Recent experimental precision measurements at CMS

Alessandra Cappati

LLR, École Polytechnique, CNRS/IN2P3

On behalf of CMS Collaborations

HP2 2024 10 Sept<mark>ember 2024</mark>

EuroTechPostdoc2 Programme

Motivation for precision measurements

CMS

Precision measurements \rightarrow pivotal role in **refining** the **SM**

Test self-consistency of the SM

- look for tensions in direct or indirect measurements
- deviations could arise from new physics
- \rightarrow contribute to shaping a more comprehensive model of the origin of matter and cosmology
- \rightarrow understanding features that affect the early universe and its eventual fate

(e.g. shape of the BEH vacuum potential and the EW vacuum stability)

Z and W cross-section

Z cross-section @13.6 TeV, $Z \rightarrow \mu\mu$ fundamental measurement and crucial validation for Run3 data

$$\begin{split} (\sigma_{\rm fid}\mathcal{B})_{\rm measured} &= (0.7635 \pm 0.0004({\rm stat}) \pm 0.0069({\rm syst}) \pm 0.0176({\rm lumi}))\,{\rm nb}, \\ (\sigma_{\rm fid}\mathcal{B})_{\rm predicted} &= (0.7666 \pm 0.0065({\rm PDF})^{+0.0021}_{-0.0045}({\rm scale}))\,{\rm nb}, \end{split}$$

Evolution of Z and W production cross-section (leptonic decays)

- \rightarrow comparison with N3LO in QCD predictions (with MSHT20aN3LO PDF set)
- \rightarrow precise (~2% precision) comparison between theory predictions and experimental measurements

CMS-PAS-SMP-22-017 5.04 fb⁻¹ (13.6 TeV) Multiboson production: WZ

W a WZ cross-section @13.6 TeV in leptonic final states \rightarrow very clean final state (85% S/B purity after selection) q W Ζ 34.7 fb⁻¹ (13.6 TeV) CMS Preliminarv **CMS** Preliminary MATRIX JHEP 2002 (2020) 087 Total WZ Cross Section (pb) 00 07 05 05 09 09 total sta Results in good agreement 5 TeV (0.302 fb⁻¹), PRL 127 (2021) 191801 NNLO OCD × NLO EWK Scale uncertainty 7 TeV (4.9 fb⁻¹), EPJC 77 (2017) 236 $\sigma_{total} (pp \rightarrow WZ) \pm (stat) \pm (syst) \pm (lumi) \pm (theo)$ with NNLO QCD x NLO EW 8 TeV (19.6 fb⁻¹), EPJC 77 (2017) 236 13 TeV (137 fb⁻¹), JHEP 07 (2022) 032 predictions (MATRIX): 13.6 TeV (34.7 fb⁻¹), CMS-PAS-SMP-24-005 $53.4\pm3.0\pm3.3\pm0.8\pm0.2~\text{pb}$ eee $54.7^{+1.2}_{-1.1}$ (scale) $54.8 \pm 2.6 \pm 2.3 \pm 0.8 \pm 0.2 \ \text{pb}$ eeu 52.9 ± 2.1 ± 1.4 ± 0.7 ± 0.1 pb uue 55.2 ± 1.2 (stat) ± 1.2 (syst) ± 0.8 (lumi) ± 0.1 (theo) 55.9 ± 1.9 ± 1.1 ± 0.8 ± 0.1 pb μμμ 10 $55.2 \pm 1.2 \pm 1.2 \pm 0.8 \pm 0.1$ pb pp NNLO QCD x NLO EWK (MATRIX) Inclusive 3.3% relative uncertainty (inclusive) pp NLO (MATRIX) \rightarrow competitive with Run2 UNLO to NNLO 1.0 90 40 50 60 70 80 100 12 6 8 10 14 CMS-PAS-SMP-24-005 \sqrt{s} (TeV) $\sigma_{total} (pp \rightarrow WZ) (pb)$

Fundamental EW parameter Important measurement to test the SM

Recent result @13 TeV, measured via $\mathbf{Z}/\gamma^* \rightarrow \mathbf{II}$

mixing angle: $\sin^2 \theta^{\ell}_{eff}$

- from forward-backward angular asymmetry A_{FR} (same as Run 1)
 - \rightarrow cancellation of detector acceptance and efficiencies syst. unc.
- fit A₄ coefficient while unfolding diff distributions
 → smaller theory and PDF unc., useful for future combination

Most precise measurement at hadron colliders, precision comparable to LEP

 $\sin^2 \theta_{\rm eff}^\ell = 0.23157 \pm 0.00010 ({\rm stat}) \pm 0.00015 ({\rm syst}) \pm 0.00009 ({\rm theo}) \pm 0.00027 ({\rm PDF}) \pm 0.00027 ({\rm PDF}) \pm 0.00009 ({\rm theo}) \pm 0.00027 ({\rm PDF}) \pm 0.00009 ({\rm theo}) \pm 0.0$

$$\sin^2\theta_{\rm eff}^{\ell} = k^{\ell} \left(1 - m_{\rm W}^2 / m_{\rm Z}^2\right)$$

$$A_{FB} = \sigma_F - \sigma_F / \sigma_F + \sigma_F$$
$$A_{FB} = \frac{3}{8} A_4$$

 $\gamma\gamma \rightarrow \tau\tau$ and τ 9-2

+ Observed $/ Z/\gamma^* \rightarrow \tau\tau$ $Z/\gamma^* \rightarrow ee/\mu\mu$

Uncertainty

Bkg. unc. — γγ→ττ ♦ Obs. – bkq.

5 6

Constraints on **a**_r from m_{vis} distribution

 \rightarrow 5.3 σ observed

 $\gamma \gamma \rightarrow \tau \tau$

CMS

1500

1000

500

100

50

0

2 3

Bkg.

Events

First **observation** of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions

138 fb⁻¹ (13 TeV)

8 9

Ntracks

Jet mis-ID

Events

Obs./Exp.

 $a_{\tau} = 0.0009^{+0.0016}_{-0.0015} \text{ (syst)}^{+0.0028}_{-0.0027} \text{ (stat)}$

300

250

200

150

100

50

1.5

0.5

 $\mu \tau_{\rm b}, N_{\rm tracks} = 0$

- Observed

 $\mathbf{Z}/\gamma^* \rightarrow \mu\mu$

 $\gamma\gamma \rightarrow \tau\tau$

100

CMS

138 fb⁻¹ (13 TeV)

 Z/γ^* (\rightarrow ττ) + VV

Jet mis-ID

Uncertainty

 $-SM a_{\tau} - a_{\tau} = 0.008$

500

m_{vis} (GeV)

150

 $\begin{array}{c} \textbf{OPAL} \\ ee \rightarrow Z \rightarrow \tau \tau \gamma \end{array}$ PLB 434 (1998) 188

$\begin{array}{c} \textbf{L3} \\ ee \rightarrow Z \rightarrow \tau \tau \gamma \end{array}$ PLB 434 (1998) 169

DELPHI $\gamma\gamma \rightarrow \tau\tau$ (γ from e) ÉPJC 35 (2004) 159

ATLAS $\gamma \gamma \rightarrow \tau \tau$ (γ from Pb) PRL 131 (2023) 151802

CMS $\gamma\gamma \rightarrow \tau\tau$ (γ from Pb) PRL 131 (2023) 151803

CMS $\rightarrow \tau \tau$ (γ from p) This result

— 68% CL — 95% CL SM -0.1-0.050.05 0 a_τ

Deep connection to both EW and QCD sectors

Large $m_t \rightarrow$ Yukawa coupling ~ unity \rightarrow key parameter for vacuum stability

Excellent setting to **test pQCD predictions** (cross-section, α_{s} ..)

Production and decay sensitive to new physics (anomalous couplings, CP violation, spin correlation..)

top quark pair production

CMS-TOP-20-006

tt cross-section @13 TeV, II+jets events

- \rightarrow complete set of differential results
 - production and decay observables
 - single, double, triple differential
 - particle and parton level (for comparison to pQCD computations)

 \rightarrow 1D distribution reasonably well described \rightarrow 2D/3D often not well described by any generator

Additional jets

tW production

Single-top +W cross-section @13.6 TeV, in e_{μ} channel

- sensitivity to V_{tb} and b-PDF
- tW @NLO interferes with tt
- large $t\overline{t}$ background \rightarrow ML to separate tW from $t\overline{t}$

auark mass

.

Direct measurements

Improvements to the measurement **over the past years**: better calibrations, alternative techniques, improved theoretical modelling

Indirect measurement, from cross-section $\rightarrow \sim 1\%$ precision

Direct measurement, from top quark decays

 \rightarrow better precision

Most precise result to date from ATLAS+CMS comb: $m_t=172.52 \pm 0.33 \text{ GeV}$

Projection for total uncertainty on m, for different techniques

Higgs boson

Over 10 years after the Higgs boson discovery

 \rightarrow Many new measurements possible, new channels accessible

 \rightarrow H properties studied with **precision**

- main production processes and decay channels established
- measurement more differential
 - search for decays to second generation
- search for HH

- H

H production cross-section

CMS

H fiducial cross-section **@13.6 TeV**, in 4I and $\gamma\gamma$ final states \rightarrow crucial validation for Run3 data and objects (e, μ , γ) performance

measurements still statistically dominated

Syst dominated by

 \rightarrow photon scale/resolution ($\gamma\gamma$)

 \rightarrow electron efficiency (4I)

Cross-section for production/decay mode

CMS

Signal strength: ratio of the measured cross-section and the SM expectation

Simplified Template Cross-Sections

More data available \rightarrow probe the Higgs kinematics in a more model independent way

STXS: categorize events in simplified kinematic regions \rightarrow maximize sensitivity to isolate BSM effects while reducing theory dependence

STXS Stage 1.2 : splitting based on number of jets and kinematic selections (p_{τ}^{H})

 $H \rightarrow \tau \tau$ channel great handle for **large jet**

multiplicity region

key to Higgs boson properties characterization (production and decay) \rightarrow test SM predictions for full spectra of variable of interest \rightarrow measured in fiducial phase space \rightarrow largely **model independent**

CMS 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) Full Run 2 results from CMS (fb) $\sigma_{\text{fid}} \left(\text{fb} \right)$ CMS Observed p-value(POWHEG): 0.84 10³ Observed - no regularization in different decay channels $d\sigma_{fid}/dD_{0-}^{dec}$ Systematic uncertainty gg→H (POWHEG) + XH $aa \rightarrow H (NNLOPS) + XH$ SM (POWHEG + JHUGen + Pvthia) XH = VBF + VH + ttH (POWHEG) AC (POWHEG + JHUGen f_=1 + Pythia) Consistent with SM, meas. 10^{2} (LHCHWG YR4, m, =125.38 GeV) still stat. limited 10 In $H \rightarrow ZZ^* \rightarrow 4I$ ME discriminants. sensitive to **HVV** anomalous Ratio to NNLOPS 2.5 Ratio to SM 1.5 2 couplings 1.5 $\rightarrow D_0^{\text{dec}}$ sensitive to possible 0.5 0.5 3 2 **CP-violation effects** ٦Ô 0.3 040.5 0.6 0.7 0.8 0.9 N_{iets} $D_{o}^{dec}(4e+4u)$ JHEP 08 (2023) 040 Phys. Rev. Lett. 128 (2022) 081805

Anomalous couplings

Measurement in decay channels with **good resolution**: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

In H→4I

CMS Preliminary

SM H width (4.1 MeV) \rightarrow inferred from off-shell/on-shell cross-section ratio in pp \rightarrow H \rightarrow ZZ (4l+2l2 ν)

 $\frac{\sigma_{offshell}}{\sigma} \propto \Gamma_H$ CMS Preliminary 138 fb⁻¹ (13 TeV) $\sigma_{onshell}$ Observed Expected **Off-shell** region ($m_{4l}^{reco} > 200 \text{ GeV}$) studied in 4l off-shell + on-shell 20 $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \ddot{Z}Z \rightarrow 2I2\nu$ 4l off-shell + on-shell + 2l2v off-shell -2 dln L combination with on-shell $H \rightarrow ZZ \rightarrow 4I$ + $\Gamma_{\rm H} = 2.9^{+2.3}_{-1.7} \,{\rm MeV}$ 10 In agreement with SM predictions 95% CL In addition: direct constraint on $\Gamma_{\rm H}$: <330 MeV @95% CL 68% CL zero off-shell H production hp excluded at 3.9σ -15 10 Γ_{H} (MeV)

CMS-PAS-HIG-21-019

A.Cappati

Higgs boson width

CMS

HH production

HH production \rightarrow directly study Higgs boson self-coupling and Higgs potential

destructive interference in SM \rightarrow tiny cross-section (31.05 fb) \rightarrow Experimentally challenging

Many **improvements** over past years \rightarrow promising results!

$$\sigma$$
(HH) < 3.4 (2.5) σ_{SM}
-1.24 (-2.28) < k_{λ} < 6.49 (7.94)
0.67 (0.61) < k_{2V} < 1.38 (1.42)

CMS

Selection of recent precision measurements at CMS presented Many other results available, not covered by this talk!

The LHC has proved to be more than capable as a precision physics machine

Comprehensive characterization of the SM \rightarrow measurements becoming more precise and more differential \rightarrow probe more extreme regions of phase space

Overall good agreement with SM predictions

Much more to be learned about the SM with Run3 and HL-LHC data!