o Differential equation with polynomial reduction

[(B(2) 05+ 0. +w)v — | s =


https://inspirehep.net/literature/2806085
http://arxiv.org/abs/2304.14336
http://arxiv.org/abs/2002.01930

Polynomial reduction and p(z)-adic expansion

® Ansatz for p(z)-adic expansion and the [S-deformation [Fontana '22] [ poomea"3. |
deg B—1 ’ deg B—1 A
p=23 D> (B)" 2 ni s =3 > B2
neZ =0 neZ =0

o Differential equation with polynomial reduction

|[(B'(2) 05 + 0. + w)p — ¢ s ="

® Sum over poles via the global residue Res g [ Weinzier! 20]

(@] 9") =" Res.op (v ¢")


https://inspirehep.net/literature/2806085
http://arxiv.org/abs/2304.14336
http://arxiv.org/abs/2002.01930

Polynomial reduction and p(z)-adic expansion

Ansatz for p(z)-adic expansion and the [3-deformation [Fontana '22] [ poomea3. |
deg B—1 , deg B—1 '
=3 > (B() 2 e =30 > B
neZ =0 neZ =0
Differential equation with polynomial reduction
B'(2) 0 + 0, +w) — =0
[(B'(2) 95 )o -] o
Sum over poles via the global residue Res gz, [ weinzier! 20]

(e |e") =Respy (1 ©") =-1,aegB-1, Yo’ = (B(2)" 2" éni

ni

Ansatz issues: many variables and expressions = replace everything with matrices!
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Companion matrices



Promenade: Polynomials, ideals, and quotient rings

Polynomial ideals are constraint equations: B(z) =0

Reaccuring theme: roots of Baikov polynomial, changes of variables, expansions near
singularities of DEQs ...

Running example:

(B(2)) = (2% + b1z + bg) := {poly p(2) | p(z) = B(z) x other poly}

Remainders of polynomial division modulo B(z) form a linear space

Q= {Polys in Z}/<B(z>> _ Span({l, Z})

Polynomial reduction is a set of replacement rules:

B(z)=22+biz+by=0 = 2*=-bz—1b
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Companion matrices

® Space of remainders Q = Span({1, z}) is populated with
vectors

Y =1tz =] 1 z}-wf]

® Companion matrices (); = operators f acting on 1
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/ =
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Companion matrices

® Space of remainders Q = Span({1, z}) is populated with
vectors

Y=otz =] 1 z}-[m

¢ Companion matrices (); = operators f acting on ¢

® Example: using the reduction rule 2% — —b; z — by

20 gy = 200+ 2% 9] 5,

/ =

g,
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Companion matrices

® Space of remainders Q = Span({1, z}) is populated with
vectors

Y=otz =] 1 z}-[wl

w] Qp

/ =

¢ Companion matrices (); = operators f acting on ¢

g,

® Example: using the reduction rule 2% — —b; z — by

LZ¢J<B(3)>:Zwo_blzwl_b()d)l:|:1 z}[? :Z?][i?

|
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Companion matrices

® Space of remainders Q = Span({1, z}) is populated with
vectors

Y=otz =] 1 z}-[wl

w] Qp

/ =

¢ Companion matrices (); = operators f acting on ¢

g,

® Example: using the reduction rule 2% — —b; z — by

Wb 0
LZQZ}J(B(Z)):[l Z}Qzlwgla szll

—by
by

|
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Companion matrices

Space of remainders Q = Span({1, z}) is populated with
vectors 4 '\P

Y=t +2¢r =1 z}lﬁ] Qy /|

1
} —
Yo
Companion matrices )y = operators f acting on ¢
Example: using the reduction rule 2% — —b; 2z — by
B Yo O
2% sy = [ L ] Qs [ N Rl
Form commutative matrix algebra [sturmfets]  [“Sigpin]

Polynomial reduction done with matrix multiplication!

But how can we reach this space of remainders Q7


https://math.berkeley.edu/~bernd/cbms.pdf
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-16721-3

Riemann sheets

For B(z) — 3 = 0 two roots 2T (B8) = —b1 /2 £ 1/b7 — 4bg + 4/3/2 give two Riemann sheets
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Riemann sheets

For B(z) — 3 = 0 two roots 2T (B8) = —b1 /2 £ 1/b7 — 4bg + 4/3/2 give two Riemann sheets

2@

Z(p)
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Riemann sheets

For B(z) — 3 = 0 two roots 2T (B8) = —b1 /2 £ 1/b7 — 4bg + 4/3/2 give two Riemann sheets

10)
. L7 7
Z(p) / Z®




Gauging away the roots

Variable change z ~ 3 = B(z) leads to roots z*(3)
Turning a function v(z) into a vector

o8] _ [0
6 (8) | T | v (8)

Vandermonde gauge transformation to the quotient space Q

@ _[1 =) ] [ %l®)
@) | T =0 || e

In case of linear DEQs
(az - W) ¢(Z) =@

this implies
» 4" and )~ obey non-rational diagonal system of DEQs
» 1y and 11 obey rational non-diagonal system of DEQs

|
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Rational DEQs from companion matrices

* Consider an example: u = z” (B(z))” and the DEQ
B'(z)
B(z)

(0:4 2ty ) v =(2)

® Change of variables z +— 8 = B(z) introduces roots z* into a diagonal DEQ
B'(z")
B(z%)

(B0 + 5 +vpim ) vE(8) = ¢*(8)
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Rational DEQs from companion matrices

* Consider an example: u = z* (B(z))” and the DEQ
B'(z)
B(z)

(8z+§+v ) ¥(z) = (2)

® Change of variables z +— 3 = B(z) introduces roots 2= into a diagonal DEQ

B'(zT) 0 p/zt +~B' /BT 0 Pt
( 0 B(z) 0 p/z” +B' /B~ ) (Ch

QDJF

95 +
g @




Rational DEQs from companion matrices

* Consider an example: u = z* (B(z))” and the DEQ

(0. + g + vl;l((j)) ) ¥(z) = (2)

® Change of variables z +— 3 = B(z) introduces roots 2= into a diagonal DEQ

B'(zT) 0 9 p/zt +~B' /BT 0 Pt || et
( 0 B(z7) | 7 + 0 p/z= +~B' /B~ ) B R N
e Rational DEQ system after gauging
+
(Qw 95+ Qo. +p Q12 +7Qu /) [ jﬁf ] =| o

with companion matrices

b1 2(=bo + )

1
Qp = [ 9 by

—bo + 3

by —bo + f
1 0

) Ql/z =




Intersection numbers



Expanding and taking the residue

® To finish the story, let's compute the intersection (¢ | ¢") = (1/B(2)?*|1/B(z))

Multiply with the inverse Qg,l, series expand 5 — 0

(85 + % + 0(1)) . ([Zﬁ?g] -I—ﬁ [Z?j) — <5(b%1—4bo) + O(D) . [l;] =0

Tensor Qs with matrix “representation” of Weyl algebra = final block-triangular system
1[0 0 0 —1 (o] oY) 19
0y 0 0 0 Yoo G
0[{0 v 0 0 - Yo | = | e
0% *x vy+1 0 Vo1 “
0] *x =* 0 v+1 1y "
The solution [(Crsent ]
42y - 1)
(ploY) = =

(b — 4bo)?y(y — 1)

Companion matrices and tensor avoid the auxiliary variables z and 3 1014


http://arxiv.org/abs/2405.18178

Promenade: The multivariate case

Use fibration method: integrate one variable at a time

Each layer of this recursion will have its own set of masters

Leads to a similar univariate DEQ system for vector-valued (z)

Similar to transition from QED to QCD: one new non-abelian tensor index
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Application to 2-loop 5-point reduction

Result of recent efforts [2401.01897] [2408.16668] [repo@o] Fs
Decomposition into 62 masters (no symmetry relations) P . X 6
2 8 F“
1= / dz = Thi111111-200 3 s
2122232472526 2778 P 4
v

Computed intersections of 11-variate integrals
Used spanning cuts strategy
Intermediate dimensions: {1,1,2,2,4,12,28,31}, {1,1,2,3,6,18,26,27} and easier

Automatic intermediate (candidate) bases generation GetBasis.m ©)

Peraro '19
FiniteFlow

Extensive usage of tensors in FINITEFLOW

For now only numerical: s;; set to Q-numbers


http://arxiv.org/abs/2401.01897
http://arxiv.org/abs/2408.16668
https://github.com/GiacomoBrunello/pentabox_decomposition
https://github.com/GiacomoBrunello/pentabox_decomposition
http://arxiv.org/abs/1905.08019

The FiniteFlow data graph

FFAlgLaurent

|FFA1gNodeSparseSolver|

(leY)
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Conclusion

Twisted cohomology describes multivariate integrals of multivalued functions, which
are commonly encountered in perturbative analysis.

Intersection number is a scalar product on the space of twisted periods, allowing for
the direct decomposition of Feynman integrals via the master decomposition formula.

Today we explored tensor structures of intersection numbers that arise from the
companion matrix representation.

This new formulation enabled the full reduction to master integrals of the massless
5-point 2-loop Feynman integral family.
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Feynman integrals

A popular tool to compute theoretical predictions for scattering processes

IHH Imm Imw

e |+ CQ'Q+ Co->O<

Integrals over loop momenta of rational functions

1
l d
T 1o pp) = [ JHl A"k

E = #legs — 1 = independent external momenta

Exponents a; € Z

Dimensional regularization: d =4 —2¢ € C

D; is either propagator or scalar product: e.g. k> —m?ork-p
Number of factors n = ¢(£+1)/2+ EY

- e



A glimpse of twisted cohomology

® Finite dimensional vector space of Feynman integrals with intersection number as metric
[,\'Xl'::;""lag} [FGLMMMM *19} [FGMMMM '19] [Weinzierl 'zo] [FGLMMMM '20] [2209.01997] [(,i;;:t'f;ﬁ:} [:;:::;”;] [2401.01897] [s&riitssrg;

Some nice reviews: [MathemAmplitudes'19] |

Benefits from finite fields techniques |

Many ways to count master integrals m:
1.
2.
3.
4.
5.

Master decomposition formula = no need to row reduce huge systems! |

Laporta algorithm [Laporta '00]
Number of critical points dlog B(z) =0 [Baikov 105 [poree 13, ]
Number of independent integration contours [BoFnar 2o8or] [Manereat | [Fretlesvig 21

Number of independent integrands m;::?hfg

]
Holonomic rank of GKZ system (volume of A4 polytope) — [de la Cruz '19] [Kiausen 21| [2204.12083]
]

Ma§tro|ia:| [FGLMMMM
Mizera
Peraro '19 ]

FiniteFlow

Cacciatori '21 }
Conti, Trevisan

]
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Companion matrices in FiniteFlow

To get @, of a polynomial p(z) = pg + zp1 + ...+ 2" p, with the ideal
(bg — B+ 2by +...4+ 2" b1 + 27) row-reduce the augmented Sylvester matrix

Pn Pn—1--- oo P Po
N T B PR P Do
Pn Pn-1- .--co.oo... P1 Po
1 boq.. ... by by
1 by b by
1 bey oo b1 by
1 beog ... .. by bo
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