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cross-sections, are: production in association with a vector boson or 
‘Higgsstrahlung’ (VH) depicted in Fig. 1c, and production in association 
with top (tH and ttH) or bottom (bbH) quarks, depicted in Fig. 1d–f. 
The bbH mode has not been studied in the context of the SM Higgs 
boson because of limited sensitivity.

Events are categorized according to the signatures particular to each 
production mechanism. For example, they are categorized as 
VBF-produced if there are two high transverse momentum (pT) jets, or 
as VH-produced if there are additional charged leptons (ℓ) and/or pT

miss, 
or ttH- and tH-produced if there are jets identified as coming from b 
quarks, or otherwise ggH-produced. (The top quark predominantly 
decays into a W boson and a b-quark jet).

Decays
In the SM, particle masses arise from spontaneous breaking of the gauge 
symmetry, through gauge couplings to the Higgs field in the case of 
vector bosons, and Yukawa couplings in the case of fermions. The SM 
Higgs boson couples to vector bosons, with an amplitude proportional 
to the gauge boson mass squared mV

2, and to fermions with an amplitude 
proportional to the fermion mass mf. Hence, for example, the coupling 
is stronger for the third generation of quarks and leptons than for those 
in the second generation. The observation of many Higgs boson decays 
to SM particles and the measurement of their branching fractions are 
a crucial test of the validity of the theory. Any sizeable deviation from 
the predictions could indicate the presence of BSM physics.

The Higgs boson, once produced, rapidly decays into a pair of  
fermions or a pair of bosons. In the SM, its lifetime is τ ≈ 1.6 × 10 sH

−22 , 
and its inverse, the natural width, is Γ ħ τ= / = 4.14 ± 0.02 MeVH  (ref. 39), 
where ħ is the reduced Planck's constant. The natural width is the sum 
of all the partial widths, and the ratios of the partial widths to the total 
width are called branching fractions and represent the probabilities 
for that decay channel to occur. The Higgs boson does not couple 
directly to massless particles (for example, the gluon or the photon), 
but can do so through quantum loops (for example, Fig. 1a,i,j).

By design, the event selections do not overlap among analyses target-
ing different final states. Where the final states are similar, the overlap 
has been checked and found to be negligible.

Detailed information on the analyses included in the new combina-
tion along with improvements, and the online and offline criteria used to 
select events for the analyses can be found in Methods, Extended Data 
Tables 2 and 3, and the associated references. Online reconstruction is 
performed in real time as the data are being collected. Offline recon-
struction is performed later on stored data. The background-subtracted 
distributions of the invariant mass of final-state particles in the indi-
vidual decay channels are shown in Extended Data Figs. 3 and 4. The 
channels that are used in this combination are as follows.

Bosonic decay channels: H → γγ (Fig. 1i, j)42; H → ZZ → 4ℓ (Fig. 1g)43; 
H → WW → ℓνℓv (Fig. 1g)44, H → Zγ (Fig. 1i, j)45; fermionic decay channels: 
H → ττ, third-generation fermion (Fig. 1h)46, H → bb, third-generation 
fermion (Fig. 1h)47–51, H → µµ, second-generation fermion (Fig. 1h)52;  
ttH and tH with multileptons (Fig. 1d–f)53; Higgs boson decays beyond 
the SM35.

Higgs boson pair production
The measurement of the pair production of Higgs bosons can probe its 
self-interaction λ. The pair production modes are shown in Fig. 1k–o.

In the ggH mode, there are two leading contributions: in the first 
(Fig. 1l), two Higgs bosons emerge from a top or bottom quark loop; 
in the second (Fig. 1k), a single virtual Higgs boson, H*, emerges from 
the top or bottom quark loop and then decays to two Higgs bosons 
(gg → H* → HH).  Explicit establishment of the latter contribution, a 
direct manifestation of the Higgs boson’s self-interaction, would elu-
cidate the strikingly unusual potential of the BEH field.

In the VBF mode, there are three subprocesses that can lead to pro-
duction of a pair of Higgs bosons: (1) through a virtual Higgs boson 
(Fig. 1m); (2) through a four-point interaction: VV → HH (Fig. 1n); and 
(3) through the exchange of a vector boson (Fig. 1o).
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Fig. 3 | A portrait of the Higgs boson couplings to fermions and vector 
bosons. Left: constraints on the Higgs boson coupling modifiers to fermions 
(κf) and heavy gauge bosons (κV), in different datasets: discovery (red), the full 
LHC Run 1 (blue) and the data presented here (black). The SM prediction 
corresponds to κV = κf = 1 (diamond marker). Right: the measured coupling 
modifiers of the Higgs boson to fermions and heavy gauge bosons, as functions 

of fermion or gauge boson mass, where υ is the vacuum expectation value of 
the BEH field (‘Notes on self-interaction strength’ in Methods). For gauge 
bosons, the square root of the coupling modifier is plotted, to keep a linear 
proportionality to the mass, as predicted in the SM. The P value with respect to 
the SM prediction for the right plot is 37.5%.
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the BEH field (‘Notes on self-interaction strength’ in Methods). For gauge 
bosons, the square root of the coupling modifier is plotted, to keep a linear 
proportionality to the mass, as predicted in the SM. The P value with respect to 
the SM prediction for the right plot is 37.5%.
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Figure 7. The total cross sections for Higgs pair production at the LHC, including higher-order
corrections, in the main channels — gluon fusion (red/full), VBF (green/dashed), Higgs-strahlung
(blue/dotted), associated production with tt̄ (violet/dotted with small dots) — as a function of
the c.m. energy with MH = 125 GeV. The MSTW2008 PDF set has been used and higher-order
corrections are included as discussed in section 2.

3.1 Theoretical uncertainties in the gluon channel

3.1.1 Theoretical uncertainty due to missing higher order corrections

The large K-factor for this process of about 1.5 − 2 depending on the c.m. energy shows

that the inclusion of higher order corrections is essential. An estimate on the size of the

uncertainties due to the missing higher order corrections can be obtained by a variation of

the factorization and renormalization scales of this process. In analogy to single Higgs pro-

duction studies [77, 80] we have estimated the error due to missing higher order corrections

by varying µR, µF in the interval

1

2
µ0 ≤ µR = µF ≤ 2µ0 . (3.2)

As can be seen in figure 8 we find sizeable scale uncertainties∆µ of order∼ +20%/−17%
at 8TeV down to +12%/−10% at 100TeV. Compared to the single Higgs production case

the scale uncertainty is twice as large [77, 80]. However, this should not be a surprise as

there are NNLO QCD corrections available for the top loop (in a heavy top mass expansion)

in the process gg → H while they are unknown for the process gg → HH.

3.1.2 The PDF and αS errors

The parametrization of the parton distribution functions is another source of theoretical

uncertainty. First there are pure theoretical uncertainties coming from the assumptions

made on the parametrization, e.g. the choice of the parametrization, the set of input

parameters used, etc. Such uncertainties are rather difficult to quantify. A possibility might

– 14 –

[Baglio, Djouadi, RG, Mühlleitner, Quevillon, Spira ’12]
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                                                                                          Other gluon fusion processes
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p
s = 13 TeV � [fb] �/�NLO � 1

LO 36.848(1) +7.1%

�8.1%
�24.8%

NLO 48.990(2) +3.1%

�2.9%
—

qq̄NNLO 52.07(4) +1.4%

�1.4%
+6.3%

� [fb] �/�ggLO � 1

ggLO 4.2967(3) +25.6%

�18.4%
—

ggNLO 7.80(2) +17.1%

�13.9%
+81.5%

� [fb] �/�NLO � 1

NNLO 56.37(4) +3.2%

�2.7%
+15.1%

nNNLO 59.87(4) +3.4%

�3.1%
+22.2%

nNNLObkg 58.37(4) +2.8%

�2.6%
+19.1%

� [fb] �/�nNNLO � 1

nNNLOEW 56.49(4) +3.5%

�3.1%
�5.6%

Table 2: Fiducial cross sections in the phase space volume defined in Ref. [56] and summarized in
Table 1 at di↵erent perturbative orders. Statistical uncertainties for (n)NNLO results include the
uncertainties due the rcut extrapolation in qT subtraction [51].

We start the presentation of our results in Table 2 with the fiducial cross sections corresponding to
the selection cuts in Table 1. We use the following notation: qq̄NNLO refers to the NNLO result for
the qq̄-initiated process, see Figure 1, without the loop-induced gluon fusion contribution; ggLO and
ggNLO refer to the loop-induced gluon fusion contribution, see Figure 2, at O(↵2

S
) and up to O(↵3

S
),

respectively; nNNLO is the sum of qq̄NNLO and ggNLO; nNNLObkg is the corresponding cross
section including only the continuum background without Higgs contributions, whereas all other
cross sections include resonant and non-resonant Higgs diagrams, where applicable; nNNLOEW is
our best prediction for the fiducial cross section. It is obtained as in Ref. [55] for WW production
by including EW corrections (to the qq̄ channel) in a factorised approach [50].

With respect to the NLO cross section, the NNLO corrections in the qq̄ channel amount to +6.3%
while the full NNLO corrections amount to +15.1%.3 Therefore, the loop-induced gluon fusion
process contributes 58% of the NNLO correction. This is in line with previous computations
[41, 43, 45, 46, 51]. The NLO corrections to the loop-induced contribution are huge, increasing
ggLO by +81.2%, which is even slightly higher than the +70.8% correction found with the setup
considered in Ref. [41], where the Higgs resonance region is excluded from the fiducial volume.

3
Note that the NLO and NNLO K-factors in the qq̄ channel are smaller here than in Ref. [41] essentially due to

the di↵erent choices of the PDFs at LO and NLO.

7

[Grazzini, Kallweit, Wiesemann, Yook ’21]

does not contain top loop 
drives uncertainty at NNLO QCD
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VH production
Chapter 2. Virtual QCD Corrections to gg ! ZH
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Figure 2.2: Representative Feynman diagrams contributing to the gg ! ZH amplitude at
LO. Triangle topologies with (a) a neutral Goldstone boson G

0 and (b) a Z boson in an
ŝ-channel propagator are present together with (c) box diagrams.

the FeynCalc implementation of the Passarino-Veltman reduction algorithm [73], so that the
final results can be expressed in terms of the known scalar functions, B0, C0 and D0, which
we evaluated numerically using LoopTools [74].

The loop integrals for both triangle and box diagrams at LO are generally UV-divergent,
with the divergences showing up as 1/" poles for " ! 0 in Dimensional Regularization,
assuming D = 4�2". However, due to the fact that there is no tree-level ggZH vertex in the
SM, the renormalizability of the theory implies that the LO result must be finite, so the UV
divergences from the one-loop integrals cancel when considering the sum of all diagrams.5.

2.7.1 pT Expansion and IBP Reduction of the Box Integrals

In this subsection we are going to present the details of the calculation of the box form

factors at LO using the pT expansion. As stated in the introduction, we focus on the A
(0,⇤)
i

because the key purpose of the pT expansion is to provide an approximation of the two-loop
box integrals6 at NLO, and the main steps of the method can be illustrated at LO in a
more concise way. After the amplitude generation with FeynArts and contraction with the
projectors, we find that each form factor is written in terms of three classes of one-loop scalar

integrals, each one associated to one of the three diagrams contributing to A
(0,⇤)
i

I1 =

Z
d
D
q1

(q21)
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,

(2.50)

where the scalar products in the numerator can be raised to any integer ni � 0. After
substituting p3 using the second line of eq.(2.29), the diagrams are expanded as discussed in
sec. 2.4. The structure of the integrands in (2.50) is modified by the pT expansion, and we

5In particular, the triangle and box contributions are separately UV and IR finite
6Exact analytical results will be obtained for the other classes of diagrams at NLO.
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Higgs pair production

computed in full top mass dependence numerically in [Borowka et al ’16, Baglio et al ’18]

large top mass renormalisation scheme dependence [Baglio et al ’18]

implemented into POWHEG using a grid for virtual corrections
[Heinrich et al ’17]

gg -> ZH

computed in full top mass dependence numerically in [Chen et al ’22]

gg -> ZZ

top loop computed numerically in [Bronnum-Hansen, Wang ’21; 
Agarwal, Jones, von Manteuffel ’20, ’24]

massless loops computed in 
[Manteuffel, Tancredi ’15, Caola, (Dowling), 
Melnikov, Röntsch, Tancredi ’16 ]

in MATRIX and MiNNLOPS

[Grazzini, Kallweit, Wiesemann, Yook ’18; 
Buonocore, Koole, Lombardi,Rottoli, Wiesemann , 

Zanderighi ‘21]
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Higgs pair production

computed in full top mass dependence numerically in [Borowka et al ’16, Baglio et al ’18]

large top mass renormalisation scheme dependence [Baglio et al ’18]

implemented into POWHEG using a grid for virtual corrections
[Heinrich et al ’17]

gg -> ZH

computed in full top mass dependence numerically in [Chen et al ’22]

gg -> ZZ

top loop computed numerically in 

Can the virtual corrections be also computed analytically?

Monte Carlo

top mass renormalisation 
scheme uncertainty

06

[Bronnum-Hansen, Wang ’21; 
Agarwal, Jones, von Manteuffel ’20, ’24]
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                                                                                          Approximations
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Higgs pair production
[Bonciani, Degrassi, Giardino, RG’ 18]

[Davies, Mishima, 
Steinhauser, 
Wellmann, ’ 18]

NLO QCD

NLO QCD

NLO QCD

[Dawson, Dittmaier, 
Spira ’ 98]

NNNLO QCD
[L.-B. Chen, H. T. Li, H.-S. Shao and J. Wang ‘19]
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Higgs pair production complementary, can be combined

[Bellafronte, 
Degrassi, Giardino, 

RG, Vitti ’22; 
Davies, Mishima, 

Schönwald, 
Steinhauser ’23]
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                                                                                          Expansion

p2
T =

̂t ̂u − m4
H

̂s
∼ 0We can use ̂t ∼ 0

But p2
T ∼ 0 ̂t ∼ 0
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                                                                                          Expansion

p2
T =

̂t ̂u − m4
H

̂s
∼ 0We can use ̂t ∼ 0

But p2
T ∼ 0 ̂t ∼ 0 ̂u ∼ − ̂s

̂u ∼ 0̂t ∼ − ̂s
two cases

we are lucky though

ℳμν( ̂t, ̂u) = ℳμν( ̂u, ̂t )
symmetric in t and u
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p2
T =

̂t ̂u − m4
H

̂s
∼ 0We can use ̂t ∼ 0

But p2
T ∼ 0 ̂t ∼ 0 ̂u ∼ − ̂s

̂u ∼ 0̂t ∼ − ̂s
two cases

we are lucky though

ℳμν( ̂t, ̂u) = ℳμν( ̂u, ̂t )
symmetric in t and u

σ = ∫
t+

t−

d ̂t
dσ
d ̂t

∼ ∫
tm

t−

d ̂t
dσ( ̂t ∼ 0)

d ̂t
+ ∫

t+

tm

d ̂t
dσ( ̂t ∼ − ̂s)

d ̂t
= ∫

t+

t−

d ̂t
dσ( ̂t ∼ 0)

d ̂t
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                                                                                          Expansion

Define

rμ = pμ
1 + pμ

3 r2 = ̂t

rμ =
̂t − m2

h

̂s
(pμ

2 − pμ
1 ) + rμ

T
with r2

T = − p2
T

̂t ∼ 0 rμ ∼ 0 pμ
1 ∼ − pμ

3

Then we can expand
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                                                                                          Expansion

Define

rμ = pμ
1 + pμ

3 r2 = ̂t

rμ =
̂t − m2

h

̂s
(pμ

2 − pμ
1 ) + rμ

T
with r2

T = − p2
T

̂t ∼ 0 rμ ∼ 0 pμ
1 ∼ − pμ

3

Then we can expand

Fi = Fi p3=−p1
+ rμ

∂Fi

∂pμ
3 p3=−p1

+ rμrν
∂2Fi

∂pμ
3 ∂pν

3 p3=−p1

+ . . .

First order pT  expansion needs second order p3 expansion
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                                                                                          High-energy expansion

Valid for 

̂s, ̂t, ̂u ≫ m2
t > m2

ext

Difficulty: Imposing the boundary conditions to the loop integrals 

results depend on s, t and can be expressed in terms of harmonic polylogarithms 
up to weight 4

Padé approximants can push validity down to  pT ∼ 150 GeV

Results available up to high orders (16) in m2
t

[HH: Davies, Mishima, Steinhauser, 
Wellmann ’18; ZH: Davies, 

Mishima, Steinhauser, Wellmann 
’20; ZZ: Davies, Mishima, 

Steinhauser ’21]

10

[Mishima ’18]
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                                                                                          Combination of expansions
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Leading order form factor for Higgs pair production:

Padé approximant

[n /m] =
a0 + a1x + . . . + anxn

1 + b1x + . . . bmxm

[Bellafronte, Degrassi, Giardino, RG, Vitti  ’22]

Expansions are 
complementary, using Padé 

approximants one can 
increase convergence

11
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                                                                                          Combination of expansions
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[Davies, Heinrich, Jones et al. ’19]
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                                                                                          New POWHEG implementation
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[Bagnaschi, Degrassi, RG ’23]
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virtuals with expansion technique analytically

reals with MadLoop [Hirschi et al.  ’11]
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[Bagnaschi, Degrassi, RG ’23]

New POWHEG implementation

14

flexibility of analytic approach allows to vary top mass renormalisation scheme
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                                                                                          gg-> ZZ

2 Definitions and the pT-expansion method

2.1 Definitions

We consider the process gµa (p1)g⌫b (p2) ! Z
⇢(p3)Z�(p4). The amplitude can be defined as

A =
p
2m2

ZGF

↵s(µR)

⇡
�ab ✏

a

µ(p1)✏
b

⌫(p2)✏
⇤
⇢(p3)✏

⇤
�(p4) Â

µ⌫⇢�(p1, p2, p3), (1)

where GF is the Fermi constant, ↵s(µR) is the strong coupling constant evaluated at a
renormalisation scale µR and the polarization vectors of the gluons and the Z bosons are
✏
a
µ(p1), ✏

b
⌫(p2) and ✏⇢(p3), ✏�(p4), respectively. The Lorentz structure of the amplitude is

encoded in the tensor Â
µ⌫⇢�(p1, p2, p3), whose most general decomposition consists of 138

Lorentz structures. However, by imposing the transversality of the external polarization
vectors w.r.t. the relative four-momentum

✏(pi) · pi = 0 i = 1, . . . , 4, (2)

and by fixing the gauge of the external gluons with

✏(p1) · p2 = 0 ✏(p2) · p1 = 0, (3)

Â
µ⌫⇢� can be written as a linear combination of 20 Lorentz structures [36, 42, 50]

Â
µ⌫⇢�(p1, p2, p3) =

20X

i=1

S
µ⌫⇢�

i
fi(ŝ, t̂, û,mt,mZ), (4)

where the scalar form factors fi depend, besides mt and mZ , on the partonic Mandelstam
variables. Assuming all momenta to be incoming, the latter are defined as

ŝ = (p1 + p2)
2
, t̂ = (p1 + p3)

2
, û = (p2 + p3)

2 (5)

and the relation ŝ + t̂ + û = 2m2
Z is satisfied. We checked that the Lorentz structures that

give a nonzero contribution to the amplitude are

S
µ⌫⇢�

1
= g

µ⌫
g
⇢�

S
µ⌫⇢�

2
= g

µ⇢
g
⌫�

S
µ⌫⇢�

3
= g

µ�
g
⌫⇢

S
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= p
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1
p
⌫
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p
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where we follow the numbering of ref. [42].

3

20 Lorentz structures

g
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Z

Z

t
H

(a)

g

g

Z

Z

t

(b)

Figure 1: Representative Feynman diagrams contributing to the gg ! ZZ amplitude at LO.
Only the contribution from top-quark loops is shown.

In order to simplify the evaluation of the cross section, in our work we express the ampli-
tude in terms of a set of orthonormal projectors

Â
µ⌫⇢�(p1, p2, p3) =

20X

i=1

P
µ⌫⇢�

i
Ai(ŝ, t̂, û,mt,mZ), (7)

where the tensors P
µ⌫⇢�

i
are constructed as linear combinations of the Lorentz structures

defined in eqs. (6), using a Gram-Schmidt procedure for the orthogonalization. In appendix A
we give the explicit expressions for the projectors. Here we point out that, to e�ciently
perform the pT expansion [47], we choose the projectors to be either symmetric or anti-
symmetric under the interchange {µ $ ⌫, p1 $ p2}. This choice also allows to reduce the
number of relevant form factors2 from 20 to 16. We present our results in terms of the Ai

form factors of eq. (7), while in appendix A we include the relations to obtain the latter as a
combination of the fi in eqs. (4).

We consider a perturbative expansion of the form factors in the strong coupling

Ai = A
(0)

i
+

↵s

⇡
A

(1)

i
+O(↵2

s) (8)

where one- and two-loop diagrams contribute respectively to the LO (A(0)

i
) and NLO (A(1)

i
).

According to the topology of the relevant Feynman diagrams (see fig. 1), we identify a triangle
and a box contribution to the LO form factors

A
(0)

i
= A

(0,4)

i
+A

(0,⇤)

i
. (9)

The above classification is modified at NLO, where the two-loop triangle and box topolo-
gies (see fig. 2) are supplemented with one-particle-reducible double-triangle diagrams as in
fig. 2(c). Therefore the NLO form factors are defined as

A
(1)

i
= A

(1,4)

i
+A

(1,⇤)

i
+A

(1,./)

i
. (10)

2In fact, we observed that enforcing the additional Bose symmetry {⇢ $ �, p3 $ p4} further reduces the
relevant form factors to 12. While this may be used for improving the practical implementation of our results,
in this paper we use the 16 form factors.

4

20 projectors

16 with norm non equal zero

PT expansion
MIs expressed in terms of GPLs

two elliptic integrals
[von Manteuffel, Tancredi ’17; 

Bonciani, Degrassi, Giardino, RG, ’18]

combination with results in high-energy limit 
via Padé approximants

[Davies, Mishima, Steinhauser, 
Wellmann ’20]
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Figure 6: Relative di↵erence between several phase-space points of ref. [43] and di↵erent
approximations for the helicity amplitude ++00. Points in the shaded region are outside
the formal limit of validity of the pT expansion. (a) [1/1] pT -Padé only; (b) merging of the
pT -Padé and the HE-Padé.

14

Comparison with [Agarwal, Jones, von Manteuffel ’20]

[Degrassi, RG, Vitti ’24]
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                                                                                          gg-> ZH
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Top-mass scheme LO [fb] �LO/�
OS
LO NLO [fb] �NLO/�

OS
NLO K = �NLO/�LO

On-Shell 64.01+27.2%
�20.3% - 118.6+16.7%

�14.1% - 1.85

MS, µt = MZH/4 59.40+27.1%
�20.2% 0.928 113.3+17.4%

�14.5% 0.955 1.91

MS, µt = m
MS

t (mMS

t ) 57.95+26.9%
�20.1% 0.905 111.7+17.7%

�14.6% 0.942 1.93

MS, µt = MZH/2 54.22+26.8%
�20.0% 0.847 107.9+18.4%

�15.0% 0.910 1.99

MS, µt = MZH 49.23+26.6%
�19.9% 0.769 103.3+19.6%

�15.6% 0.871 2.10

Table 1: Total cross section at LO and NLO with full top-quark mass dependence using
di↵erent top-quark-mass renormalization schemes. The central value of the renormalization
and factorization scales is fixed to be µR = µF = MZH/2. Scale uncertainties are taken
from a 7-point scale variation.

3.1 Inclusive Cross Section

In Table 1, we show the total cross section at LO and NLO adopting di↵erent top-quark-
mass renormalization schemes, i.e. OS and MS with di↵erent scale choices. We fix the
central value of the renormalization and factorization scales to be µC = MZH/2. The
scale uncertainty is obtained from the envelope of a 7-point variation of the central scale
according to (µR/µC , µF/µC) = (1, 1), (1, 1

2
), (1, 2), (1

2
,
1

2
), (1

2
, 1), (2, 1), (2, 2).

We find that the NLO corrections are large for each choice of the top-mass renormal-
ization scheme, with an approximate K-factor, K = �NLO/�LO, of around 2. Moreover,
the relative size of the scale uncertainties is essentially the same regardless of the top-mass
renormalization scheme. We note that going from LO to NLO the relative size of the scale
uncertainties is reduced by a factor of about 2/3. The OS scheme leads to the largest value
of the total cross section both at LO and NLO, while in the MS scheme for µt = MZH the
smallest cross section value is obtained. At LO, the di↵erence between these two schemes
amounts to about 23%, while it decreases to 13% at NLO.

We notice that our OS results are about 20% larger at LO and 14% larger at NLO than
those of Ref. [29] (see Table 1 therein). This discrepancy is mainly due to the di↵erent
choice for µC , and it is related only in a minor way to the additional diagrams included
in our calculation and to the di↵erent input parameters adopted. To verify this, we have
computed our results including the same diagrams and adopting the same input parameters
as in Ref. [28] (which is in accordance with Ref. [29]) and we have found an agreement at
the level of the Monte Carlo error. Furthermore, when we consider the relative importance
of the scale uncertainties, we observe very similar results to Ref. [29].

3.2 Di↵erential Distributions

In Fig. 3, we plot the MZH distribution in both the OS scheme (3(a)) and the MS scheme
with µt = MZH/2 (3(b)) in the regionMZH 2 [200, 800] GeV. In both schemes, theK-factor
is about 3 in the ZH threshold region, then it decreases as MZH increases. In the top-pair
threshold region (MZH ⇠ 2mt), the OS scheme gives a peak with K-factor slightly above
2, while the MS scheme shows a small dip followed by a peak instead. Increasing MZH to
about 800 GeV, the K-factor in the OS scheme decreases to about 1.5, while it remains

8

NLO QCD corrections important

top mass renormalisation scheme 
dependence sizeable
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Figure 4: Invariant-mass distribution at LO (magenta) and NLO (green) for the OS scheme
(a) and the MS scheme (b) for a wide MZH range. The NLO results in which the Z-radiated
diagrams are excluded are shown in blue. The lower panels show the K-factor.

diagrams are dominating the respective initial state at high MZH . This suppression can
be mainly attributed to the reduced partonic luminosity with respect to the qg channel.
For comparison, in Fig. 5(a) we also report the size of the Drell-Yan type contribution at
NNLO (black line), which we obtained using vh@nnlo [18, 25] with MCFM [50–52]. In the
lower panel of Fig. 5(a) we plot the ratio of the O(↵3

s) corrections computed by us with
respect to the NNLO Drell-Yan contribution. We can see that despite being O(↵3

s), the
relative importance of the Z-radiated contribution can reach 2% when MZH ⇠ 2TeV.

In Fig. 5(b) we compare our results for gg ! ZH at LO (green line) and NLO (blue
line) with the Drell-Yan type contribution (black line). In the upper panel we show the
size of the di↵erential cross section for the various channels, while in the lower panel the
ratio of the gluon-fusion with respect to the NNLO Drell-Yan contribution is displayed.
We can see that the gluon-fusion contribution peaks around the top-pair threshold, which
increases its relative size over the Drell-Yan contribution by about 25% at LO, and about
45% at NLO. The relative size of the gluon-fusion contribution decreases above the top-pair
threshold as MZH increases, and at NLO becomes dominated by the Z-radiated terms for
very large values of MZH . In particular, at 2 TeV the latter constitute more than half of
the gluon-fusion contribution.

10

Z radiation: EW logs of type

[Degrassi, RG, Vitti, Zhao ’22]

log2(m2
Z /M2

ZH)
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Figure 1: Representative Feynman diagrams for the gg ! ZHg process.

in the MS top-mass renormalization scheme, see the next section). As a result, the average
time to compute one phase-space point increases from 0.2 s to 1.0 s.

For qg ! ZHq, and qq̄ ! ZHg, the one-loop matrix elements are computed by
MadGraph5 aMC@NLO, where we implement a filter to exclude diagrams without a closed
fermion loop. In other words, we include two classes of Feynman diagrams: in the first
class, examples of which are shown in Figs. 2a 2c, both the Z boson and Higgs boson are
attached directly or indirectly (i.e. by connecting to an intermediate virtual boson, sim-
ilarly to Fig. 1c) to a closed quark loop, while in the second class (as shown in Fig. 2b
2d) the Higgs boson is attached to a closed quark loop, but the Z boson is radiated from
an open fermion line. We note that both types of diagrams can interfere with tree-level
diagrams, hence produce O(↵2

s) contributions. Such contributions were studied in detail7

in Ref. [11] and they were considered as part of the NNLO corrections to pp ! ZH. On
the other hand, in this paper we compute the square of those diagrams, corresponding to
O(↵3

s) contributions that we consider as NLO corrections to gg ! ZH.
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Figure 2: Representative Feynman diagrams for the qg and qq̄ channels. In (b) and (d)
examples of Z-radiated diagrams (see Sec. 3) are depicted.

3 Results

In this section, we present our numerical results for a center-of-mass energy
p
s = 13 TeV.

We adopt the following input parameters: m
OS

t = 172.5GeV, mW = 80.385GeV, mZ =
91.1876GeV, mH = 125GeV, Gµ = 1.1663787⇥ 10�5 GeV�2. We adopt the
NNPDF31 nnlo as 0118 [48] parton distribution functions in a five flavour scheme.

7They belong to the classes RI and RII for the top-mediated terms considered in Ref. [11].

7

gg-> ZH
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                                                                                          Conclusion

• to be explored: how can the idea of the expansion be applied to more complicate cases?

• for Monte Carlo a analytic approach showed here is useful and can be sufficiently 
precise

• Precise predictions for 2 -> 2 gluon fusion processes important -> multi-scale problem

19

Thanks for your attention!

• Monte Carlo with analytic approach is very flexible and can be easily extended to BSM

see for instance [Davies, Schönwald, Steinhauser (Vitti) ’23 (’24)] for first efforts 
at NNNLO QCD

• analytically they can be computed using various expansions and combine them



Backup
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                                                                                          New POWHEG implementation

We had a discrepancy with respect to the POWHEG by [Heinrich et al ’20 ’22] when 
varying the trilinear Higgs self-coupling
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Figure 1. Comparison of old and new results for the cross sections differential in mhh for benchmark
point 1⋆ of table 2 in ref. [2], with Λ = 1TeV (left) and Λ = 2TeV (right), for truncation options
(a) and (b). The HEFT distributions for benchmark point 1⋆ are also included in the left plot. The
lower panels show the truncation options separately and normalised to the corrected result (with
3-point scale variations for option (b)).

Figure 2. Comparison of old and new results for the cross sections differential in mhh for benchmark
points 3⋆ and 6⋆ of table 2 in ref. [2], with Λ = 1TeV and truncation options (a) and (b) and HEFT.
The lower panels show the truncation options separately and normalised to the corrected result (with
3-point scale variations for option (b)).

– 2 –

 [Heinrich et al ’22]BP1:

chhh ≈ 5.1, ct = 1.1

22



   Ramona Gröber — Università di Padova and INFN, Sezione di Padova                                              / 19                                                                              

                                                                                          NLO expansion

• O(50) master integrals 

• all of them known, though we 
needed to recompute some for the 
forward kinematics

• everything fully analytic in 
terms of HPLs and GPLs

• But: the two elliptic integrals

25
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                                                                                          Interplay: gg-> ZZ @ NLO

dσ/dm4ℓ [pb/GeV] ZZ → 2e2µ@LHC 8 TeV
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Figure 4: Di↵erential distribution in m4` at 8TeV (left) and 13TeV (right).

We first consider the invariant-mass distribution of the four-lepton system in Figure 4. The
impact of the NLO corrections to the loop-induced gluon fusion contribution is largest at small
invariant masses: In the peak region they increase the NNLO cross section by about 5% (7%)
at

p
s = 8 (13)TeV. As m4` increases, the impact of the ggNLO corrections decreases, and it is

only about +1% at m4` ⇠ 1TeV. This is not unexpected, since the gg contribution is largest
when gluons with smaller x are probed. On the contrary, the size of the ggNLO/ggLO K-factor
in the lower panel is relatively stable, with a moderate increase at small m4`. In both cases,
comparing the nNNLO/NNLO and ggNLO/ggLO ratios, the scale uncertainties do not fully cover
the size of higher-order corrections in the peak region of the distribution, which demonstrates the
importance of the NLO corrections to the loop-induced gluon fusion contribution. The impact of
the qg channels on the ggNLO/ggLO K-factor is about �10% at smaller m4` values, but essentially
vanishes in the tail of the m4` distribution.

In Figure 5 we show the invariant-mass distribution of the primary (upper plots) and secondary
OSSF lepton pair (lower plots), ordered by the distance of their invariant masses to the Z-boson
mass. Both distributions are limited by the Z-mass window cut in the fiducial phase space. The
distribution of the lepton pair which is less close to mZ is broader. More precisely, when the
invariant mass of the lepton pair is mZ ± 20 GeV, the cross section is suppressed by about four
and two orders of magnitude for the primary and secondary lepton pair, respectively. Nonetheless,
the impact of QCD corrections is uniform in both cases, and independent of the collider energy.
The NNLO uncertainty bands barely overlap with the ones of the nNNLO result.
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[Grazzini, Kallweit, Wiesemann, Yook ’18]
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Figure 1: Representative Feynman diagrams contributing to the gg ! ZZ amplitude at LO.
Only the contribution from top-quark loops is shown.

In order to simplify the evaluation of the cross section, in our work we express the ampli-
tude in terms of a set of orthonormal projectors

Â
µ⌫⇢�(p1, p2, p3) =

20X

i=1

P
µ⌫⇢�

i
Ai(ŝ, t̂, û,mt,mZ), (7)

where the tensors Pµ⌫⇢�

i
are constructed as linear combinations of the Lorentz structures in

(6), using a Gram-Schmidt procedure for the orthogonalization. In App. A we give the explicit
expressions for the projectors, while here we point out that we impose the {µ $ ⌫, p1 $ p2}

(anti-)symmetry. This is necessary for the pT expansion, but it also allows to reduce the
number of relevant form factors1 from 20 to 16. We present our results in terms of the Ai

form factors of Eq.(7), while in App. A we include the relations to obtain the latter as a
combination of the fi in Eq.(6).

We will consider a perturbative expansion of the form factors in the strong coupling

Ai = A
(0)
i

+
↵S

⇡
A

(1)
i

+O(↵2
S) (8)

where one- and two-loop diagrams contribute respectively to the LO (A(0)
i

) and NLO (A(1)
i

).
According to the topology of the relevant Feynman diagrams (see Fig. 1), we identify a triangle
and a box contribution to the LO form factors

A
(0)
i

= A
(0,4)
i

+A
(0,⇤)
i

. (9)

The above classification is modified at NLO, where the two-loop triangle and box topolo-
gies are supplemented with one-particle-reducible double-triangle diagrams as in Fig. 2(c).
Therefore we will define the NLO form factors as

A
(1)
i

= A
(1,4)
i

+A
(1,⇤)
i

+A
(1,./)
i

. (10)

1In fact, we observed that enforcing the additional Bose symmetry {⇢ $ �, p3 $ p4} further reduces the
relevant form factors to 12. While this may be used for improving the practical implementation of our results,
in this paper we use the 16 form factors.

4

for interference with Higgs important also 
massive loops 

massless loops:  

[Manteuffel, Tancredi ’15, Caola, (Dowling), 
Melnikov, Röntsch, Tancredi ’16 ]

[Agarwal, Von Manteuffel,  Jones ’20, Bronnum-Hansen, Wang ’21]

@ NLO QCD computed numerically in

no Monte Carlo yet

also in MiNNLOPS 

[Buonocore, Koole, Lombardi,Rottoli, Wiesemann , 

Zanderighi ‘21]
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