
NNLO+PS predictions for Z boson production in association with
b-jets at the LHC

Vasily Sotnikov

University of Zurich

based on

Javier Mazzitelli, VS, Marius Wiesemann [arXiv:2404.08598]

High Precision for Hard Processes (HP2 2024),

Turin (Italy)

10th September 2024

https://arxiv.org/abs/2404.08598


Introduction



Motivation for Zbb̄ production
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Phenomenological

• Important background to ZH(bb) and BSM searches

• Precision benchmark of pQCD

• Sensitivity to heavy flavor scheme: 4FS vs 5FS 6 8 10 12 14 16 18 20 22 24

 1 b-jet) [pb]≥(Z + σ

Data (stat.) Data (stat.+syst.)

 1 b-jet≥ll) + →Z(

Sherpa 5FNS (NLO)
MGaMC+Py8 Zbb 4FNS (NLO)
MGaMC+Py8 5FNS (NLO)
Sherpa Zbb 4FNS (NLO)
Sherpa Fusing 4FNS+5FNS (NLO)
Alpgen+Py6 4FNS (LO)
Alpgen+Py6 (rew. NNPDF3.0lo)
MGaMC+Py8 5FNS (LO)

 0.23 pb± 1.08 ± 0.03 ±10.90 

ATLAS
-1=13 TeV, 35.6 fbs

[JHEP 07 (2020) 44]
Technical

• Matching NNLO QCD corrections for a genuine 2 → 3 QCD process to parton showers

(PS) for the first time

• Extension of a NNLO+PS matching to a new class of processes

• Phenomenological application of one of the most complex two-loop amplitudes known
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Zbb̄ history

Theory

• NLO 5FS [Campbell, Ellis, Keith, Maltoni, Willenbrock ’03]

• NLO 4FS [Febres Cordero, Reina, Wackeroth ’08,’09] (see also [Campbell, Ellis, Keith ’00])

• NLO+PS in MadGraph5 aMC@NLO [Frederix,Frixione, Hirschi, Maltoni, Pittau, Torrielli ’11]

(+ multi-jet merging in 5FS)

• NLO+PS in Sherpa [Krauss, Napoletano, Schumann ’16] (+ multi-jet merging in 5FS)

• NLO+PS combination 4FS + 5FS [Höche, Krause, Siegert ’19] (see also [Forte, Napoletano, Ubiali ’18])

• NNLO in 5FS one b-jet [Gauld, Gehrmann-De Ridder, Glover, Huss, Majer ’20]

This talk

First NNLO and NNLO+PS computation in 4FS

LHC
√
s = 13 TeV measurements

• [ATLAS, arXiv:2003.11960]

• [CMS, arXiv:2112.09659]

• [ATLAS, arXiv:2204.12355] (large R jets)

• [ATLAS, arXiv:2403.15093]
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Hadron collisions
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Computational setup



Computational setup

MiNNLOPS method



MiNNLOPS for color singlet production

[Monni, Nason, Re, Wiesemann, Zanderighi ’19] [Monni, Re, Wiesemann ’20]

Step 1: qT resummation formula

Consider color singlet production pp → F +X

dσres
F

dΦFdqT
∼

d

dqT

{
e−SH (C ⊗ f)(C ⊗ f)

}

• Differential in Born phase space ΦF and qT

• N3LL resummation is NNLO accurate upon integration over qT

Step 2: match to Fj @ NLO

dσ = dσres
F +

[
dσFj

]
f.o.

− [dσres
F ]f.o.

Pull out Sudakov exponent, expand to α3
s:
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MiNNLOPS for color singlet production

[Monni, Nason, Re, Wiesemann, Zanderighi ’19] [Monni, Re, Wiesemann ’20]
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Pull out Sudakov exponent, expand to α3
s:

dσMiNNLO ∼ e−S
(
dσ

(1)
Fj (1 + S(1)) + dσ

(2)
Fj + D(3)︸ ︷︷ ︸

NNLO accuracy

)

Note: e−S exponentially suppresses qT → 0 =⇒ NNLO subtraction
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MiNNLOPS for color singlet production

[Monni, Nason, Re, Wiesemann, Zanderighi ’19] [Monni, Re, Wiesemann ’20]

Step 3: upgrade POWHEG Fj @ NLO generator

dσpwg
Fj = dΦFj B̃Fj ×

{
∆pwg(p

min
T ) + dΦrad ∆pwg(pT,rad)

RFj

BFj

}

B̃Fj ∼
dσNLO

Fj

dΦFj

• Generates events in ΦFj distributed according to B̃Fj

• Replace B̃Fj −→ dσMiNNLO

dΦFj
, such that

∫
dqT

dσFj

dΦFj
is NNLO accurate

MiNNLOPS accuracy

• NNLO for inclusive observables (differential in ΦF)

• Resummation from parton shower (PS) preserved (e.g. LL in pT )

• No unphysical scales
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Extension to heavy quark pair (+singlet) production

pp → QQ̄+ F

Resummation structure more complex

[ Zhu, Li, Li, Shao, Yang ’12] [Catani, Grazzini, Torre ’14]

dσres
F ∼

d

dqT

{
e−SH (C ⊗ f)(C ⊗ f)

}
−→

dσres
QQ̄

∼
d

dqT

{
e−S

[
Tr[H∆] (C ⊗ f)(C ⊗ f)

]
ϕ

}

• Additional radiative factor ∆ of soft origin [Catani, Devoto, Grazzini, Mazzitelli ’23]

• Cast into a sum of color-singlet-like contributions to connect to MiNNLOPS formalism

[Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi ’20]

• Explicit integration of (subtracted) soft current required (up to 4-fold numerical

integration)

SHARK

[Devoto, Mazzitelli, in preparation]
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NNLO+PS timeline

H Z
W WH ZH

WW
H → bb̄

Z

H Z

ZH
WH

H → bb̄
H → gg
γγ ZZ Wγ

HH
H

H
Z W

Zγ
WW

ZZ

γγ
WZ

tt̄ bb̄

WW

Zbb̄

H→bb̄
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Computational setup

Two-loop corrections



Two-loop hard function

e−S
[
Tr[H∆] (C ⊗ f)(C ⊗ f)

]
ϕ

−→ H =
⟨R|h̄†h̄|R⟩∣∣M(0)

∣∣2 , |R⟩ = Z−1 |M⟩ ,

h̄ = 1 +O(αs)

• Operator Z−1 = 1 +O(αs) absorbs IR divergences [Becher, Neubert ’09]

• Two-loop corrections contribute to hard-virtual function H through 2Re
〈
R(0)

∣∣R(2)
〉

• Need five-point two-loop amplitudes for qq̄ → Zbb̄, gg → Zbb̄ with massive b,

currently out of reach [see Bayu’s talk]
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Small mb expansion

Scale hierarchy mb ≪ µh =⇒ factorization [Mitov, Moch ’06]:

|M⟩ = F |M0⟩ + O
(
mb

µh

)
, F(l) =

2l∑
i=0

fi log

(
mb

µR

)i

|M⟩(2) = F(2)
∣∣∣M(0)

0

〉
+ F(1)

∣∣∣M(1)
0

〉
+

∣∣∣M(2)
0

〉
Intuition: 1/ϵ poles in 5FS scheme (|M0⟩) related to log mb

µR
power in 4FS (|M⟩) via

“massification”.

Application to NNLO Wbb̄ production [Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini ’22]

Recently extended to include contributions from closed b loops [Wang, Xia, Yang, Ye ’23]:

F |M0⟩ → F ′ S |M0⟩ ,

S = 1 + S(2) soft function (operator in color space) with additional log mb
µR

contributions.

[see Guoxing’s talk]
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Finite formulation of massification

|M⟩ = F S |M0⟩

Finite formulation

Multiply by Z−1
mb≪µh

and insert 1 = Z0Z−1:

|Rmb≪µh ⟩ = Z−1
mb≪µh

F SZ0 |R0⟩ = F̄ S̄ |R0⟩

F̄ , S̄ finite, F̄ diagonal in color space

Evaluate 2-loop contribution as

Re
〈
R(0)

0

∣∣∣R(2)
mb≪µh

〉
=

F̄(2)
∣∣∣R(0)

0

∣∣∣2 + F̄(1) Re
〈
R(0)

0

∣∣∣R(1)
0

〉
+Re

〈
R(0)

0

∣∣∣S̄(2)
∣∣∣R(0)

0

〉
+

Re
〈
R(0)

0

∣∣∣R(2)
0

〉
log(mb) terms
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Further approximations

Re
〈
R(0)

0

∣∣∣R(2)
mb≪µh

〉
=

F̄(2)
∣∣∣R(0)

0

∣∣∣2 + F̄(1) Re
〈
R(0)

0

∣∣∣R(1)
0

〉
+Re

〈
R(0)

0

∣∣∣S̄(2)
∣∣∣R(0)

0

〉
+Re

〈
R(0)

0

∣∣∣R(2)
0

〉
Massless two-loop pp → Zbb̄ process simpler, still on the

cutting edge. We evaluate Re
〈
R(0)

0

∣∣∣R(2)
0

〉
based on

analytic results [Abreu, Febres Cordero, Ita, Klinkert, Page, VS ’21]

[Chicherin, VS, Zoia ’21]

• Leading color approximation (1/N2
c supressed)

• Contributions with Z coupling to closed quark

loops discarded

(estimated negligible at NLO).

Finite formulation =⇒ further approximations only in

Re
〈
R(0)

0

∣∣∣R(2)
0

〉
.

No approximations in log-enhanced terms (very

important!)
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Computational setup

Implementation



Implementation

• Extension of MiNNLOPS to QQ̄+ F processes implemented within

POWHEG-BOX-RES

• Some contributions to D evaluated by numerical integration (requires some care!)

[Devoto, Mazzitelli, in preparation]

• Pythia for QCD,QED showers, MPI, hadronization

• OpenLoops for tree and one-loop amplitudes, including color- and spin-correlated

Massless two-loop corrections

Numerical code based on analytic results [Abreu, Febres Cordero, Ita, Klinkert, Page, VS ’21],

one-mass pentagon functions in PentagonFunctions++ [Chicherin, VS, Zoia ’21]

Challenging numerics: huge expressions O(1Gb) =⇒
high memory usage, elaborate numerical stability checks and rescue through higher

precision

• Noticeable fraction of total CPU time for two-loop contributions

SOON: new “simplified” analytic form [de Laurentis, Ita, Page, VS, in preparation]:

17× faster, 11× less memory
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Phenomenology



Inclusive cross sections

σtotal [pb] ratio to NLO

NLO+PS 32.21(0)+16.4%
−13.4%

1.000

MiNLO′ 22.33(1)+28.2%
−17.9%

0.693

MiNNLOPS 50.58(4)+16.8%
−12.2%

1.588

MiNNLOPS

(R(2)
0 = 0)

−7%

MiNNLOPS

(no b loops in R(2))
−0.1%

•
√
s = 13TeV,

mℓ+ℓ− ∈ [67GeV, 116GeV]

• Main Born scale µR = mbb̄ℓℓ

• Hadronization, MPI, QED shower

off

• Effect of PS negligible on inclusive

production

• NLO not reliable, huge NNLO correction, not due to gluon PDF luminosities

• MiNLO′ prediction unphysical due to large uncompensated logmb, fixed by

double-virtual corrections

• Massless finite remainder contributes 7% of inclusive cross section (smaller in CMS

fiducial region), not flat over phase space!

• logmb-enhanced contributions from closed b loops small (larger in CMS fiducial region)
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Comparison to CMS measurement

Compare to CMS
√
s = 13TeV complete Run 2 data [Phys. Rev. D 105 (2022) 092014]

• Unfolded to fiducial region

• Backgrounds (tt̄, Z + jets) subtracted by MC simulations

σfiducial [pb] Z+≥ 1 b-jet Z+≥ 2 b-jets

NLO+PS 4.08± 0.66 0.44± 0.08

MiNNLOPS 6.72± 0.91 0.79± 0.10

NLO+PS (5FS) [CMS] 7.03± 0.47 0.77± 0.07

CMS 6.52± 0.43 0.65± 0.08

• Hadronization, MPI included

• Apply experimental definition

of b-jets (at the level of

hadrons)

• Tension between NLO+PS(4FS) and data lifted upon inclusion of NNLO

• Excellent agreement between MiNNLOPS and NLO+PS(5FS)
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Differential distributions: 1-b-jet
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• NLO+PS fails to describe normalization

• p
b-jet1
T shape significantly corrected

• MiNNLOPS predictions in remarkable agreement with data

• Theory uncertainty still larger than experimental in most bins
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Differential distributions: 2-b-jet
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• Normalization slightly higher than data

• Still MiNNLOPS predictions in good agreement with data (also seen in other 2-b-jet

distributions)
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Angular separation between Z boson and leading b-jet
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• Data not described well at high ∆RZ,b-jet

• Traced to ∆Y Z,b-jet1

• Resummation of mb logs (5FS) especially important?
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Conclusions & Outlook



Conclusions

Conclusions

• First NNLO QCD predictions for pp → Zbb̄, also matched to PS

• Inclusion of NNLO corrections largely lifts discrepancy between 4FS and 5FS predictions

Outlook

• Detailed comparison to fixed order NNLO predictions [Work in progress]

• Comparison to NNLO 5FS predictions (b jets!)

• Careful study of PS and MPI effects

• Significantly improved implementation of two-loop corrections

[de Laurentis, Ita, Page, VS, in preparation]

• Eventually public event generator

Thank you for your attention! Stay tuned!
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Backup



CMS fiducial region

[arXiv:2112.09659]

Final state: Z → ℓ+ℓ− (electrons or muons), and at least one (or two) b-jets.

• 71GeV ≤ mℓ+ℓ− ≤ 111GeV

• Lepton selection: pℓT > 25 GeV, pℓ1T > 35 GeV, |ηℓ| < 2.4

• Events with more than two leptons vetoed

• Leptons “dressed” by adding the momenta of all photons within ∆Rγ,ℓ ≤ 0.1

• Anti-kT b-jets with R = 0.4, pb-jetT > 30GeV and |ηb-jet| < 2.4

• b tagged if at least one b-flavored hadron in the jet

• Overlap between leptons and b-jets vetoed: ∆Rℓ,b-jet > 0.4

https://arxiv.org/abs/2112.09659


Two-loop numerical stability

• Learn to detect unstable points very well, switch to higher precision dynamically.
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New analytic representation

New analytic representation after basis change and iterated pole subtractions

[de Laurentis, Ita, Page, VS in preparation]
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