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Status of particle physics:
energy frontier

Colliders: SM describes final states of particle
collisions precisely
CMS stairway

[talk by A. Cappati]
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What do we know about the physics
beyond the standard model?

Puzzles in the scalar sector:
Lagrangian and its parameters
Yukawa couplings

Connection to inflation

Does not fit:
Neutrino masses
Dark matter and energy
Baryon asymmetry

Vacuum stability (1 too small)

L onal
Hidden new particles: Naturalness (u is dimensional)
Too heavy Anomalies:
Interact too weakly gﬂg Not addressed in this talk, =™
- S

1 but | can share my views

CD during discussion




Phenomenological approach to new physics

Established observations require physics beyond
SM,
but do not suggest rich BSM physics
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Phenomenological approach to new physics

Established observations require physics beyond
SM,
but do not suggest rich BSM physics

Can we explain established observations,
but not more,
by the same (simple) model?

12



Extension of SM: three alternatives with
different strength and weaknesses

Effective field theory, such as SMEFT: general but highly
complex (2499 dim 6 operators), focuses on new physics at
high scales

Simplified models, such as dark photon, extended scalar
sector or right-handed neutrinos: "easily accessible”
phenomenology, but focus on specific aspect of new physics,
so cannot explain all BSM phenomena

UV complete extension with potential of explaining BSM
phenomena within a single model such as SuperWeak

extension of the Standard Model: SWSM

R EEEEEEEIEII————————————————.
15
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Particle content of SM
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Superweak extension of SM
(SWSM)

Symmetry of the Lagrangian: local
G=GsuyxU(1), with Gsp=SU(3).xSU(2) . xU(1)y

renormalizable gauge theory, including all dim 4
operators allowed by G

[ZT,1812.11189] .,
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Superweak extension of SM
(SWSM)

Symmetry of the Lagrangian: local
G=GsuyxU(1), with Gsp=SU(3).xSU(2) . xU(1)y

renormalizable gauge theory, including all dim 4
operators allowed by G

z-charges fixed by requirement of

gauge and gravity anomaly cancellation and
gauge invariant Yukawa terms for neutrino mass

generation
[ZT,1812.11189] .,
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General U(1), anomaly free charge assignment
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General U(1), anomaly free charge assignment

field SUHE e S
U, Dy, 3 2 :
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traditional new o

in the SWSM z,, = 1/2 from Majorana mass term



U(1) covariant derivative is modified

u) _ . 9y _gzrl) B/,L
D, =—i(y Z) 0 g, (B’

1 is proportional to the kinetic mixing parameter in
eF, F"" but depends on the renormalization scale

20



Scalars in the SWSM

Standard ® complex SU(2). doublet and new
v complex singlet to make Z’ massive

Eroe [D(¢)¢]*D(¢)“¢ 4 [D(X) ]*D(X)HX V(gb X)
with scalar potential

2 2 2 2 2 A :
V(g,x) = Vo - i2lof - 2+ (o, 0e?) (¥ ) (1)

21



Scalars in the SWSM

Standard ® complex SU(2). doublet and new
vy complex singlet to make Z’ massive
Eoe [D(¢)¢]*D(¢)“¢ 4 [D(X) ]*D(X)HX Vg, x)
with scalar potential =
2 2
V(g,x) = Vo - i2lof - 2+ (o, 0e?) (¥ ) (1)

2

After SSB, G — SU(3).xU(1)aep in R: gauge

1
. = —(w H8H |
Mﬂ%) & x= s @@

- 21



Mixing in the scalar sector

Gt

where & and s are mass eigenstates:

/1¢V2 — ﬂxwz

cos 20q

2 2 2
Mh/S—/1¢V +/1)(W +

N

/
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Mixing in the scalar sector

& de

where /1 and s are mass eigenstates:

with v and w VEVs and 6, scalar mixing angle, implicitly:

22



Mixing in the neutral gauge sector

o
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\ 5 /

/CW —Sw O\

SW CWo

\O 01)
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\O By R ChC . \ZL/

Cxy = COS Oy
Sy = sin Oy

where 6,, is the weak mixing angle & 6, is the Z — Z' mixing, implicitly:
tan(260,) = — 21</<1 — k% — 12>, with x and 7 effective couplings,

functions of the Lagrangian couplings

[Zoltan Péli and ZT, arXiv: 2305.11931] »3



https://link.aps.org/doi/10.1103/PhysRevD.108.L031704

Mixing in the neutral gauge sector

/Bu\ /CW —Sw 0) (1 R0 \ (Au\ o 0
we | = | sw cw O O(CZ SZ] 7 2
\ B,/ \o 0 1/ \op—\ 7 e

where 6,, is the weak mixing angle & 6, is the Z — Z' mixing, implicitly:
tan(260,) = — 21</(1 — k% — T2>, with x and 7 effective couplings,

functions of the Lagrangian couplings

The expressions for the neutral gauge boson masses are somewhat
cumbersome, but exists a nice, compact generalization of the SM mass-
M; 1
relation formula: —2W — C§M§+S§M§, (MW - EgLv>
Ciw
[Zoltan Péli and ZT, arXiv: 2305.11931] »3



https://link.aps.org/doi/10.1103/PhysRevD.108.L031704

Free parameters

2 in the gauge sector:
{g.and n} or {kand 7} or {s, =snb6,and & = M,/M}
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Free parameters

2 in the gauge sector:
{g.and n} or {kand 1} or {s, =sin6,and & = M,/M}

1—¢&2 2 n
related by —s,¢; = g, Z¢_5
_ P g+

where p =

Pexp

My

ciyM7
= 1.00038 = 0.00020 (only BSM physics)

=1+ (£*-1)s7 is the rho parameter,
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Free parameters

2 in the gauge sector:
{g.and n} or {kand 1} or {s, =sin6,and & = M,/M}

1—&2 2 "
related by —s,¢; = g, Z¢_5
P \/ g3 + &t
My, N
where p = - =1+ (£°—1)s5 is the rho parameter,
ciM
Pexp = 1.00038 £ 0.00020 (only BSM physics)

3 in the scalar sector:

{,u%,/l and A} or {w, /1 and A} or {M, 6 and A}

24



Expected consequences
(not discussed here)

Dirac and Majorana neutrino mass terms are generated by the SSB of the
scalar fields, providing the origin of neutrino masses and oscillations
[lwamoto, Karkainnen, Péli, ZT, arXiv:2104.14571; Karkkainen and ZT, arXiv:2105.13360]
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Diagonalization of neutrino mass terms leads to the PMNS matrix, which

in turn can be the source of lepto-baryogenesis
[Seller, Szép, ZT, arXiv:2301.07261 and under investigation]
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Expected consequences
(not discussed here)

Dirac and Majorana neutrino mass terms are generated by the SSB of the
scalar fields, providing the origin of neutrino masses and oscillations
[lwamoto, Karkainnen, Péli, ZT, arXiv:2104.14571; Karkkainen and ZT, arXiv:2105.13360]

The lightest new particle is a natural and viable candidate for WIMP dark
matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]

Diagonalization of neutrino mass terms leads to the PMNS matrix, which

in turn can be the source of lepto-baryogenesis
[Seller, Szép, ZT, arXiv:2301.07261 and under investigation]

The second scalar together with the established BEH field can stabilize
the vacuum and be related to the accelerated expansion now and
inflation in the early universe

[Péli, Nandori and ZT, arXiv:1211.07082; Péli and ZT, arXiv:2204.07100]
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Expected consequences
(not discussed here)

Dirac and Majorana neutrino mass terms are generated by the SSB of the
scalar fields, providing the origin of neutrino masses and oscillations
[lwamoto, Karkainnen, Péli, ZT, arXiv:2104.14571; Karkkainen and ZT, arXiv:2105.13360]

The lightest new particle is a natural and viable candidate for WIMP dark
matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]

Diagonalization of neutrino mass terms leads to the PMNS matrix, which

in turn can be the source of lepto-baryogenesis
[Seller, Szép, ZT, arXiv:2301.07261 and under investigation]

The second scalar together with the established BEH field can stabilize
the vacuum and be related to the accelerated expansion now and
inflation in the early universe

[Péli, Nandori and ZT, arXiv:1211.07082; Péli and ZT, arXiv:2204.07100]

SWSM has the potential of explaining all known results beyond the SM
29
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Main questions

Is there a non-empty region of the parameter
space where all these promises are fulfilled?
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Main questions

Present focus:

Is there a non-empty region of the parameter
space where all these promises are fulfilled?

Can we predict any new phenomenon
observable by present or future experiments?
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Important test

Once the allowed region of the parameter space for fulfilling
the expectations is understood

the observation of the Z’ or S in the allowed
region

34



Experimental constraints in the scalar sector

from direct searches and My,

[Zoltan Péli and ZT, arXiv: 2204.07100]

- My = —15 MeV

A(M,) = 0.2

= M > M,:
v, = 0: scalar sector decouples
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Experimental constraints in the scalar sector
from direct searches and My,

= M > M,: [Zoltan Péli and ZT, arXiv: 2204.07100]
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Experimental constraints in the gauge sector
from direct searches and EWPOs

Gauge sector parameters: g,, g, ( =1g, = €g,), tanf, z,, 7y

Not all independent: z, appears only in the combination
Z¢ =3 7’]/2

n :
z,——, sowe define & =
¢ N Zy
(in B-L model Z = 0)

exclusion bounds depend on either
(Slne ,M i z> or (gZZN’M A z>
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Experimental constraints in the gauge sector
from direct searches and EWPOs

Gauge sector parameters: g,, g,.( = €g,), tanpf, z,, zy
Not all independent: exclusion bounds depend on either

(Siné’z, M, , §Z°) or (gZzN, M, , Z)

Most stringent limits emerge in direct searches

for small masses (£ = M, /M, < 1): from NA64 search for
dark photon

for large masses (¢ > 1): from LHC search for Z’

difficult to distinguish from Z for intermediate masses —
best limits from LEP (not discussed here)

29



Experimental constraints in the gauge sector
from direct searches and EWPOs: M7 < Mz region
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[Zoltan Péli and ZT, 2402.14786}40
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Experimental constraints in the gauge sector
from direct searches and EWPOs: SWSM region

0% 10t w00 1t 10 107 107! 10° 10" 10°

[Zoltan Péli and ZT, 2402.14786]a1
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Conclusions:
see the expected consequences

Does not fit:

Dark matter and energy
Baryon asymmetry

'l Neutrino masses )

Hidden new particles:

Puzzles in the scalar sector:
Lagrangian and its parameters
1| Yukawacouplings

Connection to inflation
Vacuum stablllty (4 too small)

Naturalness (z is dimensional)

“ havy |
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Conclusions:
see the expected consequences

and
in the scalar sector we find non-empty

parameter space for M, > M,
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Conclusions:
see the expected consequences

and
in the scalar sector we find non-empty

parameter space for M, > M,

contributions to EWPOs (e.g. My, lepton g-2)
are negligible in the superweak region and a
systematic exploration of the parameter space

IS ongoing
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Coming soon:

arXiv:2409.07180



https://arxiv.org/abs/2409.07180

| am willing to give a seminar at your institute if
you would like to learn more







Status of the muon anomalous magnetic

moment

We are certain that there is new physics beyond the SM

“Final word"” on a, will tell how BSM should affect the muon g-2
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After SSB neutrino mass terms appear

- s’ +io, — - h' — io
g 208 YN Vi ¢V_YVV + h.c.
P R o
w (Y
My=—Yun Mp=—7=Y,

e Y

: . % 0; M£E
In flavour basis the full 6x6 mass matrix reads M’ = ( : D)

Mp My

v and vz have the same g-numbers, can mix, leading to type-|
see-saw

Dirac and Majorana mass terms appear already at tree level by
SSB (not generated radiatively)

Quantum corrections to active neutrinos are not dangerous
[lwamoto et al, arXiv:2104.14571]
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Dark matter candidate

49



Cosmological constraints on the freeze-out
scenario of dark matter production in the SWSM

1071
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Experimental constraints

Anomalous magnetic moment of electron and muon
Z' couples to leptons modifying the magnetic moment

Constraints on (g — 2) translate to upper bounds on the coupling g.(M,)
NA64 search for missing energy events

Strict upper bounds on g (M) for any U(1) extension (dark photons)
Supernova constraints based on SN1987A
Constraints are based on comparing observed and calculated neutrino
fluxes
Big Bang Nucleosynthesis provides constraints on new particles
New particles should have negligible effects during BBN
Meson production can be dangerous close to BBN
Further constraints are due to CMB, solar cooling, beam dump
experiments etc.
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Prerequisite:
Phase-transitions in the SWSM

U(1), is broken earlier than SU(2) xU(1)y

A'>0 A <0
1200 - 1200 -
1000 - 1000 -
>
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O 800 - 800 -
S) — w(T)
S ] i
S 600 600 v(T)
=
<
& - 400 A
~
200 ‘\ 200 \
o4 | 04 |
500 1000 1500 500 1000 1500 2000 2500
T[GeV] T[GeV]

M =200GeV, M, =150GeV, w=>5v, |A]|=00394 .
[Seller, Szép, ZT, arXiv:2301.07961]
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Prerequisite:
phase-transition temperatures in the SWSM

U(1), is broken earlier than SU(2) xU(1)y
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My, = 1+ |1-

Prediction of My in the SWSM

Can be determined from the decay width of the muon:

( \
5 cos” 0,M3+sin* §,M>, 4na / (ﬁGF ) 1

" 2

\ M | e (ar+ S

\ J

Valid in MS

0, is the Z — Z' mixing angle

Arg, collects the SM quantum corrections (known completely at two
loops and partially at three loops)

Arl%& collects the formally SM quantum corrections but with BSM loops

(2) :
Arga, collects the BSM corrections to My and 0,

[Zoltan Péli and ZT, arXiv: 2305.11931]
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Prediction of My in the SWSM

Case (i) full one-loop corrections

Case

' 1 | 1 ' 1

(i1) corrections without A

40——————

80.390=—
80.3851
80.380F

80.375F

W [GGV]

s 80.370F
80.365F

80.360

80.3551 .

M)

(2)
"BSM

35t

tan 5 = 10.

QO Case (i)

O Case (ii) 4
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