High Precision for Hard Processes 2024 - 10.09.24

MATCHING NLO CALCULATIONS WITH NLL PANSCALES SHOWERS WITH INITIAL-STATE PARTONS

Silvia Zanoli - University of Oxford

with M. van Beekveld, S. Ferrario Ravasio, J. Helliwell, A. Karlberg, G.P. Salam, L. Scyboz, A. Soto-Ontoso, G. Soyez

A LHC EVENT

A LHC EVENT

MATCHING

- - subsequent papers].

- A **solved problem** for long time.
- Completely understood and fully automatized.
- Two main approaches available: POWHEG [Nason '04; Frixione, Nason, Oleari
 - '07; Alioli, Nason, Oleari, Re '10] and MC@NLO [Frixione, Webber '02].

State-of-the-art for precision LHC phenomenology. - Lots of ongoing effort, many processes already implemented. Two main methods available: MiNNLO_{PS} [Monni, Nason, Re, Wiesemann, Zanderighi '19] and Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '13, +

MATCHING

- - subsequent papers].

A **solved problem** for long time.

- Completely understood and fully automatized.

- Two main approaches available: POWHEG [Nason '04; Frixione, Nason, Oleari

'07; Alioli, Nason, Oleari, Re '10] and MC@NLO [Frixione, Webber '02].

State-of-the-art for precision LHC phenomenology. - Lots of ongoing effort, many processes already implemented. Two main methods available: MiNNLO_{PS} [Monni, Nason, Re, Wiesemann, Zanderighi '19] and Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '13, +

... what's the next step?

NLL SHOWERS

NLL showers are now available

Mrinal Dasgupta (U. Manchester (main)), Frédéric A. Dreyer (Oxford U., Theor. Phys.), Keith Hamilton (U. Coll. London), Pier Francesco Monni (CERN), Gavin P. Salam (Oxford U., Theor. Phys.) et al. (Feb 25, 2020) PanScales Published in: *Phys.Rev.Lett.* 125 (2020) 5, 052002 • e-Print: 2002.11114 [hep-ph]

A new approach to color-coherent parton evolution

Florian Herren (Fermilab), Stefan Höche (Fermilab), Frank Krauss (Durham U., IPPP), Daniel Reichelt (Durham U., IPPP), Marek Schoenherr (Durham U., IPPP) (Aug 11, 2022)

Published in: JHEP 10 (2023) 091 • e-Print: 2208.06057 [hep-ph]

Christian T. Preuss (Wupp

Published in: JHEP 07 (20

Building a consistent parton shower

Jeffrey R. Forshaw (Manchester U. and Schrodinger Inst., Vienna), Jack Holguin (Manchest Vienna), Simon Plätzer (Schrodinger Inst., Vienna and Vienna U.) (Mar 13, 2020)

Published in: JHEP 09 (2020) 014 • e-Print: 2003.06400 [hep-ph]

Forshaw

Summations of large lo

Zoltán Nagy (DESY), Daviso

Published in: *Phys.Rev.D* 104 (2021) 5, 054049 • e-Print: 2011.04773 [hep-ph]

Parton showers beyond leading logarithmic accuracy

#1

ALARIC

A partitioned dipole-antenna shower with improved transverse recoil

ertal U.) (Mar 28, 2024)		
024) 161 • e-Print: 2403.19452 [hep-ph]		AP
#1		
ter U. and Schrodinger Inst.,		
-Holguin-Plätzer		
garithms by parton she	owers	
n E. Soper (Oregon U.) (Nov 9, 2020)		

NLL SHOWERS

NLL showers are now available

Parton show

Mrinal Dasgupt Pier Francesco Published in: Pl

A new approach to color-coherent parton evolution

Florian Herren (Fermilab), Stefan Höche (Fermilab), Frank Krauss (Durham U., IPPP), Daniel Marek Schoenherr (Durham U., IPPP) (Aug 11, 2022)

Published in: JHEP 10 (2023) 091 •

THI

NLO+NLL_{PS} matchin with initia

Building a consistent parton

Jeffrey R. Forshaw (Manchester U.

Vienna), Simon Plätzer (Schrodinger Inst., Vienna and Vienna U.) (Mar 13, 2020)

Published in: JHEP 09 (2020) 014 • e-Print: 2003.06400 [hep-ph] Forshaw

Summations of large lo

Zoltán Nagy (DESY), Davisor

Published in: Phys.Rev.D 104

For e^+e^- matching, see [2301.09645]

vers beyond leading logarithmic accuracy	
Monni (CERN), Gavin P. Salam (Oxford U., Theor. Phys.) Monni (CERN), Gavin P. Salam (Oxford U., Theor. Phys.) et al. (Feb 25 Mys.Rev.Lett. 125 (2020) 5, 052002 • e-Print: 2002.11114 [hep-ph]	, Keith Hamilton (U. Coll. Londo , 2020) PanScal
#1 Reichelt (Durham U., IPPP),	
IS TALK:	
ng with PanScales showers al-state partons	AP
-Holguin-Plätzer	
garithms by parton showers	
n E. Soper (Oregon U.) (Nov 9, 2020) 4 (2021) 5, 054049 • e-Print: <mark>2011.04773</mark> [hep-ph]	DEDUG

[van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen '22]

MOTIVATION

Different shape between LL and NLL showers, especially at high energies

1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC.

DY - azimuthal angle between leading jets

MOTIVATION

- 2. NLO matching can augment the shower accuracy.

$$\sum_{i=1}^{i} \sum_{\alpha_{s}, L} = \exp\left(\frac{1}{\alpha_{s}}g_{1}(\alpha_{s}L) + \frac{1}{\alpha_{s}}g_{3}(\alpha_{s}L)\right)$$

$$\sum_{i=1}^{i} \sum_{\alpha_{s}, L} = (1 + \frac{\alpha_{s}C_{1}}{\alpha_{s}C_{1}}) \exp\left(\frac{1}{\alpha_{s}}g_{1}(\alpha_{s}L) + g_{2}(\alpha_{s}L) + \alpha_{s}g_{3}(\alpha_{s}L)\right)$$

Using a double log expansion:

$$\Sigma(\alpha_s, L) = \underbrace{\begin{array}{cc} \mathbf{DL} & \mathbf{NDL} \\ h_1(\alpha_s L^2) \\ + \sqrt{\alpha_s} h_2(\alpha_s L^2) \\ + \alpha_s h_3(\alpha_s L^2) \\ \end{array}}_{s, h_1(\alpha_s L^2)}$$

1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC.

For event-shapes: $C_1 + NLL \rightarrow NNDL$

MOTIVATION

- 2. NLO matching can augment the shower accuracy.
- 3. NLO matching is needed for obtaining NNLL accurate showers.

1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC.

[van Beekveld, et al. '24]

MOTIVATION

- 2. NLO matching can augment the shower accuracy.
- 3. NLO matching is needed for obtaining NNLL accurate showers.

IF MATCHING IS DONE WRONGLY, THE STRUCTURE OF THE SHOWER CAN BREAK.

[Hamilton, Karlberg, Salam, Scyboz, Verheyen '23]

1. NLL showers are likely to become a fundamental ingredient of the precision physics program at the LHC.

NLL PanScales SHOWERS IN A NUTSHELL

NLL PanScales SHOWERS IN A NUTSHELL

- 1. The shower must reproduce the exact matrix element when all emissions are well separated in at least k_T or η .
- 2. The shower must reproduce NLL analytic results for a broad class of observables (e.g. event shapes, subjet multiplicities).

NLL PanScales SHOWERS IN A NUTSHELL

- 1. The shower must reproduce the exact matrix element when all emissions are well separated in at least k_T or η .
- 2. The shower must reproduce NLL analytic results for a broad class of observables (e.g. event shapes, subjet multiplicities).

The PanScales Recipe

- Ordering variable: $v = k_t e^{-\beta |\eta|}$
- Recoil scheme:

PanLocal:{ \bot , + , - } local

PanGlobal: \perp global, { + , - } local

• Partitioning of the dipole in event com frame

MULTIPLICA

 $d\sigma(\Phi_B) = \bar{B}(\Phi_B) \left[S(\Phi_B) \right]$

TIVE MATCHING
$$(\Phi_B) \times \frac{R(\Phi_B, \Phi_{rad})}{B(\Phi_B)} d\Phi] I_{PS}$$

a) Reach NLO accuracy in the normalization \overline{B} . Analytically when possible, otherwise numerically.

- a) Reach NLO accuracy in the normalization \overline{B} . Analytically when possible, otherwise numerically.
- b) Generate the first emission with the exact real matrix element.

- Reach NLO accuracy in the normalization \overline{B} . Analytically when possible, otherwise numerically. a)
- b) Generate the first emission with the exact real matrix element.
- Generate all the subsequent emissions through a NLL shower. **C**)

The Born kinematics is generated according to the NLO cross section as:

$$d\sigma = \bar{B}(\Phi_B) d\Phi_B$$
 with $\bar{B}(\Phi_B) = B + V + \int R d\Phi_{\rm rad}$

The Born kinematics is generated according to the NLO cross section as:

$$d\sigma = \bar{B}(\Phi_B) d\Phi_B$$
 with $\bar{B}(\Phi_B) = B + V + \int R d\Phi_{\rm rad}$

Use analytic \overline{B} when available:

DIS (photon only): $\frac{d^2\sigma}{dxdy} = \frac{4\pi\alpha^2}{xyO^2} \left((1-y) F_2 + y^2 x F_1 \right)$

with:

- x and y usual DIS variables
- F_1 and F_2 NLO structure functions

The Born kinematics is generated according to the NLO cross section as:

$$d\sigma = \bar{B}(\Phi_B) d\Phi_B$$
 with

Use analytic \overline{B} when available:

DIS (photon only): $\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}y} = \frac{4\pi\alpha^2}{ryO^2} \left(\left(1-y\right)F_2 + y^2xF_1 \right) \quad \frac{\mathrm{d}v}{\mathrm{d}Q^2} = 0.025$

with:

- x and y usual DIS variables -
- F₁ and F₂ NLO structure functions

At NLO this requires a careful flavour decomposition (more on this later)

 $\bar{B}(\Phi_B) = B + V + \left| R \, d\Phi_{\rm rad} \right|$

The Born kinematics is generated according to the NLO cross section as:

$$d\sigma = \bar{B}(\Phi_B) d\Phi_B$$
 with $\bar{B}(\Phi_B) = B + V + \int R d\Phi_{\rm rad}$

Obtain \overline{B} numerically:

POWHEG:
$$\overline{B}(\Phi_B) = \int dX_1 dX_2 dX_3 \, \widetilde{B}(\Phi_B, X_1, X_2)$$

 X_2, X_3)

The Born kinematics is generated according to the NLO cross section as:

$$d\sigma = \bar{B}(\Phi_B) d\Phi_B$$
 with $\bar{B}(\Phi_B) = B + V + \int R d\Phi_{\rm rad}$

Obtain \overline{B} numerically:

POWHEG:
$$\overline{B}(\Phi_B) = \int dX_1 dX_2 dX_3 \, \widetilde{B}(\Phi_B, X_1, X_2)$$

 $\tilde{B}(\Phi_B, X_1, X_2, X_3) \to \tilde{B}(\Phi_B, X_1, X_2, X_3) + \Delta \tilde{B}(\Phi_B, X_1, X_2, X_3)$

 $\Delta \tilde{B} = \text{Jac} \cdot \text{R}(\Phi_{\text{rad}}^{\text{PS}}) - \text{R}(\Phi_{\text{rad}}^{\text{FKS}})$

Correct FKS/PanScales mappings

 $X_{2}, X_{3})$

The Born kinematics is generated according to the NLO cross section as:

$$d\sigma = \bar{B}(\Phi_B) d\Phi_B$$
 wit

POWHEG:
$$\overline{B}(\Phi_B) = \int dX_1 dX_2 dX_3 \, \widetilde{B}(\Phi_B, X_1, X_2)$$

 $\bar{B}(\Phi_B) = B + V + R d\Phi_{\rm rad}$ th $e^+e^- \rightarrow q\bar{q}$ ${
m d}\sigma^{
m NLO}$ 0.75 -Shower, $\alpha_s = 0.1$ Shower, $\alpha_s = 0.05$ $d\cos\theta_{\rm T}$ 0.70 Shower, $\alpha_s = 0.01$ ---- NLO result, $\alpha_s = 0.1$ 0.65 $X_{2}, X_{3})$ NLO result, $\alpha_s = 0.05$ 0.60 NLO result, $\alpha_s = 0.01$ LO result 0.55 0.50 0.45 0.40 PanGlobal ($\beta_{PS} = 0$) analytic **Correct FKS/PanScales mappings** 1.5 - $\alpha_s \rightarrow 0, \Delta \tilde{B}$ on $- \alpha_{s} \rightarrow 0. \Delta B \text{ off}$ 1.0 to ratio -1.00 - 0.75 - 0.50 - 0.25 0.00 0.25 0.50 0.75 1.00 $\cos\theta_{\rm T}$

$$\Delta \tilde{B} = \text{Jac} \cdot \text{R}(\Phi_{\text{rad}}^{\text{PS}}) - \text{R}(\Phi_{\text{rad}}^{\text{FKS}})$$

Obtain \overline{B} numerically: $\tilde{B}(\Phi_B, X_1, X_2, X_3) \to \tilde{B}(\Phi_B, X_1, X_2, X_3) + \Delta \tilde{B}(\Phi_B, X_1, X_2, X_3)$ Applied to $e^+e^- \rightarrow Z$ and $pp \rightarrow Z$ but easily extendable to more complicated processes taking \tilde{B} directly from POWHEG.

The hardest emission is generated with the correct real matrix element.

 $\tilde{i}\tilde{j} \rightarrow ijk : P \sim \frac{R_{i,j,k}(\Phi_{n+1})}{B_{\tilde{i},\tilde{j}}(\Phi_n)}$

The hardest emission is generated with the correct real matrix element.

Simple example: DIS, only $\gamma^*q \rightarrow qg$ channel

(+ \bar{q} -contributions)

 $\tilde{i}\tilde{j} \rightarrow ijk : P \sim \frac{R_{i,j,k}(\Phi_{n+1})}{B_{\tilde{i},\tilde{i}}(\Phi_n)}$

RATIO PS/exact ME

The hardest emission is generated with the correct real matrix element.

Simple example: DIS, only $\gamma^*q \rightarrow qg$ channel

(+ \bar{q} -contributions)

 $\tilde{i}\tilde{j} \rightarrow ijk : P \sim \frac{R_{i,j,k}(\Phi_{n+1})}{B_{\tilde{i},\tilde{i}}(\Phi_n)}$

RATIO PS/exact ME

- 2.00
- 1.75
- 1.50
- 1.25
- 1.00
- 0.75
- 0.50
- 0.25
0.00

The hardest emission is generated with the correct real matrix element.

Non-trivial example: DIS, $\gamma^*g \rightarrow q\bar{q}$ channel

Two possible underlying Borns for the same real configuration!

 $\tilde{i}\tilde{j} \rightarrow ijk : P \sim \frac{R_{i,j,k}(\Phi_{n+1})}{B_{\tilde{i}\tilde{i}}(\Phi_n)}$

The **hardest emission** is generated with the correct real matrix element.

Non-trivial example: DIS, $\gamma^*g \rightarrow q\bar{q}$ channel

Two possible underlying Borns for the same real configuration!

Introduce a partitioning factor to split the full real matrix element in the two possible Borns.

The fraction of real associated to a given Born is taken as:

 $\tilde{i}\tilde{j} \rightarrow i\tilde{j}k : P \sim \frac{R_{i,j,k}(\Phi_{n+1})}{B_{\tilde{i}\tilde{i}}(\Phi_n)}$

The hardest emission is generated with the correct real matrix element.

Non-trivial example: DIS, $\gamma^*g \rightarrow q\bar{q}$ channel

Two possible underlying Borns for the same real configuration!

Introduce a partitioning factor to split the full real matrix element in the two possible Borns.

The fraction of real associated to a given Born is taken as:

The hardest emission is generated with the correct real matrix element.

Non-trivial example: DIS, $\gamma^*g \rightarrow q\bar{q}$ channel

Two possible underlying Borns for the same real configuration!

Introduce a partitioning factor to split the full real matrix element in the two possible Borns.

The fraction of real associated to a given Born is taken as:

NNDL TEST

- NNDL = $\mathcal{O}(\alpha_s^n L^{2n-2})$
- Compare the parton shower result with analytic calculations.
- Eliminate spurious contributions generated by the shower with:

$$\lim_{\alpha_s \to 0} \frac{\Sigma_{\rm PS} - \Sigma_{\rm NNDL}}{\alpha_s \Sigma_{\rm DL}} \bigg|_{\alpha_s L^2 \text{ fixed}}$$

NNDL TEST

 $M_{j,\beta} = \max_{i \in jets} \frac{k_{T_i}}{Q} e^{-\beta|\eta_i - \eta_Z|} \qquad S_{j,\beta} = \sum_{i \in jets} \frac{k_{T_i}}{Q} e^{-\beta|\eta_i - \eta_Z|}$

• NNDL = $\mathcal{O}(\alpha_s^n L^{2n-2})$

• Compare the parton shower result with analytic calculations.

• Eliminate spurious contributions generated by the shower with:

$$\lim_{\alpha_s \to 0} \frac{\Sigma_{\rm PS} - \Sigma_{\rm NNDL}}{\alpha_s \Sigma_{\rm DL}} \bigg|_{\alpha_s L^2 \text{ fixed}}$$

First time a shower demonstrably generates NNDL accurate results across many observables for pp collisions.

CONCLUSIONS and OUTLOOK

- NLO matching with NLL showers is needed for precision physics.
- Results for DIS, DY and oriented e^+e^- have been obtained at NLO+NLL accuracy through a multiplicative matching with PanScales showers.
- Extension to more complicated processes is possible through an on-the-fly conversion of \tilde{B}^{FKS} to \tilde{B}^{PS} .
- NNDL accurate results have been obtained for many observables in pp collisions.

CONCLUSIONS and OUTLOOK

- NLO matching with NLL showers is needed for precision physics.
- Results for DIS, DY and oriented e^+e^- have been obtained at NLO+NLL accuracy through a multiplicative matching with PanScales showers.
- Extension to more complicated processes is possible through an on-the-fly conversion of \tilde{B}^{FKS} to \tilde{B}^{PS} .
- NNDL accurate results have been obtained for many observables in pp collisions.

with the nice feature of generating only positive weights.

- The PanScales collaboration is currently working on a new NLO matching scheme
- IDEA: use a simple (=analytic) \overline{B} function and correct it à la MacNLOPS. ...more on this soon!