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To the memory of Stefano

2

…I was a fortunate participant of his seminal 
contribution to the theory of QCD quantum corrections
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Abstract

We present a new general algorithm for calculating arbitrary jet cross sections
in arbitrary scattering processes to next-to-leading accuracy in perturbative
QCD. The algorithm is based on the subtraction method. The key ingredi-
ents are new factorization formulae, called dipole formulae, which implement
in a Lorentz covariant way both the usual soft and collinear approximations,
smoothly interpolating the two. The corresponding dipole phase space obeys
exact factorization, so that the dipole contributions to the cross section can be
exactly integrated analytically over the whole of phase space. We obtain explicit
analytic results for any jet observable in any scattering or fragmentation process
in lepton, lepton-hadron or hadron-hadron collisions. All the analytical formu-
lae necessary to construct a numerical program for next-to-leading order QCD
calculations are provided. The algorithm is straightforwardly implementable in
general purpose Monte Carlo programs.

CERN-TH/96-29
May 1996

∗Research supported in part by EEC Programme Human Capital and Mobility, Network Physics at
High Energy Colliders, contract CHRX-CT93-0357 (DG 12 COMA).
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The Dipole Formalism for Next-to-Leading Order

QCD Calculations with Massive Partons
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Abstract

The dipole subtraction method for calculating next-to-leading order corrections
in QCD was originally only formulated for massless partons. In this paper
we extend its definition to include massive partons, namely quarks, squarks
and gluinos. We pay particular attention to the quasi-collinear region, which
gives rise to terms that are enhanced by logarithms of the parton masses, M .
By ensuring that our subtraction cross section matches the exact real cross
section in all quasi-collinear regions we achieve uniform convergence both for
hard scales Q ∼ M and Q " M . Moreover, taking the masses to zero, we
exactly reproduce the previously-calculated massless results. We give all the
analytical formulae necessary to construct a numerical program to evaluate the
next-to-leading order QCD corrections to arbitrary observables in an arbitrary
process.

December 2001
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†Heisenberg fellow of the Deutsche Forschungsgemeinschaft DFG.
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To the memory of Stefano

3

had exceptional insight of QFT
had outstanding judgment of researchers qualities
was “a true gentleman”         



OUTLINE

1. Motivation: status of particle physics 
2. Superweak U(1)z extension of SM (SWSM) 
3. Vacuum stability and scalar sector constraints 
4. Gauge sector constraints

4



Status of particle physics:  
energy frontier

5

Colliders: SM describes final states of particle 
collisions precisely                                      [talk by A. Cappati] 

stairway         32 channels, 2 or 3 energies                  

https://agenda.infn.it/event/35067/contributions/241112/attachments/124754/183719/240910_HP2_Cappati.pdf


Status of particle physics:  
energy frontier

5

Colliders: SM describes final states of particle 
collisions precisely                                      [talk by A. Cappati] 

stairway         32 channels, 2 or 3 energies                  

… and no sign of new physics at the TeV scale

https://agenda.infn.it/event/35067/contributions/241112/attachments/124754/183719/240910_HP2_Cappati.pdf
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• Dark matter and energy 
• Baryon asymmetry
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What do we know about the physics 
beyond the standard model?

10

Does not fit: 
• Neutrino masses 
• Dark matter and energy 
• Baryon asymmetry

Anomalies: 
• Muon anomalous magnetic moment 
• 2-3σ excesses at LHC experiments 
• X17 and X38 anomalies 
• CDF II result for MW

Hidden new particles: 
• Too heavy 
• Interact too weakly

Puzzles in the scalar sector: 
• Lagrangian and its parameters 
• Yukawa couplings 
• Connection to inflation 
• Vacuum stability (λ too small) 
• Naturalness (µ is dimensional)

Not addressed in this talk,  
but I can share my views 

during discussion 
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Established observations require physics beyond 
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but do not suggest rich BSM physics



Phenomenological approach to new physics
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Can we explain established observations,                      
but not more,                                                                 

by the same (simple) model?

Established observations require physics beyond 
SM, 

but do not suggest rich BSM physics



Extension of SM: three alternatives with  
different strength and weaknesses

13

Effective field theory, such as SMEFT: general but highly 
complex (2499 dim 6 operators), focuses on new physics at 
high scales 

Simplified models, such as dark photon, extended scalar 
sector or right-handed neutrinos: ”easily accessible” 
phenomenology, but focus on specific aspect of new physics, 
so cannot explain all BSM phenomena 

UV complete extension with potential of explaining BSM 
phenomena within a single model such as SuperWeak 
extension of the Standard Model: SWSM
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Particle content of SWSM 
(take-home picture) 
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Superweak extension of SM 
(SWSM)

17

 Symmetry of the Lagrangian: local 
G=GSM×U(1)z with GSM=SU(3)c×SU(2)L×U(1)Y

renormalizable gauge theory, including all dim 4 
operators allowed by G

[ZT, 1812.11189]

https://arxiv.org/pdf/1812.11189.pdf


Superweak extension of SM 
(SWSM)

17

 Symmetry of the Lagrangian: local 
G=GSM×U(1)z with GSM=SU(3)c×SU(2)L×U(1)Y

renormalizable gauge theory, including all dim 4 
operators allowed by G

z-charges fixed by requirement of

gauge and gravity anomaly cancellation and
gauge invariant Yukawa terms for neutrino mass 
generation

[ZT, 1812.11189]

https://arxiv.org/pdf/1812.11189.pdf


Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫R are sterile under the GSM group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)c SU(2)L yj zj zj rj = zj/z� � yj
UL, DL 3 2 1

6 Z1
1
6 0

UR 3 1 2
3 Z2

7
6

1
2

DR 3 1 �
1
3 2Z1 � Z2 �

5
6 �

1
2

⌫L, `L 1 2 �
1
2 �3Z1 �

1
2 0

⌫R 1 1 0 Z2 � 4Z1
1
2

1
2

`R 1 1 �1 �2Z1 � Z2 �
3
2 �

1
2

� 1 2 1
2 z� 1 1

2

� 1 1 0 z� �1 �1

fields introduced in the covariant derivative transform as

T · W µ(x)
G

�! T · W 0µ(x) = U(x)T · W µ(x) U †(x) +
i

gL
[@µ U(x)] U †(x)

Bµ G
�! B0µ(x) = Bµ(x) �

1

gY
@µ�(x)

Zµ G
�! Z 0µ(x) = Zµ(x) �

1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �
1

4
Bµ⌫B

µ⌫
�

1

4
Zµ⌫Z

µ⌫
�

1

4
W µ⌫ · W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @[µB⌫], Zµ⌫ = @[µZ⌫] and W µ⌫ = @[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫

G
�!

U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�
✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0
µ

Z 0
µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)

4

General U(1)z anomaly free charge assignment

18traditional              new
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General U(1)z anomaly free charge assignment
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field SU(3)c SU(2)L y z
QL 3 2 1

6
1
3(z� � zN)

UR 3 1 2
3

1
3(4z� � zN)

DR 3 1 �1
3 zd = �1

3(2z� + zN)

`L 1 2 �1
2 z` = zN � z�

NR 1 1 0 zN

eR 1 1 �1 ze = zN � 2z�

� 1 2 1
2 z�

� 1 1 0 z� := �1

1

in the SWSM  from Majorana mass termzN = 1/2



U(1) covariant derivative is modified
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Minimal extension of  the SM
� SM gauge group + ܷ ͳ ௭

� Covariant derivative is modified:

�ఓ
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z charges are defined at  η(μ0) = 0

 is proportional to the kinetic mixing parameter in 
 but depends on the renormalization scale

η
ϵF′ μνFμν



Standard Φ complex SU(2)L doublet and new   
χ complex singlet to make Z’ massive

with scalar potential

Scalars in the SWSM
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =

✓
�
+

�
0

◆
=

1
p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ

�]⇤D(�)µ
�+ [D(�)

µ
�]⇤D(�)µ

�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D
(s)
µ

= @µ + igL T ·W µ + igY ysBµ + i(g0
Z
zs � g

0
Y
ys)Z

0
µ

(2.12)

and the potential energy

V (�,�) = µ
2
�
|�|

2 + µ
2
�
|�|

2 +
�
|�|

2
, |�|

2
�✓��

�

2
�

2 ��

◆✓
|�|

2

|�|
2

◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|
2
|�|

2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �
2
> 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, � = w =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, (2.15)

provided the conditions

�µ
2
�
> 2��µ

2
�

and �µ
2
�
> 2��µ

2
�

(2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ

2
�
and µ

2
�
are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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Y
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0
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|�|2 � µ2

�
|�|2 +

�
|�|2, |�|2

�✓��
�

2
�

2 ��

◆✓
|�|2

|�|2

◆
, (2.15)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length

p
|�+|2 + |�0|2. The value

of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�± =
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�� � ��)

1

◆
. (2.17)

As �+ > 0 and �� < 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p

2

s
2��µ2

�
� �µ2

�

4���� � �2
, w =

p

2

s
2��µ2

�
� �µ2

�

4���� � �2
. (2.19)

5
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length

p
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Using the VEVs, we can express the quadratic couplings as
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The fields h0 and s0 are two real scalars and �� and �� are the corresponding Goldstone

bosons that are weak eigenstates. We shall denote the mass eigenstates with h, s and �Z , �Z0 .

These different eigenstates are related by the rotations
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where ✓S and ✓G are the scalar and Goldstone mixing angles that can be determined by the

diagonalization of the mass matrix of the real scalars and that of the neutral Goldstone bosons.
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where h and s are mass eigenstates:

M2
h/s = λϕv2 + λχw2 ±

λϕv2 − λχw2

cos 2θS

(

h′

s′

)

=

(

cS sS

−sS cS

)(

h

s

)
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where h and s are mass eigenstates:

M2
h/s = λϕv2 + λχw2 ±

λϕv2 − λχw2

cos 2θS

with  and  VEVs and  scalar mixing angle, implicitly:v w θS

tan(2θS) = λvw
λχw2 − λϕv2

(

h′

s′

)

=

(

cS sS

−sS cS

)(

h

s

)
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where  is the weak mixing angle &  is the  mixing, implicitly: 
, with  and  effective couplings, 

functions of the Lagrangian couplings

θW θZ Z − Z′ 

tan(2θZ) = − 2κ/(1 − κ2 − τ2) κ τ

relatively simple, they can explain a multiple of BSM phenomena [10–17].

The specific example we have in mind is the superweak extension of the standard model

(SWSM) [18], although di↵erent charge assignments are also possible, and our formulae do

not depend on the choice explicitly. The SWSM contains also three generations of SM sterile

right handed neutrinos that are clearly necessary for the cancellation of gauge and gravity

anomalies and to explain the origin of neutrino masses. We do not include their e↵ect here

to simplify the parameter dependence in the numerical analysis, but it can be seamlessly

integrated into our complete one-loop prediction.

The Lagrangian of the scalar fields contains a potential energy with quadratic and quartic

terms such that non-vanishing vacuum expectation value (VEV) v of the Brout-Englert-

Higgs (BEH) field breaks the usual SU(2)L⌦U(1)Y symmetry, while the VEV w of the �

breaks the U(1)z symmetry via spontaneous symmetry breaking (SSB).

In addition to the appearance of the massive scalar bosons, the SSB generates mass terms

also for the gauge bosons

L
VB
M =

v
2

2


g
2
L

2
W

+
µ
W

�µ +
g
2
z

2
tan2

� B
0
µ
B

0µ

+
1

4

⇣
gyBµ +

�
gz � gyz

�
B

0
µ
� gLW

3
µ

⌘2
�
,

(1)

where tan � = w/v, gL, gy and gz are the SU(2)L, U(1)Y and U(1)z couplings, while the

mixing coupling gyz parametrizes the kinetic mixing between the Bµ and B
0
µ
fields [19]. The

fields W±
µ

=
�
W

1
µ
± iW 2

µ

�
/
p
2 are the charged, while the neutral gauge eigenstates are Bµ,

B
0
µ
(belonging to the U(1)Y and U(1)z symmetries) and W

3
µ
. The latter fields are related to

the neutral mass eigenstates Aµ, Zµ and Z
0
µ
via two rotations

0

BBB@

Bµ

W
3
µ

B
0
µ

1

CCCA
=

0

BBB@

cW �sW 0

sW cW 0

0 0 1

1

CCCA

0

BBB@

1 0 0

0 cZ �sZ

0 sZ cZ

1

CCCA

0

BBB@

Aµ

Zµ

Z
0
µ

1

CCCA
(2)

where we introduced the abbreviations cX = cos ✓X and sX = sin ✓X for mixing angles. The

Weinberg angle ✓W is defined as

sW =
gy

gZ0
, with the abbreviation g

2
Z0 = g

2
y
+ g

2
L , (3)

so e = gLsW where gL is the SU(2) gauge coupling and e is the elementary charge. The

3

cX = cos θX
sX = sin θX

[Zoltán Péli and ZT, arXiv: 2305.11931]

https://link.aps.org/doi/10.1103/PhysRevD.108.L031704
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where we introduced the abbreviations cX = cos ✓X and sX = sin ✓X for mixing angles. The

Weinberg angle ✓W is defined as

sW =
gy
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[Zoltán Péli and ZT, arXiv: 2305.11931]

https://link.aps.org/doi/10.1103/PhysRevD.108.L031704
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• 2 in the gauge sector: 
{  and }   or  {  and }  or  {  and } gz η κ τ sZ = sin θZ ξ = MZ′ 

/MZ
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• 2 in the gauge sector: 
{  and }   or  {  and }  or  {  and } gz η κ τ sZ = sin θZ ξ = MZ′ 

/MZ

related by             −sZcZ
1−ξ2

ρ
= 2

g2
Y + g2L

gz(zϕ− η
2 )

    where   is the rho parameter,ρ = M2
W

c2
WM2

Z
= 1 + (ξ2−1)s2

Z

 (only BSM physics)ρexp = 1.00038 ± 0.00020
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• 2 in the gauge sector: 
{  and }   or  {  and }  or  {  and } gz η κ τ sZ = sin θZ ξ = MZ′ 

/MZ

related by             −sZcZ
1−ξ2

ρ
= 2

g2
Y + g2L

gz(zϕ− η
2 )

    where   is the rho parameter,ρ = M2
W

c2
WM2

Z
= 1 + (ξ2−1)s2

Z

 (only BSM physics)ρexp = 1.00038 ± 0.00020
• 3 in the scalar sector: 

{ ,  and }  or  { ,  and }  or  { ,  and }μ2
χ λχ λ w λχ λ MS θS λ
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
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the vacuum and be related to the accelerated expansion now and 
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[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

SWSM has the potential of explaining all known results beyond the SM

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427
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space where all these promises are fulfilled? 
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Is there a non-empty region of the parameter 
space where all these promises are fulfilled? 

Can we predict any new phenomenon 
observable by present or future experiments?                                                                                         

Present focus:



Important test

34

the observation of  the Z’ or S in the allowed  
region

Once the allowed region of the parameter space for fulfilling 
the expectations is understood



Experimental constraints in the scalar sector 
from direct searches and MW
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:                                          [Zoltán Péli and ZT, arXiv: 2204.07100]Ms > Mh
: scalar sector decouplesyx = 0

https://doi.org/10.1103/PhysRevD.106.055045
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:                                          [Zoltán Péli and ZT, arXiv: 2204.07100]Ms > Mh

https://doi.org/10.1103/PhysRevD.106.055045
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Experimental constraints in the gauge sector 
from direct searches and EWPOs

38

Gauge sector parameters:  
Not all independent:  appears only in the combination   

,  so we define   

(in B-L model ) 
exclusion bounds depend on either 

 or  

gz , gyz( = ηgz = ϵgy) , tan β , zϕ , zN
zϕ

zϕ− η
2 # =

zϕ − η/2
zN

# = 0

(sin θZ , MZ′ 
, #) (gzzN , MZ′ 

, #)
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Gauge sector parameters:  
Not all independent: exclusion bounds depend on either 

 or  

Most stringent limits emerge in direct searches 
for small masses ( ): from NA64 search for 
dark photon 
for large masses ( ): from LHC search for Z’ 
difficult to distinguish from Z for intermediate masses — 
best limits from LEP (not discussed here) 

gz , gyz( = ϵgy) , tan β , zϕ , zN

(sin θZ , MZ′ 
, #) (gzzN , MZ′ 

, #)

ξ = MZ′ 
/MZ ≪ 1

ξ ≫ 1



∝
| #

| ϵ

Experimental constraints in the gauge sector 
from direct searches and EWPOs: MZ’ < MZ region

40

 from 
   

                                                                                   BaBar 

                                                         NA64

sin θZ < 4.5 ⋅ 10−3

ρexp = 1.00038 ± 0.00020

 [Zoltán Péli and ZT, 2402.14786]
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# =
zϕ − 1

2
gyz

gz

zN

≪ MZ

# = 0.01

# = 0.1

# = 1

# = 10

https://arxiv.org/pdf/2402.14786.pdf


Experimental constraints in the gauge sector 
from direct searches and EWPOs: SWSM region

41 [Zoltán Péli and ZT, 2402.14786]

FASER

https://arxiv.org/pdf/2402.14786.pdf


Conclusions:  
see the expected consequences
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Does not fit: 
• Neutrino masses 
• Dark matter and energy 
• Baryon asymmetry

Anomalies: 
• Muon anomalous magnetic moment 
• 2-3σ excesses at LHC experiments 
• X17 and X38 anomalies 
• CDF II result for MW

Hidden new particles: 
• Too heavy 
• Interact too weakly

Puzzles in the scalar sector: 
• Lagrangian and its parameters 
• Yukawa couplings 
• Connection to inflation 
• Vacuum stability (λ too small) 
• Naturalness (µ is dimensional)



Conclusions:  
see the expected consequences
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and 
in the scalar sector we find non-empty 
parameter space for  Ms > Mh



Conclusions:  
see the expected consequences
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and 
in the scalar sector we find non-empty 
parameter space for  Ms > Mh
contributions to EWPOs (e.g. , lepton g-2) 
are negligible in the superweak region and a 
systematic exploration of the parameter space 
is ongoing

MW



Coming soon:

Leptogenesis in the SWSM

arXiv:2409.07180 

https://arxiv.org/abs/2409.07180


the end

I am willing to give a seminar at your institute if 
you would like to learn more



Appendix



HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 20 / 30

Status of the muon anomalous magnetic 
moment

47

We are certain that there is new physics beyond the SM 
“Final word” on  will tell how BSM should affect the muon g-2aμ

new physics

[BMW compilation]



After SSB neutrino mass terms appear

48

• In flavour basis the full 6×6 mass matrix reads

• νL and νR have the same q-numbers, can mix, leading to type-I 
see-saw

• Dirac and Majorana mass terms appear already at tree level by 
SSB (not generated radiatively)

• Quantum corrections to active neutrinos are not dangerous 
[Iwamoto et al, arXiv:2104.14571]
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https://arxiv.org/abs/2104.14571


Dark matter candidate

49



Cosmological constraints on the freeze-out 
scenario of dark matter production in the SWSM

52



Experimental constraints

51

Anomalous magnetic moment of electron and muon 
Z’ couples to leptons modifying the magnetic moment 
Constraints on  translate to upper bounds on the coupling  

NA64 search for missing energy events 
Strict upper bounds on  for any U(1) extension (dark photons) 

Supernova constraints based on SN1987A 
Constraints are based on comparing observed and calculated neutrino 
fluxes 

Big Bang Nucleosynthesis provides constraints on new particles 
New particles should have negligible effects during BBN 
Meson production can be dangerous close to BBN 

Further constraints are due to CMB, solar cooling, beam dump 
experiments etc.

(g − 2) gz(MZ′ )

gz(MZ′ )



Prerequisite:  
Phase-transitions in the SWSM

53
[Seller, Szép, ZT, arXiv:2301.07961]

U(1)z is broken earlier than SU(2)LxU(1)Y

                                           MS = 200 GeV, MN = 150 GeV, w = 5v , |λ | = 0.0394

https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048


Prerequisite:  
phase-transition temperatures in the SWSM

54
[Seller, Szép, ZT, arXiv:2301.07961]

U(1)z is broken earlier than SU(2)LxU(1)Y

 w/v  w/v

https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048


Prediction of MW in the SWSM

56

Can be determined from the decay width of the muon: 

M2
W = cos2 θZM2

Z+sin2 θZM2
Z′ 

2 1 + 1 −
4πα/( 2GF)

cos2 θZM2
Z+sin2 θZM2

Z′ 

1
1 − ΔrSM−(Δr(1)

BSM + Δr(2)
BSM)

Valid in MS
 is the  mixing angleθZ Z − Z′ 

 collects the SM quantum corrections (known completely at two 
loops and partially at three loops)
ΔrSM

 collects the formally SM quantum corrections but with BSM loopsΔr(1)
BSM

 collects the BSM corrections to  and Δr(2)
BSM MZ′ θZ

[Zoltán Péli and ZT, arXiv: 2305.11931]

https://link.aps.org/doi/10.1103/PhysRevD.108.L031704


Prediction of MW in the SWSM

58

Case (i) full one-loop corrections 
Case (ii) corrections without   Δr(2)

BSM

MW(µ)

|Mexp.
W − MW | < 2σ


