

Analytic results for double Higgs production at the LHC

High Precision for Hard Processes, 2024

Kay Schönwald – in collaboration with Joshua Davies, Matthias Steinhauser, Marco Vitti and Hantian Zhang

Turin, September 10, 2024

University of Zürich Based on: [JHEP 08 (2022) 259, JHEP 06 (2023) 063, JHEP 10 (2023) 033, JHEP 08 (2024) 096]

Outline

[Introduction](#page-2-0)

[QCD corrections to](#page-8-0) $gg \to HH$

[High-energy expansion](#page-10-0)

Small-t [expansion](#page-14-0)

[Electroweak corrections to](#page-24-0) $gg \to HH$

[Large-mass expansion](#page-25-0)

[Beyond the large-mass expansion](#page-30-0)

[Conclusions and Outlook](#page-33-0)

[Introduction](#page-2-0)

• Standard Model Higgs potential:

$$
V(H) = \frac{1}{2}m_H^2 H^2 + \lambda v H^3 + \frac{\lambda}{4}H^4
$$
, where $\lambda = m_H^2/(2v^2) \approx 0.13$.

- Want to measure λ , to determine if $V(H)$ is consistent with nature.
	- Challenging! Cross-section $\approx 10^{-3} \times H$ prod.
	- $-1.24 < \lambda/\lambda_{5M} < 6.49$ [CMS '22]; $-0.6 < \lambda/\lambda_{5M} < 6.6$ [Atlas '22]
- λ appears in various production channels:

• Gluon fusion – dominant, $10x$

- $t\bar{t}$ associated production
- H-strahlung

• VBF

Gluon Fusion

• Leading order (1 loop) partonic amplitude:

- \mathcal{F}_{tri} contains the dependence on λ at LO
- Form factors:
	- LO: known exactly **but a strategies and the strategies of the C**Glover, van der Bij '88]
	- Beyond LO... no fully-exact (analytic) results to date
		- QCD: numerical evaluation, expansion in various kinematic limits
		- EW: heavy top expansion, high-energy expansion

[Davies, Mishima, Schönwald, Steinhauser, Zhang '22]

- see also Yuakwa corrections in (partial) HTL [Mühlleitner, Schlenk, Spira '22]
- full (numerical) EW corrections [Bi, Huang, Huang, Ma, Yu '23]
- numerical Yukawa- and Higgs self-coupling corrections

$$
[D_1, \text{ranging}, \text{ranging}, \text{wa}, \text{ra 25}]
$$

[Heinrich, Jones, Kerner, Stone, Vestner '24]

$gg \rightarrow HH$ Beyond LO

NLO QCD:

- large- m_t
-
- large- m_t + threshold exp. Padé \blacksquare [Gröber, Maier, Rauh '17]
-
- small- p_T expansion \blacksquare [Bonciani, Degrassi, Giardino, Gröber '18] + high-energy expansion **by the contract of th**

NNLO QCD:

- large- m_t virtuals [de Florian, Mazzitelli '13] [Grigo, Hoff, Steinhauser '15, Davies; Steinhauser '19]
- HTL+numeric real ("FTapprox") [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli '18]
- large- m_t reals **in the latter of the step in the step is set of the step in the latter of the step is set of the step in the**
- light fermion corrections at $p_T = 0$ [Davies, Schönwald, Steinhauser '23]

N3LO QCD:

-
-

[Dawson, Dittmaier, Spira '98] [Grigo, Hoff, Melnikov, Steinhauser '13] • numeric [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke '16] [Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '19]

• high-energy expansion **by the contract of th**

• Wilson coefficient C_{HH} [Spira '16; Gerlach, Herren, Steinhauser '18]

$gg \rightarrow HH$ Beyond LO

Total cross section (14TeV):

[Borowka, Greiner, Heinrich, Jones, Kerner '16]

$gg \rightarrow HH$ Beyond LO

- Large uncertainties due to the m_t renormalization scheme.
- Can only be reliably reduced with an NNLO calculation.

[Baglio, Campanario, Glaus, M¨uhlleitner, Ronca, Spira, Streicher '20] ⁵

[QCD corrections to](#page-8-0) $gg \to HH$

QCD Corrections

Example diagrams at LO, NLO, NNLO:

Diagrams depend on ϵ , s, t, m_t , m_H :

- analytic result is very involved
- simplify by expanding in certain kinemtic limits

We will consider:

- high-energy expansion: description for larger p_T vales
- small-t expansion: description for smaller p_T values

 \rightarrow The two expansions will cover the whole physically interesting phase space.

 $n_t^2 > m_H^2$ $t_t^2 > |t|, m_H^2$

High-energy expansion

Seek an expansion where $s, |t| > m_t^2 > m_H^2$ [Davies, Mishima, Steinhauser, Wellmann '18-'19]

- 1. Form factors in terms of scalar Feynman integrals: $I(m_H^2, m_t^2, s, t, \epsilon)$
- 2. Taylor expand for $m_H^2 \to 0$ (with LiteRed): [Lee '14]

$$
I(m_H^2, m_t^2, s, t, \epsilon) = I(0, m_t^2, s, t, \epsilon) + m_H^2 I'(0, m_t^2, s, t, \epsilon) + ...
$$

- 3. IBP reduce to master integrals: $J(0, m_t^2 s, t, \epsilon)$ (FIRE, Kira) [Smirnov '15] [Klappert, Lange, Maierhöfer, Usovitsch '21]
- 4. Determine MIs as an expansion around $m_t \to 0$:

$$
J(0, m_t^2, s, t, \epsilon) = \sum_{i,j,k} C_{ijk}(s,t) \epsilon^i (m_t^2)^j \log(m_t^2)^k
$$

- Insert ansatz into differential equation \rightarrow linear equations for c_{ijk} .
- Compute boundary conditions with expansion-by-regions.

Result: power series in m_t^2 and $\log(m_t^2)$.

• coefficients: functions of s, t written in terms of harmonic polylogarithms

High-energy expansion: Padé approximants

The expansion diverges for $\sqrt{s} \lesssim 750$ GeV.

The convergence can be improved by making use of Padé approximants:

• Approximate a function using a rational polynomial:

$$
f(x) \approx [n/m](x) = \frac{a_0 + a_1x + a_2x^2 + \cdots + a_nx^n}{1 + b_1x + b_2x^2 + \cdots + b_mx^m},
$$

where the coefficients $a_i, \ b_j$ are fixed by the series expansion of $f(x).$

Compute a set of approximants (various choices of n, m):

- combine to give a central value and error estimate
- deeper expansions \Rightarrow larger $n + m \Rightarrow$ smaller error
- \bullet expansions to m_t^{120} allows for very high-order approximants

High-energy expansion: Padé approximants

High-energy expansion: V_{fin}

Comparison with hhgrid: [https://github.com/mppmu/hhgrid]

- interpolation grid of 6320 points evaluated numerically by pySecDec
- grid points normalized to hhgrid as function of p_T :

Small-t expansion

As for high-energy expansion, first expand around $m_H \rightarrow 0$.

Then two possible (and finally equivalent) approaches:

- 1. Take the IBP-reduced amplitude of the high-energy expansion:
	- expand the master integrals around $t \to 0$ instead of $m_t \to 0$
- 2. Expand the unreduced amplitude around $q_3 \rightarrow -q_1$ ($t \rightarrow 0$):
	- IBP reduce to new master integrals which only depend on ϵ , s, m_t
	- this approach can be applied at NNLO, but only to restricted expansion depth

"Semi-analytic" determination of the $t \to 0$ MIs: [Fael, Lange, Schönwald, Steinhauser '21]

- 1. Establish system of DEs for the MIs, w.r.t. $\hat{s} = s/m_t^2$.
- 2. Expand around $\hat{s} = 0$:
	- insert ansatz into DE: $J(\epsilon, \hat{s} = 0) = \sum_{i,j} c_{ijk} \; \epsilon^i \; \hat{s}^j \; \mathsf{In}^k(\hat{s})$
	- determine minimal set of c_{ijk} (Kira+FireFly)
	- evaluate minimal boundary constants analytically (in the large-mass expansion)
- 3. Expand around a new point $\hat{s} = \hat{s}_0$ (repeat the above, modify ansatz).
- 4. Match the expansions (numerically) at a point where they both converge.

Here we have such "semi-analytic" expansions for the MIs at:

 $\hat{s} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 25, 30, 40, 50, \infty\}$

HE and $t \to 0$ combination: " V_{fin} "

• merge both results, switch at $p_T = 175$ GeV.

Comparison with hhgrid: [[https://github.com/mppmu/hhgrid]]

 $1.4₁$ 1.3 1.2 pySecDec 1.1 small- t 1.0 high-en. 0.9 ${\rm LME}$ 0.8 0.7 \cdot ل السلطنطينيين المسلطنين المسلطن المسل
100 − 100 − 200 − 300 − 400 − 500 − 600 − 700 p_T

Towards NNLO

Split the amplitude into parts:

- Need to compute the of-shell $g(q_g)g^*(q_s)H(q_H)$ vertex up to 2 loops.
- Perform asymptotic expansions in:
	- $1.$ $m_H^2\ll q_s^2, m_t^2$: hard region reduces to the same master integrals as the $t\to 0$ expansion

2. $\; q_{s}^2\ll m_{H}^2,\,m_{t}^2\colon$ new analytic solutions for 2-loop master integrals in terms of HPLs

 \Rightarrow cover the whole phase space for $\{s, t; m_t, m_H\}$

$gg \rightarrow HH$ at NNLO QCD: reducible contributions

$gg \rightarrow HH$ at NNLO QCD: n_l part

 $n_l n_h$ {C_A, C_F}, leading expansion term ($m_H^0 t^0$ [Davies, Schönwald, Steinhauser '23]

- 1. Expand $m_H \rightarrow 0$, $q_3 \rightarrow -q_1$ (FORM) [Ruijl, Ueda, Vermaseren '17]
- 2. Partial fraction decomposition (tapir, LIMIT) [Gerlach, Herren, Lang '23; Herren '20]
- 3. 60 integral topologies. 28 after common (sub-)sector identification
	- LiteRed, Feynson [Lee '14; Magerya '22]]
- 4. IBP (Kira) 85K \rightarrow 176 MIs (symm by Kira) [Klappert, Lange, Maierhöfer, Usovitsch '21]
	- (to compute $m_H^1t^0 + m_H^0t^1$: 4.5M integrals...)
- 5. Compute MIs with "expand and match".

$gg \rightarrow HH$ at NNLO QCD: n_l part

Sharp variation around $\sqrt{s} = 2m_t$ threshold:

• Leading behaviour v log²v, cf. v log v at NLO ($v = \sqrt{1 - 4m_t^2/s}$).

 F_2 vanishes at $m_H^0 t^0$.

 $n_h\{C_A^2, C_A C_F, C_F^2\}$, leading expansion term $(m_H^0 t^0)$:

- 1. Expand $m_H \rightarrow 0$, $q_3 \rightarrow -q_1$ (FORM)
- 2. Partial fraction decomposition (LIMIT)
- 3. 522 integral topologies. 203 after common (sub-)sector identification
	- Feynson (LiteRed is much too slow) and the state of the state of the Magerya '22]
- 4. IBP (Kira) $2.6M \rightarrow 33K$ MIs across all topologies
	- Total: 330 days (16 core jobs)
	- Hardest single topology: 41 days, $>2TB$ mem. Took several attempts:
		- master integral basis improvement, using ImproveMasters.m
		- change of momentum routings for smaller IBP relations

Cannot reduce master integrals between topologies with Kira:

• Symmetry finding and equation generation for each topology too slow.

$gg \rightarrow HH$ at NNLO QCD: n_b part, MI basis reduction

First step:

• Apply FIRE's FindRules to MI list: $33K \rightarrow 4313$ [Smirnov, Chuharev '20]

Next:

- Apply FindRules to the 2.6M input integrals: 1.3M pairs
- Apply IBP tables to the pairs: 820K equations involving 4029 MIs
- Solve with Kira's user_defined_system: $4313 \rightarrow 1647$

The basis is still not minimal.

FIRE test reduction for all topologies (to a different basis):

- Repeat the above steps: $35K \rightarrow 1817 \rightarrow 1561$
	- Now the differential equations look better, and we can try to solve it.
	- (Probably, the basis is still not minimal)

[Electroweak corrections to](#page-24-0) $gg \rightarrow HH$ $gg \rightarrow HH$

Full Electroweak Corrections in the Large- m_t Expansion

- Sample Feynman diagrams involving:
	- \bullet SM fields: {*t*, *b*, *H*, γ , *Z*, W^{\pm} , χ , ϕ^{\pm} }
	- ghosts: $\{u^{\gamma}, u^{\gamma}, u^{\pm}\}$

Goal: obtain analytic expressions in the large- m_t expansion

Large- m_t Expansion and Renormalization

- Expand and calculate in general R_f gauge with $\frac{1}{q}$ $q2$ ee x p [Harlander, Seidensticker, Steinhauser '97-'99] , $form$ [Ruijl, Ueda, Vermaseren '17] , $LittleRed$ [Lee '12] and MATAD [Steinhauser '01] .
- Expansion hierarchy: $m_t^2 \gg \xi_W m_W^2$, $\xi_Z m_Z^2 \gg s$, t, m_H^2 , m_W^2 , m_Z^2

- We renormalize the input parameters $\{e, m_W, m_Z, m_t, m_H\}$ and the Higgs wave function on-shell and transform to the G_{μ} scheme.
	- ξ_W , ξ_Z , μ^2 cancel analytically

LO Matrix Elements for $gg \rightarrow HH$

 \tilde{U}_{ggHH} up to different expansion orders in $1/m_t$. Different expansion orders normalized to m_t^0 . We see a nice convergence up to roughly $\sqrt{s}=2m_t\approx 350$,GeV.

NLO Electroweak Matrix Elements for $gg \to HH$

 \tilde{U}_{ggHH} up to different expansion orders in $1/m_t$. We do not see such a nice convergence at NLO.

Different expansion orders normalized to m_t^0 .

NLO Electroweak Matrix Elements for $gg \rightarrow HH$

$$
\mathcal{M} = \frac{1}{8^2 2^2} \sum_{\text{col}} \sum_{\text{pol}} |\mathcal{A}|^2 = \frac{1}{16} \left(X_0^{\text{ggHH}} \right)^2 \tilde{U}_{\text{ggHH}}
$$

Cut through W -t-b affects convergence of the large- m_t expansion: $m_t + m_b + m_W \approx 250$ GeV

We can restore convergence by excluding diagrams with W -t-b cuts.

Beyond the Large- m_t Expansion – High Energy Expansion

- Start with diagrams with internally propagating Higgs:
	- \bullet expansion parameter not small $\alpha_t = \alpha m_t^2/(2 s_W^2 m_W^2) \sim \alpha_s/2$
	- only planar integrals contribute in this subset

High-energy Expansion: "A", "B" comparison

 $Re(F_{box1})$, fixed cos $\theta = 0$, best "A" and "B" Padé

- "A", "B" differ by at most 2% for $\sqrt{s} \ge 400$ GeV,
- 0.1% for $\sqrt{s} \ge 500$ GeV

Beyond the Large- m_t Expansion – High Energy Expansion

$$
\mathcal{A}^{\mu\nu} = \mathcal{T}_1^{\mu\nu} F_{box1} + \mathcal{T}_2^{\mu\nu} F_{box2}
$$

- We benchmark against the expansion to $O(m_H^4, \delta^3, m_t^{116})$, with $\delta = 1 - m_H/m_t$.
- Convergence of different expansion orders at fixed $p_T = 200$ GeV.
- Verified agreement with the pySecDec group.

[Conclusions and Outlook](#page-33-0)

Conslusions:

- Multi-scale, multi-loop integrals are hard to evaluate:
	- \rightarrow Reduce complexity by expanding in physically relevant regions.
- Expansions give a good description for $gg \to HH$ at NLO QCD.
- We made first steps toward NNLO by considering light-fermion corrections.
- We have calculated full NLO electroweak corrections to $gg \to HH$ and $gg \to gH$ in the large- m_t expansion.
	- The convergence of these expansions is hindered by $W-t-b$ cuts.
- We have calculated parts of the leading-Yukawa corrections in the high-energy region and see a good convergence of our approach.

Outlook:

- Calculate full NNLO QCD corrections.
	- to come: remaining diagrams to leading expansion order
	- are deeper expansion orders possible? (very challenging IBP reduction)
- Calculate the full EW corrections in the
	- 1. high-energy expansion.
	- 2. small-t expansion.
- Provide a numerical program, which can be incorporated into Monte-Carlo studies.

[Backup](#page-36-0)

Padé-Improved High-Energy Expansion

The master integrals for both methods are computed as an expansion in $m_t \ll s, |t|$.

The expansions diverge for $\sqrt{s} \sim 750$ GeV ("A"), $\sqrt{s} \sim 1000$ GeV ("B").

The situation can be improved using Padé Approximants:

• Approximate a function using a rational polynomial

$$
f(x) \approx \frac{a_0 + a_1x + a_2x^2 + \dots + a_nx^n}{1 + b_1x + b_2x^2 + \dots + b_mx^m}
$$

,

where a_i, b_j coefficients are fixed by the series coefficients of $f(x)$.

We compute a set of various Padé Approximants:

- combine to give a central value and error estimates
- a deeper input expansion \Rightarrow larger $n + m \Rightarrow$ smaller error
- \bullet here, m_t^{120} expansion allows for very high-order Padé Approximants

$$
\cos(\theta) = \frac{s + 2t - 2m_h^2}{s\sqrt{1 - 4m_h^2/s}}
$$

- Fixed order m_t expansions diverge at $\sqrt{s} \sim 1000$ GeV.
- The Padé approximation extends the range of validity.

$$
p_T^2 = \frac{tu - m_h^4}{s}
$$

- Lower order Padé approximantions cannot reach low values of p_T .
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150$ GeV
- With expansions up to m_t^{120} we reach: $p_T \gtrsim 120$ GeV.
- Error estimate from Padé approximations is reliable.

$$
p_T^2 = \frac{tu - m_h^4}{s}
$$

- Lower order Padé approximantions cannot reach low values of p_T .
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150$ GeV
- With expansions up to m_t^{120} we reach: $p_T \gtrsim 120$ GeV.
- Error estimate from Padé approximations is reliable.

$$
p_T^2 = \frac{tu - m_h^4}{s}
$$

- Lower order Padé approximantions cannot reach low values of p_T .
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150$ GeV
- With expansions up to m_t^{120} we reach: $p_T \gtrsim 120$ GeV.
- Error estimate from Padé approximations is reliable.

Padé Improvement

$$
p_T^2 = \frac{tu - m_h^4}{s}
$$

- Lower order Padé approximantions cannot reach low values of p_T .
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150$ GeV
- With expansions up to m_t^{120} we reach: $p_T \gtrsim 120$ GeV.
- Error estimate from Padé approximations is reliable.

Approach A:

- middle line massless $m_H^{\text{int}} \approx 0$
- calculated in the context of QCD corrections [Davies, Mishima, Steinhauser, Wellmann '18, '19]

Approach B:

• middle line massive $m_H^{\text{int}} \approx m_t$

Comparison with Approach A

Approach A: threshold at $\sqrt{s}=2m_t=$ 346 GeV Approach B: threshold at $\sqrt{s}=3m_t=$ 519 GeV

Comparison with Approach A

Approach A: threshold at $\sqrt{s}=2m_t=$ 346 GeV Approach B: threshold at $\sqrt{s}=3m_t=$ 519 GeV

Beyond the Large- m_t Expansion – High Energy Expansion

Analytic high-energy expansion:

- Expansion hierarchy: $s, t \gg m_t^2 \approx (m_H^2)^{int} \gg (m_H^2)^{ext}$
- We get a system of differential equations for 140 master integrals

$$
\frac{\partial}{\partial m_t^2} \vec{l} = M(s, t, m_t^2, \epsilon) \cdot \vec{l}, \text{ with } \vec{l} = (l_1, \ldots, l_{140})
$$

• Plug in power-log ansatz for each master integral

$$
I_n = \sum_{i=-2}^{0} \sum_{j=-1}^{60} \sum_{k=0}^{i+4} c_n^{ijk}(s, t) \epsilon^i(m_t^2)^j \ln^k(m_t^2)
$$

- Solve the system of linear equations for a small set of boundary constants with Kira and FireFly [Klappert, Lange, Maierhöfer, Usovitsch '21].
- Solve boundary master integrals in the asymptotic limit $m_t \to 0$ with Mellin-Barnes methods and symbolic summation using Asy [Pak, Smirnov '11], MB.m [Czakon '05], HarmonicSums [Ablinger '10] and Sigma [Schneider '07] .

NLO Electroweak Matrix Elements for $gg \to Hg$

Graphs contributing to $gg \to Hg$.

We observe a nice convergence at NLO.

Different expansion orders in $1/m_t$.

High energy expansion: Option A

Option A: asymptotic expansion around $m_H^{int} = 0$. Expnsion-by-subgraphs:

• two sub-graphs:

The two-loop subgraph is a Taylor expansion of the Higgs propagator:

- results in integrals with a massless internal line. Scales: s, t, m_t .
- IBP reduce with FIRE and Kira **[Smirnov** '15; Klappert, Lange, Majerhöfer, Usovitsch '21]
- these coincide with the QCD master integrals reuse the old results

The massive tadpoles are easily computed by MATAD. The asymptotic expansion procedure is done by exp and FORM. [Harlander, Seidelsticker, Steinhauser '97]

We expand to quartic order: $(m_H^{int})^a (m_H^{ext})^b$, $0 \le (a + b) \le 4$.

m^t Tmint H mint H + × T^l mint H m^t

[Davies, Mishima, Steinhauser, Wellmann '18,'19]

```
[Ruijl, Ueda, Vermaseren '17]
```
High-Energy Expansion "A": convergence

 $\mathsf{Re}(\mathcal{F}_{box1})$, fixed cos $\theta = 0$, expansion "A" Padé (to $(m_H^2)^{\{0,1,2\}}$):

• $(m_H^2)^1$ and $(m_H^2)^2$ terms differ by at most 5% for $\sqrt{s} \ge 400$ GeV

High-energy Expansion "B"

Option B: expand around $m_H^{int} \approx m_t$,

• simple Taylor expansion, easy to implement

Write Higgs propagator as: $\frac{1}{p^2 - m_H^2} = \frac{1}{p^2 - m_t^2 (1 - [2 - \delta] \delta)}$

• expand around $\delta \rightarrow 0$ where $\delta = 1 - m_H / m_t \approx 0.28$.

This yields new integral families compared to the QCD computation:

- All lines have the mass m_t .
- IBP reduce and compute the master integrals (140) in the high-energy limit.

Expand to $(m_H^{ext})^4$ and δ^3 .

High-energy Expansion "B": convergence

 $\mathsf{Re}(\mathcal{F}_{box1})$, fixed $\cos\theta = 0$, expansion "B" Padé (to $(m_H^2)^2\delta^{\{0,1,2,3\}}$):

• δ^2 and δ^3 terms differ by at most 0.5% for $\sqrt{s} \ge 400$ GeV

