Semi-Inclusive DIS at NNLO in QCD

Sven-Olaf Moch

Universität Hamburg

European Research Council Established by the European Commission

High Precision for Hard Processes (HP2 2024)

Torino, Sep 12, 2024

Sven-Olaf Moch

Semi-Inclusive DIS at NNLO in QCD - p.1

This talk is based on:

NNLO QCD corrections to polarized semi-inclusive DIS
 S. Goyal, R.N. Lee, S. M., V. Pathak, N. Rana and V. Ravindran

arXiv:2404.09959

 Next-to-Next-to-Leading Order QCD Corrections to Semi-Inclusive Deep-Inelastic Scattering
 S. Goyal, S. M., V. Pathak, N. Rana and V. Ravindran

arXiv:2312.17711

Related work:

- Polarized semi-inclusive deep-inelastic scattering at NNLO in QCD
 L. Bonino, T. Gehrmann, M. Löchner, K. Schönwald and G. Stagnitto arXiv:2404.08597
- Semi-Inclusive Deep-Inelastic Scattering at Next-to-Next-to-Leading Order in QCD
 L. Bonino, T. Gehrmann, and G. Stagnitto
 arXiv:2401.16281

Semi-inclusive deep-inelastic scattering

- SIDIS
 - production of identified hadrons in DIS
 - multiple hadron species: π , K, D, p, n, Λ , . .
 - probe of hadron structure in broad kinematic range

• QCD factorization at scale μ^2

 $\sigma_{\gamma H \to H'} = \sum_{ij} f_{i/H}(\mu^2) \otimes \hat{\sigma}_{\gamma i \to j} \left(\alpha_s(\mu^2), Q^2, \mu^2 \right) \otimes D_{H'/j}(\mu^2)$

- parton distribution function (PDF) $f_{i/H}(x, \mu^2)$
- parton-to-hadron fragmentation function (FF) $D_{H'/j}(z, \mu^2)$
- Perturbative QCD
 - hard scattering cross section
 *σ*_{γi→j} (x, z, α_s(μ²), Q², μ²) computed to NNLO

Once upon a time ...

• HERA: deep structure of proton at highest Q^2 and smallest x

Bright future for precision hadron physics

• Electron-Ion Collider

A machine that will unlock the secrets of the strongest force in Nature

SIDIS process

- $l(k_l) + H(P) \to l(k'_l) + H'(P_H) + X$
 - space-like momentum transfer $q = k_l k'_l$ with $Q^2 = -q^2$
 - Bjorken variable $x = \frac{Q^2}{2P \cdot q}$
 - inelasticity $y = \frac{P \cdot q}{P \cdot k_l}$
 - fragmenting hadron variable $z = \frac{P \cdot P_H}{P \cdot q}$

- Cross sections parametrized through structure functions
 - unpolarized SIDIS $\sigma = \frac{1}{4} \sum_{s_l, S, s'_l, S_H} \sigma^{s'_l, S_H}_{s_l, S}$

$$\frac{d^{3}\sigma}{dxdydz} = \frac{4\pi\alpha_{e}^{2}}{Q^{2}} \left[yF_{1}(x,z,Q^{2}) + \frac{(1-y)}{y}F_{2}(x,z,Q^{2}) \right]$$

• polarized SIDIS $\Delta \sigma = \frac{1}{2} \sum_{s'_l, S_H} \left(\sigma^{s'_l, S_H}_{s_l = \frac{1}{2}, S = \frac{1}{2}} - \sigma^{s'_l, S_H}_{s_l = \frac{1}{2}, S = -\frac{1}{2}} \right)$

$$\frac{d^3\Delta\sigma}{dxdydz} = \frac{4\pi\alpha_e^2}{Q^2} (2-y)g_1(x,z,Q^2)$$

Semi-Inclusive DIS at NNLO in QCD – p.6

Structure functions in perturbative QCD

- QCD factorization for structure function F_2 (up to order $\mathcal{O}(1/Q^2)$) $x^{-1}F_2(x, z, Q^2) =$ $\sum_{ij} \int_x^1 \frac{dx'}{x'} \int_x^1 \frac{dz'}{z'} f_{i/H}(z', \mu^2) C_{2,ij}\left(\frac{x}{x'}, \frac{z}{z'}, \alpha_s(\mu^2), \frac{\mu^2}{Q^2}\right) D_{H'/j}(z', \mu^2)$
 - coefficient functions $C_{a,ij} = \alpha_s^n \left(c_{a,ij}^{(0)} + \alpha_s c_{a,ij}^{(1)} + \alpha_s^2 c_{a,ij}^{(2)} + \dots \right)$
- Analogous for $g_1(x, z, Q^2)$ with polarized PDFs $\Delta f_{i/H}(z', \mu^2)$ and coefficient functions $\Delta C_{1,ij}$

Parton evolution

$$\frac{d}{d\ln\mu^2} f_{i/H}(x,\mu^2) = \sum_{j} \left[P_{ij}(\alpha_s(\mu^2)) \otimes f_{j/H}(\mu^2) \right](x)$$

- Splitting functions $P_{ij} = \alpha_s P_{ij}^{(0)} + \alpha_s^2 P_{ij}^{(1)} + \alpha_s^3 P_{ij}^{(2)} + \alpha_s^4 P_{ij}^{(3)} + \dots$
 - space-like splitting functions for PDFs $f_{i/H}(x, \mu^2)$
 - <u>time-like</u> splitting functions for FFs $D_{H'/j}(z, \mu^2)$

Coefficient functions (1)

- Leading order
- Born process $q(\bar{q}) + \gamma^* \rightarrow q(\bar{q})$
- $\mathcal{C}_{2,qq}^{(0)}(x',z') = \delta(1-x') \,\delta(1-z')$

- Next-to-leading order
- Real and virtual processes $q(\bar{q}) + \gamma^* \rightarrow q(\bar{q}) + \text{one loop}$ $q(\bar{q}) + \gamma^* \rightarrow q(\bar{q}) + g$
 - $g + \gamma^* \rightarrow q + \bar{q}$

• $C_{a,ij}^{(1)}(x',z')$ known since long time Altarelli, Ellis, Martinelli, Pi '79; de Florian, Stratmann, Vogelsang '97

Coefficient functions (2)

- Squared (projected) matrix elements
 - Feynman diagram with **Qgraf** Nogueira '91
 - symbolic manipulation with Form

```
Vermaseren '00, Kuipers, Ueda, Vermaseren, Vollinga '12
```

 \sim

- UV and IR regularizazion in *D* dimensions
- phase space integrals with kinematical constraint
- Reverse Unitarity method (Cutkosky rule)
 - phase-space integrals mapped to loop integrals

$$(2\pi i)\delta(p^2) = \frac{1}{p^2 + i\epsilon} + \mathbf{CC}.$$

- Standard reduction with integration-by-parts to master integrals
- Phase-space master integrals computed through differential equations

Coefficient functions (3)

- Next-to-next-to-leading order
- Double-real, real-virtual and virtual processes
 - $\begin{array}{rcl} q(\bar{q}) + \gamma^{*} & \rightarrow & q(\bar{q}) + \text{two loops} \\ q(\bar{q}) + \gamma^{*} & \rightarrow & q(\bar{q}) + g + \text{one loop} \\ g + \gamma^{*} & \rightarrow & q + \bar{q} + \text{one loop} \\ q(\bar{q}) + \gamma^{*} & \rightarrow & q(\bar{q}) + g + g \\ g + \gamma^{*} & \rightarrow & g + q + \bar{q} \\ q(\bar{q}) + \gamma^{*} & \rightarrow & q(\bar{q}) + q' + \bar{q}' \\ q(\bar{q}) + \gamma^{*} & \rightarrow & q(\bar{q}) + q + \bar{q} \end{array}$

VV contributions: massless two-loop form factor

Hamberg, van Neerven, Matsuura '88

- RV contributions with box integrals $\sim {}_2F_1(-\epsilon,-\epsilon,1-\epsilon,f(x',z'))$
 - care needed for analyticity in the physical domain of x^\prime, z^\prime

Coefficient functions (4)

- Double-real emissions
- RR requires three body phase space integrals
- 21 RR master integrals, functions of x', z'
 - differential equations in x', z'
 - boundary conditions by integration over z' from inclusive RR integrals (DIS coefficient functions)

• RR phase-space integrals in $D = 4 - 2\varepsilon$

$$(1-x')^{-1-a\varepsilon}(1-z')^{-1-b\varepsilon}f(x',z',\varepsilon)$$

- regular functions $f(x', z', \varepsilon)$ in threshold limits $x' \to 1$ and/or $z' \to 1$
- IR divergences can be isolated (w = x', z') with 'plus'-distributions

$$(1-w)^{-1+n\varepsilon} = \frac{1}{n\varepsilon}\delta(1-w) + \sum_{k=0}^{\infty}\frac{(n\varepsilon)^k}{k!} \left[\frac{\log^k(1-w)}{(1-w)}\right]_{-1}$$

Coefficient functions (5)

Threshold resummation

- Coefficient functions $\mathcal{C}_{a,ij}^{(n)}(x',z') \sim \alpha_s^n \left[\frac{\log^k(1-w)}{(1-w)}\right]_+$
 - threshold logarithms in w=x',z' and $k\leq 2n-1$
- Prediction of threshold enhanced logarithms from resummation for SIDIS in Mellin variables $(x' \rightarrow)N$ and $(z' \rightarrow)M$
 - bears much resemblance with Drell-Yan rapidity distribution $z = Q^2/\hat{s} \to N$ and $\sqrt{z} \exp(\pm y) \to M$
- Useful approach to derive approximations at higher orders

Abele, de Florian, Vogelsang '21; '22

- approximate NNLO and N³LO QCD corrections
- threshold resummation at N³LL accuracy

Check

Full agreement of exact computation with NNLO SV terms

Results

• Unpolarized non-singlet coefficient function $C_{2,aa}^{(2)}$

- *K*-factor as function of *z* for EIC with $\sqrt{s} = 140 \text{ GeV}$
 - SV terms at NLO (blue dashed) and NNLO (red dashed)
 - full NLO (blue solid) and (non-singlet, leading color) NNLO (red solid)
- Uncertainty from renormalization scale variation $\mu_R^2 \in [Q^2/2, 2Q^2]$

Pion multiplicity

Polarized SIDIS

- Polarized coefficient functions
 - appearance of γ_5 in vertex and spin projections
 - use Larin scheme $\gamma_5 \gamma_\mu = \frac{i}{6} \epsilon_{\mu\nu\rho\sigma} \gamma^\nu \gamma^\rho \gamma^\sigma$ Larin '93
- Structure function in Larin scheme

$$g_1(x,z) = \sum_{i,j} \Delta f_i^{\ L}(\mu_F^2) \otimes_{x'} \Delta \mathcal{C}_{1,ij}^{\ L}(\mu_F^2) \otimes_{z'} D_j(\mu_F^2)$$

Scheme transformation (finite) from Larin to MS scheme

PDFs

$$\Delta f_k(\mu_F^2) = Z_{ki}(\mu_F^2) \otimes \Delta f_i^{\ L}(\mu_F^2)$$

coefficient functions

$$\Delta \mathcal{C}_{1,ij}(\mu_F^2) = (Z^{-1}(\mu_F^2))_{ik} \otimes \Delta \mathcal{C}_{1,kj}{}^{\boldsymbol{L}}(\mu_F^2)$$

• Z_{ki} known to NNLO

Matiounine, Smith, van Neerven '98

Polarized structure function (1)

- Contributions from all partonic channels to $g_1^{\pi^+}(x)$ for COMPASS energy $\sqrt{s} = 17.4 \text{ GeV}$
 - polarized PDFs from MAPPDF10 Bertone, Chiefa, Nocera '24
 - FFs from NNFF10 Bertone, Carrazza, Hartland, Nocera, Rojo '17

Polarized structure function (2)

- Scale dependence of $g_1^{\pi^+}(x)$ at various values of Q^2 in 7-point variation of μ_R and μ_F
 - polarized PDFs from MAPPDF10 Bertone, Chiefa, Nocera '24
 - FFs from MAPFF10 Abdul Khalek, Bertone, Khoudli, Nocera '22

Sven-Olaf Moch

Spin asymmetry

- Ratio of $g_1^{\pi^+}(x)/F_1^{\pi^+}(x)$ for COMPASS energy $\sqrt{s} = 17.4$ GeV with 7-point scale variation
 - polarized PDFs from MAPPDF10 Bertone, Chiefa, Nocera '24
 - unpolarized PDFs from NNPDF3.1 NNPDF '17
 - FFs from MAPFF10 Abdul Khalek, Bertone, Khoudli, Nocera '22

Sven-Olaf Moch

Summary

- Deep-inelastic scattering
 - Upcoming EIC will probe perturbative QCD in large range of kinematics
 - State-of-the-art detector can aim at experimental precision of $\lesssim 1\%$
- Polarized beams at EIC offer vast opportunities
 - new interest in large class of spin dependent observables
- Precision studies of hadron structure requires higher orders in perturbative QCD
 - theoretical predictions at NNLO in QCD nowadays standard
- Furhter improvements for SIDIS
 - Joint resummation beyond N³LL accuracy
 - N³LO QCD corrections within reach of current technologies