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NLO+LLPS

NNLO+LLPS

- State-of-the-art for precision LHC phenomenology.  
- Lots of ongoing effort, many processes already implemented. 
- Two main methods available: MiNNLOPS [Monni, Nason, Re, Wiesemann, 

Zanderighi ’19] and Geneva [Alioli, Bauer, Berggren,Tackmann,Walsh, Zuberi ’13, + 

subsequent papers].

- A solved problem for long time. 
- Completely understood and fully automatized. 
- Two main approaches available: POWHEG [Nason ’04; Frixione, Nason, Oleari 

’07;  Alioli, Nason, Oleari, Re ’10] and MC@NLO [Frixione, Webber ’02].
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NLL showers are now 
available

APOLLO

DEDUCTOR

Forshaw-Holguin-Plätzer

PanScales

THIS TALK: 

NLO+NLLPS matching with PanScales showers 
with initial-state partons

For  matching, see [2301.09645] 

 

e+e−
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MOTIVATION

DY - azimuthal angle between leading jets
mℓℓ = mZ mℓℓ = 500 GeV

Different shape between LL and NLL showers, 
especially at high energies

LL

NLL

NLL

LL

[van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen ‘22]

1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC. 
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MOTIVATION
1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC. 

2. NLO matching can augment the shower accuracy. 

LL

Σ(αs, L) = exp( 1
αs

g1(αsL) + g2(αsL) + αs g3(αsL) )
NLL

𝒪(1/αs) 𝒪(1)

NNLL

𝒪(αs)

Σ(αs, L) = (1 + αsC1 ) exp( 1
αs

g1(αsL) + g2(αsL) + αs g3(αsL) )
𝒪(αs)

NLO

Σ(αs, L) = h1(αsL2) + αs h2(αsL2) + αs h3(αsL2)
DL NDL NNDL

Using a double log expansion:
For event-shapes:  

C1+NLL  NNDL→

NLO  
MATCHING
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MOTIVATION
1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC. 

2. NLO matching can augment the shower accuracy. 

3. NLO matching is needed for obtaining NNLL accurate showers.

[van Beekveld, et al. ’24]
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IF MATCHING IS DONE 
WRONGLY, THE STRUCTURE OF 

THE SHOWER CAN BREAK.

NLL SHOWER

MOTIVATION

[Hamilton, Karlberg, Salam, Scyboz, Verheyen ’23]

1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC. 

2. NLO matching can augment the shower accuracy. 

3. NLO matching is needed for obtaining NNLL accurate showers.
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ln(kT /Q) η

soft-wide angle
hard-collinear

soft-collinear
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1. The shower must reproduce the exact matrix 
element when all emissions are well separated in 
at least  or . 

2. The shower must reproduce NLL analytic results 
for a broad class of observables (e.g. event 
shapes, subjet multiplicities).

kT η

NLL PanScales SHOWERS IN A NUTSHELL

ln(kT /Q) η



10

ln(kT /Q) η

The PanScales Recipe

• Ordering variable:  
• Recoil scheme:  

 
 

• Partitioning of the dipole in event 
com frame

v = kte−β|η|

PanLocal:{ ⊥ , + , − } local
PanGlobal:  ⊥  global, { + , − } local

NLL PanScales SHOWERS IN A NUTSHELL
1. The shower must reproduce the exact matrix 

element when all emissions are well separated in 
at least  or . 

2. The shower must reproduce NLL analytic results 
for a broad class of observables (e.g. event 
shapes, subjet multiplicities).

kT η
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dσ(ΦB) = B̄(ΦB) [S(ΦB) ×
R(ΦB, Φrad)

B(ΦB)
dΦ] IPS

MULTIPLICATIVE MATCHING
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THE METHOD
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a) Reach NLO accuracy in the normalization . Analytically when possible, otherwise numerically. 

b) Generate the first emission with the exact real matrix element. 

c) Generate all the subsequent emissions through a NLL shower.

B̄

dσ(ΦB) = B̄(ΦB) [S(ΦB) ×
R(ΦB, Φrad)

B(ΦB)
dΦ] IPS

MULTIPLICATIVE MATCHING
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The Born kinematics is generated according to the NLO cross section as:

a) Normalization

dσ = B̄(ΦB) dΦB B̄(ΦB) = B + V + ∫ R dΦradwith
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d2σ
dxdy

=
4πα2

xyQ2 ((1 − y) F2 + y2x F1)
with: 
- x and y usual DIS variables 
- F1 and F2 NLO structure functions 

DIS (photon only):

The Born kinematics is generated according to the NLO cross section as:

a) Normalization

Use analytic  when available:B̄

dσ = B̄(ΦB) dΦB B̄(ΦB) = B + V + ∫ R dΦradwith
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d2σ
dxdy

=
4πα2

xyQ2 ((1 − y) F2 + y2x F1)DIS (photon only):

At NLO this requires a careful flavour decomposition  
(more on this later)

The Born kinematics is generated according to the NLO cross section as:

a) Normalization

Use analytic  when available:B̄

dσ = B̄(ΦB) dΦB B̄(ΦB) = B + V + ∫ R dΦradwith

with: 
- x and y usual DIS variables 
- F1 and F2 NLO structure functions 
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Obtain  numerically:B̄

POWHEG: B̄(ΦB) = ∫ dX1dX2dX3 B̃(ΦB, X1, X2, X3)

The Born kinematics is generated according to the NLO cross section as:

dσ = B̄(ΦB) dΦB B̄(ΦB) = B + V + ∫ R dΦradwith

a) Normalization
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Obtain  numerically:B̄

POWHEG:

Correct FKS/PanScales mappings

ΔB̃ = Jac ⋅ R(ΦPS
rad) − R(ΦFKS

rad )

The Born kinematics is generated according to the NLO cross section as:

dσ = B̄(ΦB) dΦB B̄(ΦB) = B + V + ∫ R dΦradwith

a) Normalization

B̃(ΦB, X1, X2, X3) → B̃(ΦB, X1, X2, X3) +ΔB̃(ΦB, X1, X2, X3)

B̄(ΦB) = ∫ dX1dX2dX3 B̃(ΦB, X1, X2, X3)



Obtain  numerically:B̄

POWHEG:

B̃(ΦB, X1, X2, X3) → B̃(ΦB, X1, X2, X3) + ΔB̃(ΦB, X1, X2, X3)

ΔB̃ = Jac ⋅ R(ΦPS
rad) − R(ΦFKS

rad )

The Born kinematics is generated according to the NLO cross section as:

dσ = B̄(ΦB) dΦB B̄(ΦB) = B + V + ∫ R dΦradwith

a) Normalization

Applied to  and  but easily extendable to more 
complicated processes taking  directly from POWHEG.

e+e− → Z pp → Z
B̃

Correct FKS/PanScales mappings

e+e− → qq̄

PRELIMINARY

ra
tio
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B̄(ΦB) = ∫ dX1dX2dX3 B̃(ΦB, X1, X2, X3)
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The hardest emission is generated with the  
correct real matrix element. ĩ j̃ → ijk : P ∼

Ri,j,k(Φn+1)
Bĩ, j̃(Φn)

b) Hardest emission
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The hardest emission is generated with the  
correct real matrix element. ĩ j̃ → ijk :

Simple example: DIS, only  channelγ*q → qg

MATCHING

η η

lo
g(

p T
)

RATIO PS/exact ME

P ∼
Ri,j,k(Φn+1)

Bĩ, j̃(Φn)

b) Hardest emission

qq

e− e−

g

(+ -contributions)q̄

q

e−

g
q

e−
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The hardest emission is generated with the  
correct real matrix element. ĩ j̃ → ijk :
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Two possible underlying Borns for 
the same real configuration!
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The hardest emission is generated with the  
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Non-trivial example: DIS,   channelγ*g → qq̄
q̄

q

e− e−

g q
q̄

e− e−

g

Two possible underlying Borns for 
the same real configuration!

Introduce a partitioning factor to split the full real 
matrix element in the two possible Borns. 
The fraction of real associated to a given Born is taken as:

γ*q̄ → q̄

γ*q → q

P ∼
Ri,j,k(Φn+1)
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θ(pq ⋅ pg < pq̄ ⋅ pg)

θ(pq̄ ⋅ pg < pq ⋅ pg)
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Bĩ, j̃(Φn)

b) Hardest emission

Introduce a partitioning factor to split the full real 
matrix element in the two possible Borns. 
The fraction of real associated to a given Born is taken as:

γ*q̄ → q̄

γ*q → q

Separation of singular regions between the  two underlying Borns.

θ(pq ⋅ pg < pq̄ ⋅ pg)

θ(pq̄ ⋅ pg < pq ⋅ pg)



15

The hardest emission is generated with the  
correct real matrix element. ĩ j̃ → ijk :
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NNDL TEST

lim
αs→0

ΣPS − ΣNNDL

αsΣDL αsL2 fixed

• NNDL =  

• Compare the parton shower result with analytic 
calculations. 

• Eliminate spurious contributions generated by the 
shower with:

𝒪(αn
s L2n−2)

PRELIMINARY

0 = NNDL

Mj,β = max
i∈jets

kTi

Q
e−β|ηi−ηZ| Sj,β = ∑

i∈jets

kTi

Q
e−β|ηi−ηZ|
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NNDL TEST

lim
αs→0

ΣPS − ΣNNDL

αsΣDL αsL2 fixed

• NNDL =  

• Compare the parton shower result with analytic 
calculations. 

• Eliminate spurious contributions generated by the 
shower with:

𝒪(αn
s L2n−2)

PRELIMINARY

0 = NNDL

Mj,β = max
i∈jets

kTi

Q
e−β|ηi−ηZ| Sj,β = ∑

i∈jets

kTi

Q
e−β|ηi−ηZ|

First time a shower demonstrably generates 
NNDL accurate results across many observables 

for pp collisions.
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CONCLUSIONS and OUTLOOK

• NLO matching with NLL showers is needed for precision physics. 

• Results for DIS, DY and oriented  have been obtained at NLO+NLL accuracy through a 
multiplicative matching with PanScales showers. 

• Extension to more complicated processes is possible through an on-the-fly conversion of  
to . 

• NNDL accurate results have been obtained for many observables in pp collisions.

e+e−

B̃FKS

B̃PS
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CONCLUSIONS and OUTLOOK

The PanScales collaboration is currently working on a new NLO matching scheme 
with the nice feature of generating only positive weights.  

IDEA: use a simple (=analytic)  function and correct it à la MacNLOPS.B̄

…more on this soon!

• NLO matching with NLL showers is needed for precision physics. 

• Results for DIS, DY and oriented  have been obtained at NLO+NLL accuracy through a 
multiplicative matching with PanScales showers. 

• Extension to more complicated processes is possible through an on-the-fly conversion of  
to . 

• NNDL accurate results have been obtained for many observables in pp collisions.

e+e−

B̃FKS

B̃PS


