

NLO corrections to tri-boson production in the WZjj channel

Based on a work done by A. Denner, DL, S. L. P. Chavez and G. Pelliccioli (arxiv:2407.21558)

> Presented by Daniele Lombardi

HP² Workshop 2024 (University of Turin and INFN) Parallel Session: EW and Higgs Physics, EFT and BSM September 12th, 2024

Probing the SM EW Sector

Probing the SM EW Sector

Despite many confirmations, some parts of the Standard-Model (SM) EW sector are still poorly constrained:

- Triple and quartic vector-boson couplings
- Symmetry-breaking mechanism

Tri-boson production and VBS are golden channels to probe these sectors of the SM!

Daniele Lombardi

Tri-boson-production measurements are affected by large background and small cross sections

Tri-boson-production measurements are affected by large background and small cross sections

Tri-boson-production measurements are affected by large background and small cross sections

Daniele Lombardi

Tri-boson-production measurements are affected by large background and small cross sections

Daniele Lombardi

Tri-boson-production measurements are affected by large background and small cross sections

Daniele Lombardi

✓ NLO QCD on-shell predictions for all tri-boson processes [arXiv:hep-ph/0703273, arXiv:0804.0350].

✓ NLO QCD+EW on-shell predictions for WWW and WWZ [arXiv:1307.7403, arXiv:1705.03722].

 Fully-leptonic decay included at LO with narrowwidth approximation for WZZ and WWW [arXiv:1507.03693, arXiv:1605.00554].

✓ NLO QCD off-shell predictions [<u>arXiv:0712.3544</u>, <u>arXiv:0809.0790</u>].

✓ NLO QCD+EW off-shell predictions for WWW [arXiv:1806.00307, arXiv:1912.04117].

Fully-leptonically decaying vector bosons

✓ NLO QCD+EW off-shell calculation matched to PS for triboson in the W+W+jj channel [arXiv:2406.11516].

□ NLO QCD+EW off-shell calculation for tri-boson in the WZjj channel [arXiv:2407.21558].

One hadronically-decaying vector boson

✓ NLO QCD on-shell predictions for all tri-boson processes [arXiv:hep-ph/0703273, arXiv:0804.0350].

✓ NLO QCD+EW on-shell predictions for WWW and WWZ [arXiv:1307.7403, arXiv:1705.03722].

 Fully-leptonic decay included at LO with narrowwidth approximation for WZZ and WWW [arXiv:1507.03693, arXiv:1605.00554].

✓ NLO QCD off-shell predictions [<u>arXiv:0712.3544</u>, <u>arXiv:0809.0790</u>].

✓ NLO QCD+EW off-shell predictions for WWW [arXiv:1806.00307, arXiv:1912.04117].

✓ NLO QCD+EW off-shell calculation matched to PS for triboson in the W+W+jj channel [arXiv:2406.11516].

□ NLO QCD+EW off-shell calculation for tri-boson in the WZjj channel [<u>arXiv:2407.21558</u>].

Fully-leptonically decaying vector bosons

This Talk!

One hadronically-decaying vector boson

Daniele Lombardi

Daniele Lombardi

Off-shell calculations just look at the final states

 Overlap of VBS and tri-boson production

✓ NLO QCD+EW off-shell calculation matched to PS for triboson in the W+W+jj channel [arXiv:2406.11516].

□ NLO QCD+EW off-shell calculation for tri-boson in the WZjj channel [arXiv:2407.21558].

One hadronically-decaying vector boson

✓ NLO QCD+EW off-shell calculation matched to PS for triboson in the W+W+jj channel [arXiv:2406.11516].

□ NLO QCD+EW off-shell calculation for tri-boson in the WZjj channel [arXiv:2407.21558].

One hadronically-decaying vector boson

Structure of the calculation

A. Denner, DL, SLP. Chavez and G. Pelliccioli [arXiv:2407.21558]

NLO QCD and NLO EW corrections to fully off-shell

 $p p \rightarrow e^+ \nu_e \mu^+ \mu^- j j$

in a phase space which enhances the tri-boson signal.

- * Calculation performed with the in-house MOCANLO program:
 - SM amplitudes computed with RECOLA (CKM matrix set to identity matrix);
 - Tensor reduction and evaluation of 1-loop integrals with COLLIER library.
- * All relevant partonic channels included: light-quark and photon induced, together with $\bar{b}b$ initiated (5-flavour scheme).
- * Signal: $\mathcal{O}(\alpha^6)$ (LO) + $\mathcal{O}(\alpha^7)$ (NLO_{EW}) + $\mathcal{O}(\alpha_s \alpha^6)$ (NLO_{QCD})
- * **Background** assessment:
 - Channels with at least one final-state bottom quark \rightarrow top-enhanced contributions;
 - Additional LO terms at $\mathcal{O}(\alpha_s \alpha^5)$ and $\mathcal{O}(\alpha_s^2 \alpha^4) \rightarrow$ their NLO corrections not part of this study.

Structure of the calculation

A. Denner, DL, SLP. Chavez and G. Pelliccioli [arXiv:2407.21558]

NLO QCD and NLO EW corrections to fully off-shell $p\,p\,\to\,e^+\nu_e\mu^+\mu^-\,j\,j$ in a phase space which enhances the tri-boson signal.

- * Calculation performed with the in-house MOCANLO program:
 - SM amplitudes computed with RECOLA (CKM matrix set to identity matrix);
 - Tensor reduction and evaluation of 1-loop integrals with COLLIER library.
- * All relevant partonic channels included: light-quark and photon induced, together with $\bar{b}b$ initiated (5-flavour scheme).
- * Signal: $\mathcal{O}(\alpha^6)$ (LO) + $\mathcal{O}(\alpha^7)$ (NLO_{EW}) + $\mathcal{O}(\alpha_s \alpha^6)$ (NLO_{QCD})
- * **Background** assessment:
 - Channels with at least one final-state bottom quark \rightarrow top-enhanced contributions;
 - Additional LO terms at $\mathcal{O}(\alpha_s \alpha^5)$ and $\mathcal{O}(\alpha_s^2 \alpha^4) \rightarrow$ their NLO corrections not part of this study.

Definition of phase space

Inspired by HL LHC studies by ATLAS [ATL-PHYS-PUB-2018-030]

 $pp \rightarrow e^+ \nu_e \mu^+ \mu^- jj @ 13.6 TeV$

* QCD partons with $|\eta| < 5$ are clustered into jets with anti- k_t clustering (R = 0.4).

- Photon never reconstructed as jets + perfect b-jet tagging and veto
- Exactly two tagged jets satisfying: $p_{T,j_{1/2}} > 40 \, GeV$, $|y_{j_{1/2}}| < 3 \rightarrow VETO$ on additional radiation
- Invariant-mass cut on tagged jets: $50 \text{ GeV} < M_{j_1 j_2} < 100 \text{ GeV}$

 $V < M_{j_1 j_2} < 100 \, GeV$

Hadronically-decaying vector boson

- * Leptons/quarks are dressed with anti- k_t clustering (R = 0.1):
 - Common rapidity cut for all leptons: $|y_{\ell_i}| < 4$.
 - Transverse-momentum cuts on p_T-ordered leptons $p_{T,\ell_1} > 50 \, GeV, \ p_{T,\ell_2} > 40 \, GeV, \ p_{T,\ell_3} > 20 \, GeV.$
 - Cuts tuned to leptonically-decaying vector bosons:

- Z boson: $76 \, GeV < M_{\mu^+\mu^-} < 106 \, GeV$ - W⁺ boson: $M_{\mathrm{T},W^+} = \sqrt{2p_{\mathrm{T},e^+}p_{\mathrm{T},\nu_e}(1 - \cos(\phi_{e^+} - \phi_{\nu_e}))} > 20 \, GeV$

Leptonically-decaying vector bosons

Structure of the calculation: $\mathcal{O}(\alpha^6)$

NLO QCD and NLO EW corrections to fully off-shell

 $p p \rightarrow e^+ \nu_e \mu^+ \mu^- j j$

in a phase space which enhances the tri-boson signal.

Signal contributions are triply resonant

• $q_1\bar{q}_2$ channels, with q_1 and \bar{q}_2 belonging to same generation and such that $Q(q_1) + Q(\bar{q}_2) \in \{-1,0\}$ • $\gamma\gamma$ and $b\bar{b}$ channels

Background (at most doubly resonant)
q₁q
/₂ channels, suppressed by phase-space cuts
Channels with at least one b quark in the final state (contributions to tZj production) → assuming perfect b-jet veto

Structure of the calculation: $\mathcal{O}(\alpha_s \alpha^5)$

NLO QCD and NLO EW corrections to fully off-shell:

 $p p \rightarrow e^+ \nu_e \mu^+ \mu^- j j$

in a phase space which enhances the tri-boson signal.

Background arising from

- Interferences of $\mathcal{O}(g^6)$ and $\mathcal{O}(g_s^2 g^4)$ amplitudes allowed by colour algebra
- Squares of $\mathcal{O}(g_s g^5)$ amplitudes from γg and γq channels

 $50 \, GeV < M_{j_1 j_2} < 100 \, GeV = M_{jj}^{\text{cut}}$

Structure of the calculation: $\mathcal{O}(\alpha_s^2 \alpha^4)$

NLO QCD and NLO EW corrections to fully off-shell:

 $p p \rightarrow e^+ \nu_e \mu^+ \mu^- j j$

in a phase space which enhances the tri-boson signal.

Background arising from

- Diagrams with only an internal gluon propagator
- Diagrams with two external gluons, either as initial or as final states → overwhelming background source

Structure of the calculation: $\mathcal{O}(\alpha^7)$

NLO QCD and NLO EW corrections to fully off-shell:

 $pp \rightarrow e^+ \nu_e \mu^+ \mu^- jj$

in a phase space which enhances the tri-boson signal.

 α^{6} $\alpha_{s}\alpha^{5}$ $\alpha^{2}\alpha^{4}$ $\alpha_{s}\alpha^{6}$ $\alpha_{s}\alpha^{6}$ $\alpha_{s}^{2}\alpha^{5}$ $\alpha_{s}^{2}\alpha^{4}$ $\alpha_{s}^{2}\alpha^{5}$ $\alpha_{s}^{3}\alpha^{4}$

1. γq channels open up at $\mathcal{O}(\alpha^7)$ (absent at $\mathcal{O}(\alpha^6)$) \rightarrow only initial-state singularities

2. Real and virtual corrections to channels at $\mathcal{O}(\alpha^6)$

Structure of the calculation: $\mathcal{O}(\alpha_s \alpha^6)$

NLO QCD and NLO EW corrections to fully off-shell:

 $pp \rightarrow e^+ \nu_e \mu^+ \mu^- jj$

in a phase space which enhances the tri-boson signal.

QCD corrections to $\mathcal{O}(\alpha^6)$

- Both QCD and QED Catani-Seymour dipoles required
- Unsubtracted singularities due to jet definition

Configurations where a clustering of collinear quark pair from $\gamma^* \rightarrow q\bar{q}$ splitting occurs are not compensated by virtual corrections

→ Photon-to-jet conversion function [arXiv:1907.02366]

Structure of the calculation: $\mathcal{O}(\alpha_s \alpha^6)$

NLO QCD and NLO EW corrections to fully off-shell:

 $p p \rightarrow e^+ \nu_e \mu^+ \mu^- j j$

in a phase space which enhances the tri-boson signal.

EW corrections to $\mathcal{O}(\alpha_s \alpha^5)$

- QED Catani-Seymour dipoles suffice to subtract all IR singularities (due to jet selection cuts)
- \cdot Unsubtracted soft-gluon singularities for $q\gamma$ channels

$$\gamma q_1 \to \mu^+ \mu^- e^+ \nu_e q_2 (\gamma g) \to q_1 (\gamma g) \to q_2 (\gamma g) \to q_2$$

Soft gluon can be clustered with a hard photon

- Modified jet algorithm: Discard all events where jets are recombination of a parton and a photon whose energies exceed $E_{\gamma}/(E_p + E_{\gamma}) > z_{\rm cut} = 0.7$ [arXiv:1411.0916]
- \cdot Events with collinear pairs (q_2,γ) partially cut away: Absorb new divergences in photon fragmentation function

Subprocess	$\mathcal{O}(lpha^6)$ [ab]	$\mathcal{O}(lpha_{ m s}lpha^5)~[{ m ab}]$	$\mathcal{O}(lpha_{ m s}^2 lpha^4)$ [ab]
$q\bar{q} ightarrow q\bar{q}$	47.616(2)	-0.4524(2)	39.1(1)
b	12.3879(6)	—	7.628(2)
qq/ar qar q	1.04105(5)	-1.9664(4)	20.05(7)
$\gamma\gamma$	0.8592(1)	—	—
${ m b}ar{ m b}$	0.7137(1)	_	0.0034516(7)
$\gamma q/\gamma ar q$	—	9.617(2)	—
$\mathrm{g}\gamma$	—	0.9460(4)	—
gg	—	—	17.5(1)
${ m g}q/{ m g}ar{q}$	—	—	608.8(3)
$q\bar{q} ightarrow \mathrm{gg}$	_	_	162.0(1)
total	62.618(2)	8.144(2)	855.3(5)

 $\mu_0 = M_{
m Z}^{
m OS}$

	Subprocess	$\mathcal{O}(lpha^6)$ [ab]	$\mathcal{O}(lpha_{ m s}lpha^5)$ [ab]	${\cal O}(lpha_{ m s}^2 lpha^4)~[{ m ab}]$
sig	$q \bar{q} ightarrow q \bar{q}$	47.616(2)	-0.4524(2)	39.1(1)
$\sigma_{\rm LO}^{\rm sig} = 50.230(2) \text{ ab}$	b	12.3879(6)	—	7.628(2)
	qq/ar qar q	1.04105(5)	-1.9664(4)	20.05(7)
97% of LO signal	$\gamma\gamma$	0.8592(1)	—	_
arises from $qar q$	$\mathrm{b}ar{\mathrm{b}}$	0.7137(1)	—	0.0034516(7)
channel	$\gamma q/\gamma ar q$	_	9.617(2)	—
	$\mathrm{g}\gamma$	—	0.9460(4)	—
	gg	—	—	17.5(1)
	${ m g}q/{ m g}ar q$	_	—	608.8(3)
	$q\bar{q} ightarrow \mathrm{gg}$	_	_	162.0(1)
	total	62.618(2)	8.144(2)	855.3(5)

	Subprocess	$\mathcal{O}(lpha^6)$ [ab]	$\mathcal{O}(lpha_{ m s}lpha^5)$ [ab]	$\mathcal{O}(lpha_{ m s}^2 lpha^4)$ [ab]	
-	q ar q o q ar q	47.616(2)	-0.4524(2)	39.1(1)	
$\sigma_{\rm LO}^{\rm org} = 50.230(2) \text{ ab}$	b	12.3879(6)	_	7.628(2)	
	$qq/ar{q}ar{q}$	1.04105(5)	-1.9664(4)	$20.05(7)$ \	Background
97% of LO signal	$\gamma\gamma$	0.8592(1)	—	_	Duckyround
arises from $qar q$	$b\bar{b}$	0.7137(1)	_	0.0034516(7)	Channels with one
channel	$\gamma q/\gamma ar q$	_	9.617(2)	_	or two b quarks
	$\mathrm{g}\gamma$	—	0.9460(4)	—	in the finale
	gg	—	—	17.5(1)	state: isolated
	${ m g}q/{ m g}ar{q}$	—	_	608.8(3)	assuming perfect
	$q\bar{q} ightarrow \mathrm{gg}$	_		162.0(1)	b-jet veto
	total	62.618(2)	8.144(2)	855.3(5)	

 $\Delta^{(i)}_{\alpha^6}$: ratio of NLO correction and corresponding $\mathcal{O}(\alpha^6)$ contribution

Subprocess	$\mathcal{O}(lpha^6)$ [ab]	$\mathcal{O}(lpha^7)$ [ab]	$\Delta^{(i)}_{lpha^6} [\%]$	$\mathcal{O}(lpha_{ m s} lpha^6)$ [ab]	$\Delta^{(i)}_{lpha^6}$ [%]
$q\bar{q} ightarrow q\bar{q}$	47.616(2)	-7.81(5)	-16.4	-6.83(6)	-14.3
qq/ar qar q	1.04105(5)	-0.1156(3)	-11.1	4.19(1)	402.5
$\gamma\gamma$	0.8592(1)	-0.1045(6)	-12.1	-0.1341(4)	-15.6
${ m b}ar{ m b}$	0.7137(1)	-0.0836(4)	-11.7	-0.2195(5)	-30.7
$\gamma q/\gamma ar q$	—	0.9175(2)	—	-0.593(6)	—
$\mathrm{g}\gamma$	—	—	—	0.0053(7)	—
${ m g}q/{ m g}ar q$	—	—	—	5.766(3)	_
total	50.230(2)	-7.20(5)	-14.3	2.17(6)	4.3

$\Delta^{(i)}_{lpha^6}$: ratio of and corrected contribution	NLO corrections $\mathcal{O}(\alpha^6)$	n 5)	α^{6} EW			
	Subprocess	$\mathcal{O}(lpha^6)$ [ab]	$\mathcal{O}(lpha^7)$ [ab]	$\Delta^{(i)}_{lpha^6} [\%]$	$\mathcal{O}(lpha_{ m s} lpha^6)$ [ab]	$\Delta^{(i)}_{lpha^6} [\%]$
\sim	q ar q o q ar q	47.616(2)	-7.81(5)	-16.4	-6.83(6)	-14.3
******	$qq/ar{q}ar{q}$	1.04105(5)	-0.1156(3)	-11.1	4.19(1)	402.5
	$\gamma\gamma$	0.8592(1)	-0.1045(6)	-12.1	-0.1341(4)	-15.6
	bb	0.7137(1)	-0.0836(4)	-11.7	-0.2195(5)	-30.7
$ \rightarrow $	$\gamma q/\gamma ar q$	_	0.9175(2)		-0.593(6)	_
	$g\gamma$	_	_	_	0.0053(7)	_
	${ m g}q/{ m g}ar{q}$	_	—	M	5.766(3)	_
	total	50.230(2)	-7.20(5)	<-14.3	2.17(6)	4.3
				W		

Large NLO EW correction of

-14.3%, due to missing cancellation between $q\bar{q}$ and γq channels

 \rightarrow large EW Sudakov logarithms induced by $\langle \sqrt{s} \rangle \, \sim \, 750 \, GeV$

Daniele Lombardi

induced by $\langle \sqrt{s} \rangle \sim 750 \, GeV$

Daniele Lombardi

Daniele Lombardi

Differential cross sections: $M_{j_1j_2}$

QCD corrections

- Large radiative-return effects (left sides of peaks)
- $\boldsymbol{\cdot}$ Real-radiation effects on right side of Z-peak

EW corrections

- Tiny radiative-return effects
- Largest corrections of -17% on W peak

- NLO QCD + E	W = $\mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^7) + \mathcal{O}(\alpha_s \alpha^6)$
– NLO EW	$= \mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^7)$
– NLO QCD	$= \mathcal{O}(\alpha^6) + \mathcal{O}(\alpha_s \alpha^6)$

Differential cross sections: $\Delta \phi_{j_1 j_2}$ and p_{T, μ^+}

Summary

- Tri-boson production plays a crucial role in improving our understanding of the standard model \rightarrow it is worth investigating it in all its decay modes!
- We computed for the first time the NLO corrections to triple vector-boson production in the WZjj channel:
 - At the inclusive level, EW corrections amount to -14% → large compared to previous results available in the literature;

Summary

- Tri-boson production plays a crucial role in improving our understanding of the standard model \rightarrow it is worth investigating it in all its decay modes!
- We computed for the first time the NLO corrections to triple vector-boson production in the WZjj channel:
 - At the inclusive level, EW corrections amount to -14% → large compared to previous results available in the literature;

Thank you for your attention

Daniele Lombardi

Structure of the calculation: $\mathcal{O}(\alpha_s \alpha^6)$

NLO QCD and NLO EW corrections to fully off-shell:

 $pp \rightarrow e^+ \nu_e \mu^+ \mu^- jj$

in a phase space which enhances the tri-boson signal.

						7	QCD backg	round
LO conta the sig	aining 🛄 nal	>	${\cal O}(lpha^6)$	${\cal O}(lpha_{ m s}lpha^5)$	${\cal O}(lpha_{ m s}^2lpha^4)$,	sum	 Contribution two external 	s with aluons
/		$\sigma_{ m LO} ~[m ab]$	50.230(2)	8.144(2)	847.7(5)	906.0(5)		9.40110
		$\Delta_{\rm tot}$ [%]	5.54	0.90	93.56	100.00	_	
	Subpr	ocess	${\cal O}(lpha^6)$	${\cal O}(lpha_{ m s}lpha^5)$	${\cal O}(lpha_{ m s}^2$	$\alpha^4)$	sum	
J	$\sigma_{ m LO}^{qq/ar qar q/ar qar q/ar q}$	$^{qar{q}}$ [ab]	48.657(2)	-2.4189(5)	59.2	(1) 1	05.4(1)	
	Δ_{lpha^6}	[%]	96.87	-4.82	117.	92	209.98	
	$\sigma_{ m LO}^\gamma$	[ab]	0.8592(1)	10.563(2)	_	11	1.422(2)	
	Δ_{lpha^6}	[%]	1.71	21.03			22.74	
	$\sigma_{ m LO}^{ m bar b}$	[ab]	0.7137(1)	—	0.00345	16(7) 0.	7171(1)	
	Δ_{lpha^6}	[%]	1.42	_	0.0	1	1.43	
	$\sigma_{ m LO}^{ m b/ar{b}}$	[ab] 1	2.3879(6)	_	7.628	S(2) = 20	0.016(2)	
	Δ_{lpha^6}	[%]	24.66		15.1	9	39.85	
		Top enha	nced contrib	outions				

Daniele Lombardi

Large NLO EW correction of

-14.3%, due to missing cancellation between $q\bar{q}$ and γq channels

 \rightarrow large EW Sudakov logarithms induced by $\langle \sqrt{s} \rangle \, \sim \, 750 \, GeV$

Daniele Lombardi

Differential cross sections: $\sqrt{\hat{s}}$

Differential cross sections: $\Delta y_{j_1j_1}$ and $\Delta \phi_{j_1j_1}$

Daniele Lombardi

Differential cross sections: p_{T,j_1} and $M_{j_1j_2}$

Differential cross sections: p_{T,μ^+} and $M_{e^+\mu^-}$

Daniele Lombardi

Differential cross sections: $\cos \theta_{\mu^+\mu^-}$ and $M_{e^+\mu^+\mu^-j_1j_2}$

