Crossing heavy-flavour thresholds in Fragmentation Functions

9th International Workshop on High Precision for Hard Processes at the LHC September 12th, 2024 **Torino**, Italy

Christian Biello (MPP)

in collaboration with Leonardo Bonino (UZH) based on 2407.07623

C. Biello, Crossing heavy-flavour thresholds in Fragmentation Functions

Recap on fragmentation functions (FFs)

Growing interest in pheno predictions with identified hadrons $\rightsquigarrow B$ and D meson production

In processes with identified hadrons, the factorisation formula reads

$$\frac{\mathrm{d}\sigma_{pp\to H}}{\mathrm{d}x} = \int \mathrm{d}\xi_1 \mathrm{d}\xi_2 \mathrm{d}z \, f^i(\xi_1) f^j(\xi_2) D^k(z) \, \frac{\mathrm{d}\sigma_{ijk}}{\mathrm{d}\hat{x}} \, \delta(x-z\hat{x}) \mathrm{d}\hat{x}, \ x = \frac{E_H}{E_{beam}}$$

In Mellin space for e^+e^- ,

$$\frac{\mathrm{d}\sigma_{H}}{\mathrm{d}x} = \int \frac{\mathrm{d}z}{z} \sum_{k} D^{k}(\frac{x}{z},\mu) \frac{\mathrm{d}\sigma_{k}}{\mathrm{d}z}, \quad k \in \text{partons}$$

$$\mathcal{M}_{(N,x)}[\mathcal{D}(x)] = \int_{0}^{t} \mathrm{d}x \ x^{N-1} \mathcal{D}(x)$$

$$\Sigma(N,Q^{2}) \sim \mathcal{M}_{(N,x)}\left[\frac{\mathrm{d}\sigma_{H}}{\mathrm{d}x}\right] = \sum_{k} D^{k}(N,\mu) \mathcal{M}_{(N,x)}\left[\frac{\mathrm{d}\sigma_{k}}{\mathrm{d}z}\right]$$

Improved description of Σ ratio in Andrea Ghira's talk

C. Biello, Crossing heavy-flavour thresholds in Fragmentation Functions

Matteo Cacciari's talk Terry Generet's talk

Heavy-flavour thresholds

Heavy-flavour thresholds

The matching conditions of the two sets around the mass *m* is an ingredient of the **DGLAP evolution** in the VFNS.

They should be implemented in the **PDFs and FFs fits** for the extraction of light-hadron and heavyhadron functions at fixed accuracy.

The NNLO space-like conditions played a fundamental role in the evidence of intrinsic charm in the proton! NNPDF Collaboration [2208.08372, 2311.00743]

Space-like conditions

NNLO matching conditions have long been known using the formalism of Operator Matrix Elements

Buza et al. [9612398]

All the necessary contributions for the N3LO accuracy are computed.

> Blümlein et al. [0904.3563, 1406.4654, 2211.05462, 2311.00644, 2403.00513]

The matching equations are included in the PDF evolution libraries, like APFEL and EKO.

> Bertone, Carrazza, Rojo [1310.1394] Candido, Hekhorn, Magni [2202.02338]

Time-like conditions

- The matching conditions were firstly derived at NLO accuracy
- Cacciari, Nason, Oleari [0504192]
 - We have extended the approach at NNLO and computed the light-quark matching,

$$D_i^{(n)} = D_i^{(n_L)} \left(1 + \alpha_s^2 \delta D_i \right) + \mathcal{O}(\alpha_s^3) \,.$$

CB, Bonino [2407.07623]

The NLO matching equations are included in the FF evolution library MELA.

Bertone, Carrazza, Nocera [1501.00494]

HP2 Torino

Electron-positron annihilation

Due to their universality, we focus on the simplest process: $e^+e^- \rightarrow \gamma^* \rightarrow H$.

Below threshold

$$\sum_{i} D_{i}^{(n_{L})} \frac{\mathsf{d}\sigma_{h\bar{h}i^{id}\bar{i}}}{\mathsf{d}z} \bigg\}$$

Electron-positron annihilation

Due to their universality, we focus on the simplest process: $e^+e^- \rightarrow \gamma^* \rightarrow H$.

Below threshold

Above threshold

y * dight might might quark i t to this

X*

X*

C. Biello, Crossing heavy-flavour thresholds in Fragmentation Functions

×*

C. Biello, Crossing heavy-flavour thresholds in Fragmentation Functions

The independent EM charges produce independent matching conditions

$$d\sigma_{H}^{massive} - d\sigma_{H}^{massless} \sim \sum_{i} Q_{i}^{2}(\dots) + Q_{h}^{2}(\dots)$$

$$i \qquad 0 \qquad 0$$

 D_i can be easily isolated from Q_i^2

$$\frac{D_i^{(n)}(x,\mu) - D_i^{(n_L)}(x,\mu)}{\sigma_{i\bar{i}}} = \frac{1}{\sigma_{i\bar{i}}} \int_x^1 dz D_i^{(n_L)}(\frac{x}{z},\mu) \left[\frac{d\sigma_{h\bar{h}i\bar{i}}}{dz} - \frac{d\hat{\sigma}_{h\bar{h}i\bar{i}}}{dz} + \frac{d\sigma_{i,f}}{dz} - \frac{d\hat{\sigma}_{i,f}}{dz} + \delta_{\alpha} \right]$$

Partonic cross-sections: massless

The NNLO massless cross-sections are computed for example in antenna subtraction.

Leonardo Bonino's talk

 $\frac{\mathrm{d}\hat{\sigma}_{h\bar{h}i^{id}\bar{i}}^{Q_{i}}}{\mathrm{d}z} + \frac{\mathrm{d}\hat{\sigma}_{i,f}}{\mathrm{d}z} = \sigma_{i\bar{i}}\left(\frac{\alpha}{2}\right)$

Gehrmann, Stagnitto [2208.02650] Bonino, Gehrmann, Marcoli, Schürmann, Stagnitto [2406.09925]

$$\frac{\alpha_s}{2\pi}\right)^2 2C_F\left(\left.\mathcal{J}_{q\bar{q}}^{(2)}\right|_{N_f} + F_q^{(2)}\right|_{N_f}\right)$$

Partonic cross-sections: massless

The NNLO massless cross-sections are computed for example in antenna subtraction.

Leonardo Bonino's talk

$$\frac{\mathrm{d}\hat{\sigma}_{h\bar{h}i^{id.}\bar{i}}^{Q_{i}}}{\mathrm{d}z} + \frac{\mathrm{d}\hat{\sigma}_{i,f}}{\mathrm{d}z} = \sigma_{i\bar{i}}\left(\frac{\alpha_{s}}{2\pi}\right)^{2} 2C_{F}\left(\left.\mathcal{J}_{q\bar{q}}^{(2)}\right|_{N_{f}} + F_{q}^{(2)}\right|_{N_{f}}\right)$$

The RR and RV corrections can be captured by the N_f part of the antenna dipole $\mathcal{I}^{(2)}$, which depends on the antennae

Mass factorisation is also performed at dipole level.

The plus-prescription emerges from dimensional regularisation $(1-z)^{-1+k\epsilon} = -\frac{1}{k\epsilon}\delta(1-z)^{-1+k\epsilon}$

Gehrmann, Stagnitto [2208.02650] Bonino, Gehrmann, Marcoli, Schürmann, Stagnitto [2406.09925]

$$(-z) + \left(\frac{1}{1-z}\right)_{+} - k\epsilon \left(\frac{\log(1-z)}{1-z}\right)_{+} + \dots$$

Partonic cross-sections: massless

The NNLO massless cross-sections are computed for example in antenna subtraction.

Leonardo Bonino's talk

$$\frac{\mathrm{d}\hat{\sigma}_{h\bar{h}i^{id}\bar{i}}^{Q_{i}}}{\mathrm{d}z} + \frac{\mathrm{d}\hat{\sigma}_{i,f}}{\mathrm{d}z} = \sigma_{i\bar{i}}\left(\frac{\alpha_{s}}{2\pi}\right)^{2} 2C_{F}\left(\left.\mathcal{J}_{q\bar{q}}^{(2)}\right|_{N_{f}} + F_{q}^{(2)}\right|_{N_{f}}\right)$$

The RR and RV corrections can be captured by the N_f part of the antenna dipole $\mathcal{I}^{(2)}$, which depends on the antennae

Mass factorisation is also performed at dipole level.

The plus-prescription emerges from dimensional regularisation $(1-z)^{-1+k\epsilon} = -\frac{1}{k\epsilon}\delta(1-z)^{-1+k\epsilon}$

Gehrmann, Stagnitto [2208.02650] Bonino, Gehrmann, Marcoli, Schürmann, Stagnitto [2406.09925]

\rightarrow pole cancellation checked \rightarrow we reproduced the R-ratio for N=1

Gehrmann-De Ridder,

Gehrmann, Glover [0403057]

$$(-z) + \left(\frac{1}{1-z}\right)_{+} - k\epsilon \left(\frac{\log(1-z)}{1-z}\right)_{+} + \dots$$

Partonic cross-sections: massive

The virtual corrections are computed for space-like purposes. Blümlein, Falcioni, De Freitas [1605.05541]

We have computed the RR correction in the fragmentation kinematics $\mathsf{d}\sigma^{Q_i}_{har{h}i^{id.}i}$ $\frac{\partial \dot{x}}{\partial t} \sim \bar{\mathscr{B}}^{0,id.i}_{ih\bar{h}i}(z,m) \sim \left[\mathbf{d}\Phi_3 \ z^{1-2\epsilon} \bar{B}^0_{ih\bar{h}i} \right]$ **d***z*.

Partonic cross-sections: massive

The virtual corrections are computed for space-like purposes.

We have computed the RR correction in the fragmentation kinematics $\frac{\mathsf{d}\sigma_{h\bar{h}i^{id.}i}^{Q_i}}{\mathsf{d}z} \sim \bar{\mathscr{B}}_{ih\bar{h}i}^{0,id.i}(z,m) \sim \left[\mathbf{d}\Phi_3 \, z^{1-2\epsilon} \bar{B}_{ih\bar{h}i}^0 \right]$

Blümlein, Falcioni, De Freitas [1605.05541]

Two different phase-space parametrisation as a check

$$q \to k_p^{(0)} + k_1^{(m)} + k_2^{(m)} + k_3^{(0)}$$

Write $d\Phi_4$ in the off-shell γ frame and do not perform the integration in E_p

$$d\Phi_4^{(4)} \sim dz d\Phi_3^{(4)}$$

Partonic cross-sections: massive

We perform the analytic integration with the two phase-space parametrisations and expand in the small-mass limit.

For the Mellin transformation, we regularised the end-point divergence

$$\int_{0}^{1-\frac{4m^{2}}{Q^{2}}} dz \,\mathscr{B}_{ih\bar{h}i}^{0,id.i}(z,m)g(z) = \int_{0}^{1} dz \,\mathscr{B}_{ih\bar{h}i,reg}^{0,id.i}(z,m)g(z) + \mathcal{O}(m^{2})$$

$$\stackrel{\text{ansform can be computed can talk with the massless!}{\text{black with the massless!}} = \left[\mathscr{B}_{ih\bar{h}i}^{0,id.i}(z,m) \right]_{+} + \delta(1-z) \int_{0}^{1-\frac{4m^{2}}{Q^{2}}} dz \,\mathscr{B}_{ih\bar{h}i}^{0,id.i}(z,m) \right]$$

$$\text{Cancellation of } \log^{3} \frac{m^{2}}{Q^{2}} \text{ with the virtual i.e. cancellation of the massified poles } \epsilon^{-1}$$

$$\frac{1}{\epsilon} \to \log m^{2} + \text{const.}$$

$$\int_{0}^{1-\frac{4m^{2}}{Q^{2}}} dz \,\mathscr{B}_{ih\bar{h}i}^{0,id,i}(z,m)g(z) = \int_{0}^{1} dz \,\mathscr{B}_{ih\bar{h}i,reg}^{0,id,i}(z,m)g(z) + \mathcal{O}(m^{2})$$

$$\mathscr{B}_{ih\bar{h}i,reg}^{0,id,i}(z,m) = \left[\mathscr{B}_{ih\bar{h}i}^{0,id,i}(z,m)\right]_{+} + \delta(1-z) \int_{0}^{1-\frac{4m^{2}}{Q^{2}}} dz \,\mathscr{B}_{ih\bar{h}i}^{0,id,i}(z,m)$$
transform can be computed t can talk with the massless!
Cancellation of $\log^{3}\frac{m^{2}}{Q^{2}}$ with the virtual i.e. cancellation of the massified poles e^{-1}

$$\frac{1}{e} \to \log m^{2} + \text{const.}$$

Now the Mellin and it

As expected from the universality properties, all the $\log^2 Q$ and $\log Q$ vanish in the difference.

-3

Compact result

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} D_{i}^{(n)}(N,\mu) = \left\{1 + \left(\frac{\alpha_{s}}{2\pi}\right)^{2}C_{F}\frac{1}{N^{3}(N+1)^{3}}\left[-\frac{2}{3}N^{3}(N+1)^{3}S_{1,2}(N) - \frac{2}{3}N^{3}(N+1)^{3}S_{2,1}(N) + \frac{1}{3}N^{3}(N+1)^{3}S_{2,1}(N) - \frac{2}{3}N^{3}(N+1)^{3}S_{2}(N) - \frac{28}{27}N^{3}(N+1)^{3}\right] \\ \end{array} \\ \begin{array}{l} \begin{array}{l} + \left(\frac{9307}{1296} - \frac{29}{108}\pi^{2}\right)N^{6} + \left(\frac{9307}{432} - \frac{29}{36}\pi^{2}\right)N^{5} + \left(\frac{3281}{144} - \frac{29}{36}\pi^{2}\right)N^{4} + \left(\frac{10939}{1296} - \frac{29}{108}\pi^{2}\right)N^{3} + \frac{8}{9}N^{3}(N+1)^{3}\log^{3}2 + \frac{29}{9}N^{3}(N+1)^{3}\log^{2}2 + \frac{1}{54}\left(12\pi^{2} - 359\right)N^{3}(N+1)^{3}\log^{2}2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} + \left(\frac{10}{9}N^{3}(N+1)^{3}S_{1}(N) - \frac{2}{3}N^{3}(N+1)^{3}S_{2}(N) - \frac{1}{36}N\left(3N^{5} + 9N^{4} + 53N^{3} + 67N^{2} + 8N - 12\right)\right) 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} + \left(\frac{1}{12}N^{2}(N+1)^{2}\left(3N^{2} + 3N + 2\right) - \frac{1}{3}N^{3}(N+1)^{3}S_{1}(N)\right)\log^{2}\left(\frac{\mu^{2}}{m^{2}}\right) + \mathcal{O}(\alpha_{s}^{3})\right\} D_{i}^{(n_{L})}(N,\mu). \end{array}$$

for a straightforward implementation in MELA

The growing behaviour for larger N is governed by the RR emissions

Mellin Spac

Space

00

$$\Delta D_{i}(N) = \frac{D_{i}^{(n)}(N,m) - D_{i}^{(n_{L})}(N,m)}{D_{i}^{(n_{L})}(N,m)}$$

$$\Delta D_{i}(N) = \frac{D_{i}^{(n)}(N,m) - D_{i}^{(n)}(N,m)}{D_{i}^{(n_{L})}(N,m)}$$

$$\Delta D_{i}(N) = \frac{D_{i}^{(n)}(N,m) - D_{i}^{(n)}(N,m)}{D_{i}^{(n)}(N,m)}$$

$$\Delta D_{i}(N) = \frac{D_{i}^{(n)}(N,m) - D_{i}^{(n)}(N,$$

Same of the non-singlet quark OME

$$\begin{split} D_i^{(n)}(z,\mu) &= \left\{ 1 + \left(\frac{\alpha_s}{2\pi}\right)^2 C_F T_F \left[\left(-\frac{1}{3} - \frac{1}{3}z + \frac{1}{2}\delta(1-z) + \frac{2}{3}\left(\frac{1}{1-z}\right)_+ \right) \log^2 \frac{\mu^2}{m^2} + \\ &\left(-\frac{2}{9} + \frac{22}{9}z - \frac{2}{3}\frac{1+z^2}{1-z}\log z - \left(\frac{1}{6} + \frac{2\pi^2}{9}\right)\delta(1-z) - \frac{20}{9}\left(\frac{1}{1-z}\right)_+ \right) \log \frac{\mu^2}{m^2} + \\ &- \frac{67z}{27} + \left(-\frac{z}{6} + \frac{1}{3(1-z)} - \frac{1}{6} \right) \log^2(z) + \left(-\frac{11z}{9} + \frac{10}{9(1-z)} + \frac{1}{9} \right) \log(z) + \frac{11}{27} + \left(\frac{9307}{648} - \frac{10}{3}\zeta_3 - \frac{19\pi^2}{54} + \frac{16\log^3(2)}{9} + \frac{58\log^2(2)}{9} + \left(\frac{4\pi^2}{9} - \frac{359}{27} \right) \log(2) \right) \delta(1-z) + \frac{56}{27}\left(\frac{1}{1-z}\right)_+ \right] + \mathscr{O}(\alpha_s^3) \right\} D_i^{(n_L)}(z,\mu). \end{split}$$

The growing behaviour for larger N is governed by the RR emissions

The matching equation obeys to a RGE

$$\frac{\partial \Delta D}{\partial \log \mu^2} = \beta_0 \log \frac{\mu^2}{m^2} P_{ii,0} + \left(P_{ii,1}^{(n)} - P_{ii,1}^{(n_L)} \right)$$

Same space-like and time-like splitting functions at tree-level

10/15

40

The D_h condition can be extracted in the same process focusing on the Q_h^2 contributions.

Below threshold

ju* di quark i

Above threshold

light quark 17i) i mo-H i D:

The D_h condition can be extracted in the same process focusing on the Q_h^2 contributions.

Below threshold

Above threshold

MASSLESS h

The D_h condition can be extracted in the same process focusing on the Q_h^2 contributions.

Below threshold

Above threshold

The D_h condition can be extracted in the same process focusing on the Q_h^2 contributions.

Below threshold

In the difference $d\sigma_g - d\hat{\sigma}_g$ only the NLO correction to d $\hat{\sigma}_{har{h}g}$ survives

Above threshold

MASSLESS h

The D_h condition can be extracted in the same process focusing on the Q_h^2 contributions.

Below threshold

In the difference $d\sigma_g - d\hat{\sigma}_g$ only the NLO correction to $d\hat{\sigma}_{h\bar{h}g}$ survives

Above threshold

MASSLESS h

The D_h condition can be extracted in the same p

$$D_{h}^{(n)}(N,\mu) = \left(\mathcal{M}_{(N,z)}\left[\frac{\mathsf{d}\hat{\sigma}_{h}}{\mathsf{d}z}\right]\right)^{-1} \begin{cases} D_{g}^{(n_{L})}(N,\mu) \ \mathcal{M}_{(N,z)} \left[\frac{\mathsf{d}\sigma_{h\bar{h}g^{id.}}}{\mathsf{d}z}\right] \end{cases}$$

• The $\mathcal{O}(\alpha_s)$ term reproduces Cacciari-Nason-Ole

$$D_h^{(n)}(N,\mu) = \frac{1}{\sigma_0} \left\{ D_g^{(n_L)}(N,\mu) \right\}$$

- The RR massive correction proportional to D_i must be integrated in $4 2\epsilon$ dimensions
- lacksquareknown

Bernreuther, (Bogner,) Dekkers [1309.6887,1409.3124]

The RV massive correction is still missing at differential level, although the fully-integrated antenna is

 $\mathcal{M}_{(N,z)} \left| \frac{\mathrm{d}\sigma_{h\bar{h}g^{id.}}}{\mathrm{d}z} - \frac{\mathrm{d}\hat{\sigma}_{h\bar{h}g^{id.}}}{\mathrm{d}z} \right| + \mathcal{O}(\alpha_s^2) \right\}$

$$\frac{\mathrm{d}\hat{\sigma}_{h\bar{h}g^{id.}}}{\mathrm{d}z}\right] + \sum_{i\in\mathbb{I}_{n_{L}}-g} D_{i}^{(n_{L})}(N,\mu) \,\mathcal{M}_{(N,z)}\left[\frac{\mathrm{d}\sigma_{h\bar{h}i^{id.}\bar{i}}}{\mathrm{d}z} - \frac{\mathrm{d}\hat{\sigma}_{h\bar{h}i^{id.}\bar{i}}}{\mathrm{d}z}\right] + \mathcal{O}(\alpha_{s}^{3})\right\}$$

process focusing on the
$$Q_h^2$$
 contributions.

Gluon matching equation

The NNLO calculation in $e^+e^- \rightarrow \gamma^* \rightarrow H$ is not sensible to the gluon NNLO matching condition. Alternative process: $e^+e^- \rightarrow h^0 \rightarrow H$ in the effective theory

Gluon matching equation

The NNLO calculation in $e^+e^- \rightarrow \gamma^* \rightarrow H$ is not sensible to the gluon NNLO matching condition. Alternative process: $e^+e^- \rightarrow h^0 \rightarrow H$ in the effective theory

$$D_{g}^{(n)}(x,\mu) = D_{g}^{(n_{L})}(x,\mu) + \frac{1}{\sigma_{0}} \int_{x}^{1} \frac{dz}{z} D_{g}^{(n_{L})} \left(\frac{x}{z},\mu\right) \left(\frac{d\sigma_{g,f}}{dz} - \frac{d\hat{\sigma}_{g,f}}{dz}\right)$$
$$= D_{g}^{(n_{L})}(x,\mu) \left(1 - \frac{T_{F}\alpha_{s}}{3\pi} \log \frac{\mu^{2}}{m^{2}} + \mathcal{O}(\alpha_{s}^{2})\right)$$

Gluon matching equation

The NNLO calculation in $e^+e^- \rightarrow \gamma^* \rightarrow H$ is not sensible to the gluon NNLO matching condition. Alternative process: $e^+e^- \rightarrow h^0 \rightarrow H$ in the effective theory

$$D_{g}^{(n)}(x,\mu) = D_{g}^{(n_{L})}(x,\mu) + \frac{1}{\sigma_{0}} \int_{x}^{1} \frac{dz}{z} D_{g}^{(n_{L})} \left(\frac{x}{z},\mu\right) \left(\frac{d\sigma_{g,f}}{dz} - \frac{d\hat{\sigma}_{g,f}}{dz}\right)$$
$$= D_{g}^{(n_{L})}(x,\mu) \left(1 - \frac{T_{F}\alpha_{s}}{3\pi} \log \frac{\mu^{2}}{m^{2}} + \mathcal{O}(\alpha_{s}^{2})\right)$$

After the NLO check, we have extended the master formula at NNLO in the h^0 channel. The gluon-gluon massless antennae are useful but some massive ingredients are still missing.

Summary and outlook

Matching conditions are the last missing ingredients for the NNLO consistency of FF fits.

We presented the first time-like NNLO matching equation D_i

- Extension of the NLO master formulae focusing on physical processes \bullet
- Explicit analytic result for light-quark FF
 - Several checks including cancellation of $\log Q$ and RGE scaling ullet
 - D_g and D_h conditions still missing
 - Massive fragmentation antennae can solve the problem

Thank you for your attention!

Backup slides

RGE of the matching equation $D_i^{(n)} = \left(1 + \alpha_s^2 \delta D\right) \otimes D_i^{(n_L)}$

The matching equation obeys to a RGE

$$\frac{\partial}{\partial \log \mu} D_i^{(n)} = \left(1 + \alpha_s^2 \frac{\partial \delta D}{\partial \log \mu}\right) D_i^{(n_L)} + \frac{\partial}{\partial \log \mu} D_i^{(n_L)} + \mathcal{O}(\alpha_s^3)$$

$$\gamma_{ii} \otimes D_i^{(n)} + \gamma_{gi} \otimes D_g^{(n)} = \left(1 + \alpha_s^2 \frac{\partial \delta D}{\partial \log \mu}\right) D_i^{(n_L)} + \gamma_{ii} \otimes D_i^{(n_L)} + \gamma_{gi} \otimes D_g^{(n_L)}$$

The RG dependence on D_g cancels at $\mathcal{O}(\alpha_s^2)$

$$\left\{\alpha_{s}^{(n)}\gamma_{gi,0} + (\alpha_{s}^{(n)})^{2}\gamma_{gi,1}\right\} \otimes D_{i}^{(n)} = \left\{\alpha_{s}^{(n_{L})}\gamma_{gi,0} + (\alpha_{s}^{(n_{L})})^{2}\gamma_{gi,1}\right\} \otimes D_{i}^{(n_{L})}$$

thanks to the NLO matching $\alpha_s^{(n)}D_g^{(n)} = \alpha_s^{(n_L)}D_g^{(n_L)}$

RGE of the matching equation $D_i^{(n)} = \left(1 + \alpha_s^2 \delta D\right) \otimes D_i^{(n_L)}$

The matching equation obeys to a RGE

$$\frac{\partial}{\partial \log \mu} D_{i}^{(n)} = \left(1 + \alpha_{s}^{2} \frac{\partial \delta D}{\partial \log \mu}\right) D_{i}^{(n_{l})} + \frac{\partial}{\partial \log \mu} D_{i}^{(n_{l})} + \mathcal{O}(\alpha_{s}^{3})$$

$$\gamma_{ii} \otimes D_{i}^{(n)} + \gamma_{gi} \otimes D_{g}^{(n)} = \left(1 + \alpha_{s}^{2} \frac{\partial \delta D}{\partial \log \mu}\right) D_{i}^{(n_{l})} + \gamma_{ii} \otimes D_{i}^{(n_{l})} + \gamma_{gi} \otimes D_{g}^{(n_{l})}$$
By expanding the quark anomalous coupling,
$$\gamma_{ii} \otimes D_{i}^{(n)} = \left\{\alpha_{s}^{(n_{l})} \left(1 + \alpha_{s}\beta_{0} \log \frac{\mu^{2}}{m^{2}}\right) \gamma_{ii,0} + \alpha_{s}^{2} \gamma_{ii,1}^{(n_{l})}\right\} \otimes D_{i}^{(n)}$$
we deduce the RGE
$$\frac{\partial \delta D}{\partial \log \mu} = \beta_{0} \log \frac{\mu^{2}}{m^{2}} P_{ii,0} + \left(P_{ii,1}^{(n)} - P_{ii,1}^{(n_{l})}\right)$$
The non-singlet OME for quark Pl by the same splittings in the space of the space of

PDFs $(f_i - f_j)$ is controlled e-like kinematics

lies the same $\log^2 \frac{\mu^2}{m^2}$

Antenna dipole

The integrated dipole allows for a natural organisation of IR singularities.

• The needed identity-preserving dipole reproduces the structure of the virtual correction.

Nf piece of the beta function

Bonino, Gehrmann, Marcoli, Schürmann, Stagnitto [2406.09925]

NNLO gluon matching equation: details

Let's study the NNLO corrections to $e^+e^- \rightarrow h^0 \rightarrow H$ in the effective theory.

 $D_{g}^{(n)}$ cannot depend on $D_{i}^{(n_{L})}$ around the threshold, since

$$\int_{x}^{1} \frac{\mathrm{d}z}{z} \left(D_{i}^{(n_{L})} \frac{\mathrm{d}\hat{\sigma}_{i}}{\mathrm{d}z} - D_{i}^{(n)} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}z} \right) = \mathcal{O}(\alpha_{s}^{3}).$$

NNLO gluon matching equation: details

Let's study the NNLO corrections to $e^+e^- \rightarrow h^0 \rightarrow H$ in the effective theory.

 $D_g^{(n)}$ cannot depend on $D_i^{(n_L)}$ around the threshold, since

NLO matching

$$D_{g}^{(n)}(x,\mu) = D_{g}^{(n_{L})}(x,\mu) \left(1 - \frac{T_{F}\alpha_{s}^{(n_{L})}}{3\pi}\log\frac{\mu^{2}}{m^{2}}\right) + \int_{x}^{1}\frac{dz}{z}D_{x}^{(n_{L})} D_{x}^{(n_{L})} D_{x}^{(n_{L}$$

$$\int_{x}^{1} \frac{\mathrm{d}z}{z} \left(D_{i}^{(n_{L})} \frac{\mathrm{d}\hat{\sigma}_{i}}{\mathrm{d}z} - D_{i}^{(n)} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}z} \right) = \mathcal{O}(\alpha_{s}^{3}).$$

Genuine NNLO fermionic loop contributions $D_g^{(n_L)}(\frac{x}{z},\mu) \left\{ \frac{\mathsf{d}\sigma_{g,f}}{\mathsf{d}z} - \left(\frac{\mathsf{d}\hat{\sigma}_{g,f}}{\mathsf{d}z} - \frac{\mathsf{d}\hat{\sigma}_{g^{id}\cdot h\bar{h},f}}{\mathsf{d}z} \right) + \right.$ $\begin{pmatrix} 2 & d\hat{\sigma}_g \\ m^2 & dz \end{pmatrix} - \int_x^1 \frac{dz}{z} \left(D_h^{(n)} + D_{\bar{h}}^{(n)} \right) \frac{d\hat{\sigma}_{gh^{id}\bar{h}}}{dz} .$ These contributions are w.r.t $D_g^{(n_L)}$ using the NLO heavy-flavour matching

