Polytope symmetries of Feynman integrals

Leonardo de la Cruz

Based on 2404.03564, Phys.Lett.B 854 (2024) 138744

Institut de Physique Theorique, CEA/Saclay

High Precision for Hard Processes at the LHC, University of Turin, Italy.

L. de la Cruz

Motivation: Feynman integral + polytopes

Feynman integrals

- Sector decomposition SecDec 3.0, '15
- Feynman integrals in Lee-Pomeransky representation Mint, '13 and Euler characteristic Bitoun et'al, '18
- 3 Landau Analysis Stephen's talk
- Finite integrals Pavel's talk

Newton polytopes

- Triangulations of polytopes
- A-hypergeometric functions
- 3 Principal A-determinant
- Interior of the polytopes

Gel'fand-Kapranov-Zelevinsky (GKZ),80, 90's

2/11

Today: Linear transformations and polytope symmetries

$$_{2}F_{1}(a,b,c;x) = (1-x)^{-b} {_{2}F_{1}(c-a,b;c;x/(x-1))}$$

Summary

Take home message

Linear transformations of Feynman integrals can be deduced from symmetries of their Newton polytopes. They are inherited from their parent A-hypergeometric Feynman integrals.

Example: Bubble or Gauß $_2F_1$

$$I_{\mathcal{G}}(\kappa) = \int_{\mathbb{R}^2_+} \mathrm{d}\eta_2 \frac{z_1^{\alpha_1} z_2^{\alpha_2}}{(z_2 + z_2 z_1 (m^2 + s) + z_1 + m^2 z_1^2)^{d/2}} \leftrightarrow \mathsf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$\phi(z_1) = \tfrac{z_2}{z_1}, \ \phi(z_2) = z_2 \Rightarrow I_{\mathcal{G}}(c,\kappa) = I_{\mathcal{G}}((c_4,c_2,c_3,c_1),\kappa') = I_{\mathcal{G}}(\mathsf{P}c,\kappa\mathsf{T})$$

Matrices (T, P) encode a symmetry of Newton(A)

L. de la Cruz 12 September 2024 3/11

Polytopes and their symmetries

ullet We consider a polynomial with n monomials in N variables

$$f(z) = \sum_{i=1}^{n} c_i z^{a_i} \quad \bigcirc \quad \bigcirc$$

exponent vectors $\in \mathbb{Z}^N$

• Newton polytope is the convex hull of its exponent vectors

$$\mathsf{Newton}(f) := \mathsf{ConvexHull}(a_1, \dots, a_n) \in \mathbb{R}^N$$

- Symmetry groups of polyhedra:
 - Combinatorial
 - Projective symmetries
 - Linear symmetries

• Finding symmetries of polyhedra are useful in daily life -

optimizat

L. de la Cruz 12 September 2024

Feynman integrals in Lee-Pomeransky representation

• Feynman integral in Euclidean space in dim-reg

$$I_F(\alpha) = \int\limits_{\mathbb{R}^L} \left(\prod_{i=1}^L \frac{\mathrm{d}^d k_i}{\pi^{d/2}} \right) \frac{1}{D_1^{\alpha_1} \cdots D_N^{\alpha_N}} = \underbrace{\qquad \qquad \qquad \qquad }_{N \text{ propagators}}$$

Lee and Pomeransky (LP)

$$I_{\mathcal{G}}(\kappa) := I_{\mathsf{LP}}(\alpha)/\xi_{\Gamma} = \int_{\mathbb{R}^N_{\perp}} z^{\alpha} \mathcal{G}(z)^{-d/2} \mathrm{d}\eta_N, \quad \mathrm{d}\eta_N := \frac{\mathrm{d}z_1}{z_1} \dots \frac{\mathrm{d}z_N}{z_N}$$

Sum of Symanzik polynomials and vector of parameters

$$\mathcal{G}(z) := \mathcal{U} + \mathcal{F}, \quad \kappa = -(d/2, \alpha_1, \dots, \alpha_N)$$

- Feynman integrals are Euler-Mellin integrals Berkesh-Forsgård-Passare, '11 Pierpaolo's talk
- From LP representation

$$\mathcal{G}(c,z) = \sum_{i=1}^n c_i z^{a_i} \longleftrightarrow \mathsf{A} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_n \end{pmatrix} \longleftrightarrow \mathsf{Newton}(\mathsf{A})$$

L. de la Cruz

Generalized Feynman integrals

Idea

- Promote c_i to be indeterminate
- Feynman integrals are special points of A-hypergeometric functions DLC, '19, Klausen, '19
- Can be evaluated using canonical series Saito-Sturmfels-Takayama, '00 or triangulations
- New integral is A-hypergeometric

$$I_{\mathcal{G}}(\kappa, c) = \int_{\Omega} \frac{z^{\alpha}}{\mathcal{G}(c, z)^{d/2}} d\eta_N$$

ullet Gel'fand-Kapranov-Zelevinsky system $H_{\mathsf{A}}(\kappa)$

$$(\partial^u - \partial^v)I_{\mathcal{G}}(\kappa, c) = 0$$
, where $Au = Av$,

$$\left(\sum_{j=1}^{n} a_{ij}\theta_{j} - \kappa_{i}\right) I_{\mathcal{G}}(\kappa, c) = 0, \quad i = 1, \dots, N+1$$

• Generic parameters: $rank(H_A(\kappa)) = Vol(Newton(A))$

Mathematical methods

Forsgård-Matusevich-Sobieska (FMS) theorem, 2017

• Suppose the A-hypergeometric function $F(\kappa,c)$ has a transformation

$$F(\kappa,c)=R(\kappa)F(\mathsf{T}\kappa,c\mathsf{P})$$
 and matrix multiplication

- Suppose above is valid for generic parameters κ and $R(\kappa)$ independent of c
- $\bullet \Rightarrow TA = AP$ and (T, P) encodes a polytope symmetry of Newton(A)
- The converse is not always true

Idea: Use FMS theorem as a generator of symmetries

Candidate permutation P_{trv} satisfy?

$$\mathsf{TAP}_{\mathsf{trv}} - \mathsf{A} = 0$$

- If the system has a solution we have found a symmetry
- Brute force implementation of this idea requires to solve n! equations
- Brute force can be done with FiniteFlow $\frac{\text{Peraro}}{n}$, we solved up to n=11!systems of equations

Simplifications in the case of Feynman integrals

- When the converse is true $R(\kappa) = \det(\mathsf{T}) = 1 \to \mathsf{Feynman}$ integrals
- It is easier to compute symmetries of lattice polytopes by constructing the Normal form of A
- PALP (by Kreuze-Skarke) uses normal form to provide candidate permutations (basically choose an ordering of vertices) see Grinis-Kasprzyk, '13
- n > 11 PALP normal form

Symmetry finder for Feynman integrals

- lacktriangle Compute LP polynomial $\mathcal G$
- Construct A and put it in PALP normal form to obtain candidate permutations
- **3** Solve $TAP_{trv} A = 0$ for T

L. de la Cruz 12 September 2024

Example: on-shell double box

$$\mathcal{G}(z) = tz_2 z_4 z_7 + s \left(z_{123} z_5 z_6 + z_{1567} z_1 z_3 + z_{35} z_{16} z_4 \right) + z_{123} z_{567} + z_4 z_{123567}$$

- ullet Polynomial has n=26 terms
- Only 8 permutations out 26! are symmetries
- 8 pairs (T, P) including identity form a group

Some pairs change kinematic dependence of integral

$$I_{\mathcal{G}}(\kappa) = \int_{\mathbb{R}^7_+} \mathrm{d}\eta_7 \ \frac{z_1^{-\alpha_{12}+\beta} z_2^{\alpha_2} z_3^{-\alpha_{23}+\beta} z_4^{\alpha_{1234567}-2\beta} z_5^{-\alpha_{57}+\beta} z_6^{-\alpha_{67}} z_7^{\alpha_7}}{\mathcal{G}_{\sigma_1}^{\beta}},$$

$$\mathcal{G}_{\sigma_1}(z) = tz_2 z_4 z_7 + sz_4 \left(z_{123567} + z_6 z_{35} + z_1 z_{35} \right)$$
$$+ z_{23} \left(z_{567} + z_5 z_6 \right) + z_1 \left(z_{567} + z_5 z_{36} + z_3 z_{67} \right)$$

L. de la Cruz 12 Sep

Results for higher loops and legs

Results

Massive bananas	on-shell n -gons	On-shell ladders		
$p = \underbrace{\frac{L+1}{L}}_{2}$	$\begin{array}{c} p_1 \\ p_2 \\ 1 \\ p_5 \end{array} \begin{array}{c} p_2 \\ 3 \\ p_4 \end{array}$	$\begin{array}{c} p_1 \\ 1 \\ p_2 \end{array} \begin{array}{c} 4 \\ 3 \\ p_3 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(L+1)!	$2 \text{ for } n \geq 5$	72	8	4

Finite ladders

- Set d=6
- We found

$$\mathcal{I}_{\mathsf{ladder}}(\mathsf{T}\kappa, c\mathsf{P}) = \mathcal{I}_{\mathsf{ladder}}(\kappa, c\mathsf{P})$$

- Finite ladders are invariant under T
- But ladders "ran out" of symmetries at 3-loops . . .
- With numerators there are more possibilities

L. de la Cruz

Summary and Outlook

Summary

- Feynman integral inherit symmetries from their parent A-hypergeometric functions
- These are controlled by math's theorem Forsgård-Matusevich-Sobieska, 17'
- We can apply it to compute symmetries as linear algebra problem

$$TAP_{try} - A = 0$$

ullet We computed symmetries of massive bananas, ladders, and n-gons

Outlook

• Relation to Pak's algorithm: this is also a polytope symmetry!

11 / 11

L. de la Cruz 12 September 2024