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Introduction



Higgs Self Coupling

• Standard Model Higgs potential:

V (H) =
1

2
m 2

HH
2 + λvH3 +

λ

4
H4 , where λ = m 2

H/(2v
2) ≈ 0.13.

• Want to measure λ, to determine if V (H) is consistent with nature.

• Challenging! Cross-section ≈ 10−3 × H prod.

• −1.24 < λ/λSM < 6.49 [CMS ‘22] ; −0.6 < λ/λSM < 6.6 [Atlas ‘22]

• λ appears in various production channels:

• Gluon fusion – dominant, 10x

• VBF

• tt̄ associated production

• H-strahlung
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Gluon Fusion

• Leading order (1 loop) partonic amplitude:

Mµν ∼ Aµν
1 (Ftri + Fbox1) +Aµν

2 (Fbox2)

• Ftri contains the dependence on λ at LO

• Form factors:

• LO: known exactly [Glover, van der Bij ’88]

• Beyond LO... no fully-exact (analytic) results to date

• QCD: numerical evaluation, expansion in various kinematic limits

• EW: heavy top expansion, high-energy expansion

[Davies, Mishima, Schönwald, Steinhauser, Zhang ’22]

• see also Yuakwa corrections in (partial) HTL [Mühlleitner,Schlenk,Spira ’22]

• full (numerical) EW corrections [Bi, Huang, Huang, Ma, Yu ’23]

• numerical Yukawa- and Higgs self-coupling corrections

[Heinrich, Jones, Kerner, Stone, Vestner ’24]
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gg → HH Beyond LO

NLO QCD:

• large-mt [Dawson, Dittmaier, Spira ‘98] [Grigo, Hoff, Melnikov, Steinhauser ‘13]

• numeric [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke ‘16]

[Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher ‘19]

• large-mt + threshold exp. Padé [Gröber, Maier, Rauh ‘17]

• high-energy expansion [Davies, Mishima, Steinhauser, Wellmann ‘18,‘19]

• small-pT expansion [Bonciani, Degrassi, Giardino, Gröber ‘18]

+ high-energy expansion [Bagnaschi, Degrassi, Gröber ’23]

NNLO QCD:

• large-mt virtuals [de Florian, Mazzitelli ‘13] [Grigo, Hoff, Steinhauser ‘15, Davies; Steinhauser ‘19]

• HTL+numeric real (“FTapprox”) [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli ‘18]

• large-mt reals [Davies, Herren, Mishima, Steinhauser ‘19 ‘21]

• light fermion corrections at pT = 0 [Davies, Schönwald, Steinhauser ’23]

N3LO QCD:

• Wilson coefficient CHH [Spira ‘16; Gerlach, Herren, Steinhauser ‘18]

• HTL [Chen, Li, Shao, Wang ‘19] 3



gg → HH Beyond LO
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gg → HH Beyond LO

• Large uncertainties due to the mt

renormalization scheme.

• Can only be reliably reduced with an

NNLO calculation.

[Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira, Streicher ’20]
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QCD corrections to gg → HH



QCD Corrections

Example diagrams at LO, NLO, NNLO:

Diagrams depend on ϵ, s, t, mt , mH :

• analytic result is very involved

• simplify by expanding in certain kinemtic limits

We will consider:

• high-energy expansion: description for larger pT vales s, |t| > m2
t > m2

H

• small-t expansion: description for smaller pT values s,m2
t > |t|,m2

H

→ The two expansions will cover the whole physically interesting phase space.
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High-energy expansion

Seek an expansion where s, |t| > m2
t > m2

H [Davies, Mishima, Steinhauser, Wellmann ’18-’19]

1. Form factors in terms of scalar Feynman integrals: I (m2
H ,m

2
t , s, t, ϵ)

2. Taylor expand for m2
H → 0 (with LiteRed): [Lee ’14]

I (m2
H ,m

2
t , s, t, ϵ) = I (0,m2

t , s, t, ϵ) +m2
H I

′(0,m2
t , s, t, ϵ) + ...

3. IBP reduce to master integrals: J(0,m,
ts, t, ϵ) (FIRE, Kira) [Smirnov ‘15]

[Klappert, Lange, Maierhöfer, Usovitsch ‘21]

4. Determine MIs as an expansion around mt → 0:

J(0,m2
t , s, t, ϵ) =

∑
i,j,k

Cijk(s, t)ϵ
i (m2

t )
j log(m2

t )
k

• Insert ansatz into differential equation → linear equations for cijk .

• Compute boundary conditions with expansion-by-regions.

Result: power series in m2
t and log(m2

t ).

• coefficients: functions of s, t written in terms of harmonic polylogarithms
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High-energy expansion: Padé approximants

The expansion diverges for
√
s ≲ 750GeV.

The convergence can be improved by making use of Padé approximants:

• Approximate a function using a rational polynomial:

f (x) ≈ [n/m](x) =
a0 + a1x + a2x

2 + · · ·+ anx
n

1 + b1x + b2x2 + · · ·+ bmxm
,

where the coefficients ai , bj are fixed by the series expansion of f (x).

Compute a set of approximants (various choices of n, m):

• combine to give a central value and error estimate

• deeper expansions ⇒ larger n +m ⇒ smaller error

• expansions to m120
t allows for very high-order approximants
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High-energy expansion: Padé approximants
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High-energy expansion: Vfin

Comparison with hhgrid: [https://github.com/mppmu/hhgrid]

• interpolation grid of 6320 points evaluated numerically by pySecDec

• grid points normalized to hhgrid as function of pT :
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Small-t expansion

As for high-energy expansion, first expand around mH → 0.

Then two possible (and finally equivalent) approaches:

1. Take the IBP-reduced amplitude of the high-energy expansion:

• expand the master integrals around t → 0 instead of mt → 0

2. Expand the unreduced amplitude around q3 → −q1 (t → 0):

• IBP reduce to new master integrals which only depend on ϵ, s, mt

• this approach can be applied at NNLO, but only to restricted expansion depth
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Small-t expansion: evaluation of the MIs

“Semi-analytic” determination of the t → 0 MIs: [Fael, Lange, Schönwald, Steinhauser ‘21]

1. Establish system of DEs for the MIs, w.r.t. ŝ = s/m2
t .

2. Expand around ŝ = 0:

• insert ansatz into DE: J(ϵ, ŝ = 0) =
∑

i,j cijk ϵ
i ŝ j lnk(ŝ)

• determine minimal set of cijk (Kira+FireFly)

• evaluate minimal boundary constants analytically (in the large-mass expansion)

3. Expand around a new point ŝ = ŝ0 (repeat the above, modify ansatz).

4. Match the expansions (numerically) at a point where they both converge.

Here we have such “semi-analytic” expansions for the MIs at:

ŝ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 25, 30, 40, 50,∞}
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HE and t → 0 combination: “Vfin”

Comparison with hhgrid: [[https://github.com/mppmu/hhgrid]]

• merge both results, switch at pT = 175 GeV.
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Towards NNLO

Split the amplitude into parts:

1PR

expand mH ,

rest exact

“(gg → H)2” w/

off-shell gluon

[Davies, Schönwald,

Steinhauser, Vitti ‘24]

nlnh{CA,CF}

expand mH ,

small-t exp.

[Davies, Schönwald,

Steinhauser ‘23]

nh{C 2
A,CACF ,C

2
F}

expand mH ,

small-t exp.

In progress

n2h{CA,CF}

expand mH ,

small-t exp. (!)

in progress

massless t-channel cut
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gg → HH at NNLO QCD: reducible contributions

• Need to compute the of-shell g(qg )g
∗(qs)H(qH) vertex up to 2 loops.

• Perform asymptotic expansions in:

1. m2
H ≪ q2

s ,m
2
t : hard region reduces to the same master integrals as the t → 0 expansion

2. q2
s ≪ m2

H ,m
2
t : new analytic solutions for 2-loop master integrals in terms of HPLs

⇒ cover the whole phase space for {s, t;mt ,mH}
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gg → HH at NNLO QCD: reducible contributions

gg∗H form factor
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gg → HH at NNLO QCD: nl part

nlnh{CA,CF}, leading expansion term (m0
Ht

0): [Davies, Schönwald, Steinhauser ‘23]

1. Expand mH → 0, q3 → −q1 (FORM) [Ruijl, Ueda, Vermaseren ‘17]

2. Partial fraction decomposition (tapir, LIMIT) [Gerlach,Herren,Lang ‘23; Herren ‘20]

3. 60 integral topologies. 28 after common (sub-)sector identification

• LiteRed, Feynson [Lee ‘14; Magerya ‘22]]

4. IBP (Kira) 85K→176 MIs (symm by Kira) [Klappert, Lange, Maierhöfer, Usovitsch ‘21]

• (to compute m1
Ht

0 +m0
Ht

1: 4.5M integrals...)

5. Compute MIs with “expand and match”.
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gg → HH at NNLO QCD: nl part
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gg → HH at NNLO QCD: nh part

nh{C 2
A,CACF ,C

2
F}, leading expansion term (m0

Ht
0):

1. Expand mH → 0, q3 → −q1 (FORM)

2. Partial fraction decomposition (LIMIT)

3. 522 integral topologies. 203 after common (sub-)sector identification

• Feynson (LiteRed is much too slow) [Magerya ‘22]

4. IBP (Kira) 2.6M→33K MIs across all topologies

• Total: 330 days (16 core jobs)
• Hardest single topology: 41 days, >2TB mem. Took several attempts:

• master integral basis improvement, using ImproveMasters.m

• change of momentum routings for smaller IBP relations

Cannot reduce master integrals between topologies with Kira:

• Symmetry finding and equation generation for each topology too slow.
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gg → HH at NNLO QCD: nh part, MI basis reduction

First step:

• Apply FIRE’s FindRules to MI list: 33K→4313 [Smirnov, Chuharev ‘20]

Next:

• Apply FindRules to the 2.6M input integrals: 1.3M pairs

• Apply IBP tables to the pairs: 820K equations involving 4029 MIs

• Solve with Kira’s user defined system: 4313→1647

The basis is still not minimal.

FIRE test reduction for all topologies (to a different basis):

• Repeat the above steps: 35K→1817→1561
• Now the differential equations look better, and we can try to solve it.

• (Probably, the basis is still not minimal)
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Electroweak corrections to

gg → HH



Full Electroweak Corrections in the Large-mt Expansion

• Sample Feynman diagrams involving:

• SM fields: {t, b, H, γ, Z , W±, χ, ϕ±}
• ghosts: {uγ , uZ , u±}

(a-1) (a-2) (a-3) (a-4) (a-5)

(b-1) (b-2) (b-3) (b-4) (b-5)

(c-1) (c-2) (c-3) (c-4) (c-5)

Goal: obtain analytic expressions in the large-mt expansion
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Large-mt Expansion and Renormalization

• Expand and calculate in general Rξ gauge with qgraf [Nogueira ’93] , tapir [Gerlach, Herren, Lang ’23] ,

q2e&exp [Harlander, Seidensticker, Steinhauser ’97-’99] , form [Ruijl, Ueda, Vermaseren ’17] , LiteRed [Lee ’12]

and MATAD [Steinhauser ’01] .

• Expansion hierarchy: m2
t ≫ ξWm2

W , ξZm
2
Z ≫ s, t,m2

H ,m
2
W ,m2

Z

• We renormalize the input parameters {e, mW , mZ , mt , mH} and the Higgs wave function

on-shell and transform to the Gµ scheme.

• ξW , ξZ , µ
2 cancel analytically
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LO Matrix Elements for gg → HH
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We see a nice convergence up to roughly
√
s = 2mt ≈ 350 ,GeV.
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NLO Electroweak Matrix Elements for gg → HH
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NLO Electroweak Matrix Elements for gg → HH

M = 1
8222

∑
col

∑
pol

|A|2 = 1
16

(
X ggHH
0

)2
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We can restore convergence by excluding diagrams with W -t-b cuts.

25



Beyond the Large-mt Expansion – High Energy Expansion

• Start with diagrams with internally propagating Higgs:

• expansion parameter not small αt = αm2
t /(2s

2
Wm2

W ) ∼ αs/2

• only planar integrals contribute in this subset
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High-energy Expansion: “A”, “B” comparison

Re(Fbox1), fixed cos θ = 0, best “A” and “B” Padé

• “A”, “B” differ by at most 2% for
√
s ≥ 400GeV,

• 0.1% for
√
s ≥ 500GeV
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Beyond the Large-mt Expansion – High Energy Expansion

480 500 520 540 560 580
s (GeV)

0.85

0.90

0.95

1.00

1.05

1.10

1.15
Re

(F
(0

,y
t)

bo
x1

)
pT =  200GeV

(A),m0
H

(A),m2
H

(A),m4
H

(B),m0
H, 0

(B),m0
H, 1

(B),m0
H, 2

(B),m0
H, 3

(B),m2
H, 0

(B),m2
H, 1

(B),m2
H, 2

(B),m2
H, 3

(B),m4
H, 0

(B),m4
H, 1

(B),m4
H, 2

(B),m4
H, 3

Aµν = Tµν
1 Fbox1 + Tµν
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• We benchmark against

the expansion to

O(m4
H , δ

3,m116
t ), with

δ = 1−mH/mt .

• Convergence of different

expansion orders at fixed

pT = 200GeV.

• Verified agreement with

the pySecDec group.
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Conclusions and Outlook



Conclusions and Outlook

Conslusions:

• Multi-scale, multi-loop integrals are hard to evaluate:

→ Reduce complexity by expanding in physically relevant regions.

• Expansions give a good description for gg → HH at NLO QCD.

• We made first steps toward NNLO by considering light-fermion corrections.

• We have calculated full NLO electroweak corrections to gg → HH and gg → gH in the

large-mt expansion.

• The convergence of these expansions is hindered by W -t-b cuts.

• We have calculated parts of the leading-Yukawa corrections in the high-energy region and

see a good convergence of our approach.
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Conclusions and Outlook

Outlook:

• Calculate full NNLO QCD corrections.

• to come: remaining diagrams to leading expansion order

• are deeper expansion orders possible? (very challenging IBP reduction)

• Calculate the full EW corrections in the

1. high-energy expansion.

2. small-t expansion.

• Provide a numerical program, which can be incorporated into Monte-Carlo studies.
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Backup



High-energy expansion: LO comparison
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Padé-Improved High-Energy Expansion

The master integrals for both methods are computed as an expansion in mt ≪ s, |t|.

The expansions diverge for
√
s ∼ 750GeV (“A”),

√
s ∼ 1000GeV (“B”).

The situation can be improved using Padé Approximants:

• Approximate a function using a rational polynomial

f (x) ≈ a0 + a1x + a2x
2 + · · ·+ anx

n

1 + b1x + b2x2 + · · ·+ bmxm
,

where ai , bj coefficients are fixed by the series coefficients of f (x).

We compute a set of various Padé Approximants:

• combine to give a central value and error estimates

• a deeper input expansion ⇒ larger n +m ⇒ smaller error

• here, m120
t expansion allows for very high-order Padé Approximants



Master Integrals Results
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Padé Improvement
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Padé Improvement
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Padé Improvement
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Comparison to the mH → 0 Expansion

Approach A:

• middle line massless mint
H ≈ 0

• calculated in the context of QCD

corrections [Davies, Mishima, Steinhauser,

Wellmann ’18, ’19]

Approach B:

• middle line massive mint
H ≈ mt



Comparison with Approach A
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Comparison with Approach A
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Beyond the Large-mt Expansion – High Energy Expansion

Analytic high-energy expansion:

• Expansion hierarchy: s, t ≫ m2
t ≈ (m2

H)
int ≫ (m2

H)
ext

• We get a system of differential equations for 140 master integrals

∂

∂m2
t

I⃗ = M(s, t,m2
t , ϵ) · I⃗ , with I⃗ = (I1, . . . , I140)

• Plug in power-log ansatz for each master integral

In =
0∑

i=−2

60∑
j=−1

i+4∑
k=0

c ijkn (s, t)ϵi (m2
t )

j lnk(m2
t )

• Solve the system of linear equations for a small set of boundary constants with Kira and

FireFly [Klappert, Lange, Maierhöfer, Usovitsch ’21] .

• Solve boundary master integrals in the asymptotic limit mt → 0 with Mellin-Barnes

methods and symbolic summation using Asy [Pak, Smirnov ’11] , MB.m [Czakon ’05] , HarmonicSums

[Ablinger ’10] and Sigma [Schneider ’07] .



NLO Electroweak Matrix Elements for gg → Hg

M = 1
8222

∑
col

∑
pol

|A|2 = 3
32

(
X gggH
0

)2

s ŨgggH

(a-1) (a-2) (b-1) (c-1) (c-2)

(d-1) (d-2) (d-3) (d-4) (d-5)

(e-1) (e-2) (e-3) (e-4) (e-5)

(f-1) (f-2) (f-3) (f-4) (f-5)

(g-1) (g-2) (g-3) (g-4) (g-5)

Graphs contributing to gg → Hg .

ŨgggH = Ũ
(0)
gggH + α

π Ũ
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Different expansion orders in 1/mt .

We observe a nice convergence at NLO.



High energy expansion: Option A

Option A: asymptotic expansion around mint
H = 0. Expnsion-by-subgraphs:

• two sub-graphs: mtTmint
H

mint
H + × Tl

mint
H

mt

The two-loop subgraph is a Taylor expansion of the Higgs propagator:

• results in integrals with a massless internal line. Scales: s, t,mt .

• IBP reduce with FIRE and Kira [Smirnov ‘15; Klappert, Lange, Maierhöfer, Usovitsch ‘21]

• these coincide with the QCD master integrals – reuse the old results

[Davies, Mishima, Steinhauser, Wellmann ‘18,‘19]

The massive tadpoles are easily computed by MATAD. [Steinhauser ‘00]

The asymptotic expansion procedure is done by exp and FORM. [Harlander, Seidelsticker, Steinhauser ‘97]

[Ruijl, Ueda, Vermaseren ‘17]

We expand to quartic order: (mint
H )a (mext

H )b, 0 ≤ (a+ b) ≤ 4.



High-Energy Expansion “A”: convergence

Re(Fbox1), fixed cos θ = 0, expansion “A” Padé (to (m2
H)

{0,1,2}):

• (m2
H)

1 and (m2
H)

2 terms differ by at most 5% for
√
s ≥ 400GeV
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High-energy Expansion “B”

Option B: expand around mint
H ≈ mt ,

• simple Taylor expansion, easy to implement mt

Write Higgs propagator as: 1
p2−m2

H
= 1

p2−m2
t (1−[2−δ]δ)

• expand around δ → 0 where δ = 1−mH/mt ≈ 0.28.

This yields new integral families compared to the QCD computation:

• All lines have the mass mt .

• IBP reduce and compute the master integrals (140) in the high-energy limit.

Expand to (mext
H )4 and δ3.



High-energy Expansion “B”: convergence

Re(Fbox1), fixed cos θ = 0, expansion “B” Padé (to (m2
H)

2δ{0,1,2,3}):

• δ2 and δ3 terms differ by at most 0.5% for
√
s ≥ 400GeV
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