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Motivations
‣ Precision studies are extremely important for finding 

evidences of Beyond the Standard Model physics; 
‣ We need to control the SM prediction at the  level in 

the TeV region;
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‣ The charged-current Drell-Yan is important for the 
determination of  (<10 MeV); 

‣ Since QCD and final state QED effects are both relevant, 
the calculation of mixed QCD-EW corrections is 
necessary for assessing the exact impact of these 
effects.

mW
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Higher orders
σij = σ(0,0)

ij

+ αs σ(1,0)
ij + α σ(0,1)
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s σ(2,0)
ij + αsα σ(1,1)
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σtot = ∑
i,j∈q,q̄,g,γ

∫
1

0
dx1 dx2 fi(x1, μF) fj(x1, μF) σij(μF, μR)
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NLO:  
[G.Altarelli, R.Ellis, G.Martinelli Nucl.Phys.B 157 (1979)]; 
NNLO:  
[R.Hamberg, T.Matsuura, W.van Nerveen, Nucl. Phys. B 359 (1991)]; 
[C.Anastasiou, L.J.Dixon, K.Melnikov, F.Petriello, hep-ph:0306192];  
[S.Catani, L.Cieri, G.Ferrera, D.de Florian, M.Grazzini 
arXiv:0903.2120];

N3LO:  
[C.Duhr, F.Dulat, B.Mistlberger arXiv:2007.13313]; 
[X.Chen, T.Gehrmann, N.Glover, A.Huss, T.Yang, and H.Zhu 
arXiv:2107.09085]; 
[S.Camarda, L.Cieri, G.Ferrera arXiv:2103.04974]; 
[X.Chen, T.Gehrmann, N.Glover, A.Huss, P.Monni, E.Re, L.Rottoli, 
P.Torrielli arXiv:2203.01565]; 
[T.Neumann, J.Campbell arXiv:2207.07056]
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NLO:  
[U.Baur, O.Brein, W.Hollik, C.Schappacher, D.Wackeroth, hep-
ph:0108274]; 
[S.Dittmaier, M.Kramer, hep-ph:0109062]; 
[U.Baur, D.Wackeroth, hep-ph:0405191]; 
NNLO (Sudakov approximation):  
[B. Jantzen, J.H.Kühn. A.A.Penin, V.A.Smirnov, hep-ph:0509157];
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Higher orders

Mixed corrections

‣ Naively they have similar magnitude of N3LO QCD: ; 
‣ In specific phase-space points, fixed order EW corrections can become very large because of 

logarithmic enhancement (weak and QED Sudakov type); 
‣ They reduce the input scheme dependence.

α3
s ≃ αsα

Extremely important for high precision phenomenology (per-cent and sub per-cent level)
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Recent developments
Theoretical developments:  
• 2-loop virtual Master Integrals with internal masses: [U. Aglietti, R. Bonciani, arXiv:0304028, arXiv:0401193],[ R. Bonciani, S. Di Vita, P. Mastrolia, 

U. Schubert, arXiv:1604.08581], [M.Heller, A.von Manteuffel, R.Schabinger arXiv:1907.00491], [ M.Long,R,Zhang,W.Ma,Y,Jiang,L.Han,,Z.Li,S.Wang, 
arXiv:2111.14130],[X.Liu, Y.Ma, arXiv:2201.11669] 

• Altarelli-Parisi splitting functions including QCD-QED effects [D. de Florian, G. Sborlini, G. Rodrigo, arXiv:1512.00612 ] 
• Renormalisation [G.Degrassi, A.Vicini, hep-ph/0307122],[ S.Dittmaier,T.Schmidt,J.Schwarz, arXiv:2009.02229], [S.Dittmaier, arXiv:2101.05154]  
On-shell Z and W production:  
• pole approximation of the NNLO QCD-EW corrections [S.Dittmaier, A.Huss, C.Schwinn, arXiv:1403.3216, 1511.08016 ] 
• analytical total Z production cross section including NNLO QCD-QED corrections [D. de Florian, M.Der, I.Fabre, arXiv:1805.12214] 
• fully differential on-shell Z production including exact NNLO QCD-QED corrections [M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, 

arXiv:1909.08428] [S.Hasan, U.Schubert, arXiv:2004.14908] 
• analytical total Z production cross section including NNLO QCD-EW corrections [R. Bonciani, F. Buccioni, R.Mondini, A.Vicini, 

arXiv:1611.00645], [R. Bonciani, F. Buccioni, N.Rana, I.Triscari, A.Vicini, arXiv:1911.06200], [R. Bonciani, F. Buccioni, N.Rana, A.Vicini, 
arXiv:2007.06518, arXiv:2111.12694] 

• fully differential Z and W production including NNLO QCD-EW corrections  [F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, 
arXiv:2005.10221], [A. Behring, F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2009.10386, 2103.02671] 

Complete Drell-Yan:  
• neutrino-pair production including NNLO QCD-QED corrections [L. Cieri, D. de Florian, M.Der, J.Mazzitelli, arXiv:2005.01315] 
• 2-loop amplitudes [M.Heller, A.von Manteuffel, R.Schabinger, arXiv:2012.05918],[TA, R.Bonciani, S. Devoto, N.Rana, A.Vicini, arXiv:2201.01754] 
• NNLO QCD-EW corrections to neutral-current DY including leptonic decay [R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, 

F.Tramontano, A.Vicini, arXiv:2106.11953],[F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller,A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-
Signorile, arXiv:2203.11237] 

• NNLO QCD-EW corrections to charged-current DY including leptonic decay (2-loop contributions in pole approximation). [L.Buonocore, 
M.Grazzini, S.Kallweit, C.Savoini, F.Tramontano, arXiv:2102.12539] 3



‣ The first two pieces can be obtained automatically, e.g. with OpenLoops. However, it is quite 
challenging to perform the Monte-Carlo integration over the phase-space, at the required level 
of precision; 

‣ The pure virtual is easier to integrate, but extremely challenging to compute, due to the presence 
of an high number of diagrams and 2-loop Feynman integrals; 

‣ Each individual contribution is divergent in the dimensional regulator . Hence, we employ a 
subtraction technique to make each piece finite.
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The 2L amplitude
‣ The calculation follows a pretty straightforward approach; 
‣ The diagrams are generated using FeynArts; 

‣ The computation of the interference terms between the 2L diagrams and the born has been done 
with in-house Mathematica routines; 

‣ We treated  in  dimensions using the naive anti commuting scheme; 
‣ In the computation we employed the Background Field gauge. This let us identify some subsets of 

diagrams which are UV finite, which is useful for performing intermediate non trivial cross-checks;

γ5 d
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IR subtraction
‣ IR singularities are handled by the qT-subtraction formalism; 
‣ The qT-subtraction requires the final state emitters (leptons) to be massive! I.e. that the final state 

collinear divergences are regularised by ; 
‣ However, performing the full computation keeping the lepton mass is extremely challenging. For this 

reason we kept the lepton mass only when the lepton couples to a photon;

log(m2
ℓ /s)

We are introducing a mismatch 𝒪(m2
ℓ /s)

Massless lepton 
Missing terms 𝒪(m2

ℓ /s)

↳
Exact dependence 

on mℓ
↳
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‣ The UV renormalised and IR subtracted scattering amplitude is given by: 

‣ The cancellation of IR poles constitutes an important and non trivial cross-check of the calculation; 
‣ In order to verify the cancellation analytically we have to be able to extract the divergent part of the 

Feynman integrals; 
‣ We verified analytically the cancellation of the poles ,  and ; 
‣ We verified numerically the cancellation on IR poles up to the 6th significant digit, related to the 

mismatch of the terms .

1/ϵ4 1/ϵ3 1/ϵ2

𝒪(m2
ℓ /s)

IR subtraction

ℳ(1,1)
fin ⟩ = ℳ(1,1)⟩ − ℐ(1,1) ℳ(0,0)⟩ − ℐ̃(0,1) ℳ(1,0)

fin ⟩ − ℐ̃(1,0) ℳ(0,1)
fin ⟩

Subtraction operators

UV renormalised amplitude
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Reduction to Master Integrals
‣ We identified 11 integral families with either 0, 1 or 2 masses. We reduced them to Master 

Integrals using Kira in combination with Firefly. The complete reduction took . 

‣ We ended up with 274 masters integrals to evaluate.

𝒪(16h)

‣ The most complicated topology was a two-loop box 
with two internal different masses. The topology 
contains 56 master integrals. 

‣ Since an analytical expression in terms of GPLs is not 
available, we evaluated all the masters using the 
method of differential equations, using a semi-
analytical approach.
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SeaSyde
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‣ Our goal in the end is to fit the W mass to the data, hence, we need to employ 
a gauge invariant definition of the mass. For this reason, it is important to 
perform the calculations in the complex-mass scheme.  

μ2
V = m2

V − iΓVmV

‣ The complex mass scheme regularises the behaviour 
at the resonance:                       

‣ If we utilise adimensional variables, they become 
complex-valued:

1
s − μ2

V + iδ

s̃ =
s

m2
V

→
s

μ2
V

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde
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SeaSyde
[TA, R. Bonciani, S. Devoto, N.Rana,  


A.Vicini, arXiv:2205.03345]

‣ For solving the system of differential equations we used the Mathematica 
package SeaSyde (Series Expansion Approach for SYstems of Differential 
Equations) which is a general package for solving a system of differential 
equations using the series expansion approach; 

‣ Seasyde generalise it to complex kinematic variables by introducing an 
original algorithm for the analytic continuation of the result, thus being able to 
handle complex internal masses; 

‣ SeaSyde can deal with arbitrary system of differential equations, covering also 
the case of elliptic integrals.

https: //github.com/TommasoArmadillo/SeaSyde
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Creating a grid

Master 
Integrals

Differential Equations 
(In-house Mathematica 

package based of LiteRed 
and Kira)

Boundary Conditions 
(AMFlow)

Solving the system 
(SeaSyde)

Numerical grid

‣ The computation of a grid with 3250 points for the two-loop box with two internal and different 
masses (56 equations) required 3 weeks on 26 cores. 

‣ This approach is completely general and easy to automate, and can be applied, in principle, to 
any integral family.

∼
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The expansion in δμW
‣ If we would like to change the value of , we do not have to re-run the entire grid, but we can 

exploit the flexibility given by the series expansion approach;
μW

Grid point

, s = s0 t = t0

∑
i

ci (μW − μ̄W)i

Diff. eqs. 

w.r.t  μW

‣ By doing so, every point of the grid becomes a series expansion in , which can be evaluated in 
a negligible amount of time for arbitrary (but reasonable) values of the W mass; 

‣ The calculation of the  expansion for the entire grid took  1.5 days.

δμW

δμW ∼
12
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The hard function
‣ We present our final result in the form of the hard function , which can be passed to a Monte-

Carlo generator, e.g. MATRIX 

‣ Starting from the computed grid, we can interpolate the value of  in the entire phase-space. 
Thanks to the smoothness of  the error is, at worst, at the  level.

H(1,1)

H(1,1)

H(1,1) 10−3

H(1,1) =
1
16 [2Re (

⟨ℳ(0,0) |ℳ(1,1)
fin ⟩

⟨ℳ(0,0) |ℳ(0,0)⟩ )]
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Summary & Outlook
‣ We presented the calculation of the pure virtual contribution to the mixed QCD-EW corrections 

to Charged-current Drell-Yan; 
‣ The results have been obtained thanks to an high level of automation of every step of the 

calculation. In particular, concerning the evaluation of the Master Integrals. The latter has been 
carried out within the semi-analytical framework offered by SeaSyde; 

‣ We showed how the semi-analytical framework could be exploited to provide numerical grids 
retaining the exact dependence on the W mass; 

‣ When included in the MATRIX framework, for the evaluation of the fiducial cross sections, these 
results will allow a consistent simultaneous analysis of both NC and CC DY processes at NNLO 
QCD-EW level; 

‣ Finally, the techniques employed in this calculation are completely general, and can be applied to 
other relevant process at NNLO QCD-EW level or even NNLO EW.
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‣ In the computation we employed the Background Field gauge. This let us identify some subsets of 
diagrams which are UV finite, which is useful for performing intermediate non trivial cross-checks; 

‣ All the counter-terms were computed in the on-shell scheme.

UV renormalisation
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Creating a grid

s

t

BC

‣ This approach is completely general and 
easy to automate; 

‣ We have to solve a 56x56 system of 
differential equations w.r.t. to the Mandelstam 
variables s and t; 

‣ Since we are not putting the system in 
canonical form, these are usually quite 
complicated and the solution might require 
some time; 

‣ The computation of a grid with 3250 points 
required 3 weeks on 26 cores.∼

↳



Mass evolution

s

t

‣ We can re-use the grid from the 
Neutral-current Drell-Yan; 

‣ We have to solve a 36x36 system of 
differential equations w.r.t. to the 
Mandelstam variables s and t; 

‣ Then, for every point, we have to 
solve a 56x56, but easier, system 
w.r.t. one mass; 

‣ We used this as a cross-check.

s

t
Upper 
mass

BC

↳

↳



Background-Field Method (BGF)
‣ We chose to perform the calculation using the background-field method:

ℒSM = ℒC( ̂V + V) + ℒGF(V) + ℒFP

ℒC = ℒYM + ℒH + ℒF

‣ The fields are split into background fields  and 
quantum ones ; 

‣ The quantum fields are the variables of integration in 
the functional integral, i.e. they appear only in loops. 

‣ Even though we have more fields, the expressions are 
usually simpler

̂V
V

‣  breaks gauge-invariance only of the quantum fields, for this reasons very simple and QED-
like Ward identities are satisfied at any order in perturbation theory for the background ones.
ℒGF(V)
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SeaSyde
‣ Power series have a limited radius of convergence which is determined by 

the position of the nearest singularity. 
‣ We need to be able to extend the solution beyond the radius of convergence, 

to the entire complex plane.

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde
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‣ Power series have a limited radius of convergence which is determined by 
the position of the nearest singularity. 

‣ We need to be able to extend the solution beyond the radius of convergence, 
to the entire complex plane.

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde
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‣ Power series have a limited radius of convergence which is determined by 
the position of the nearest singularity. 

‣ We need to be able to extend the solution beyond the radius of convergence, 
to the entire complex plane.

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde

*For simplicity, we are not showing all 
the intermediate circles. 
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SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1
fhom(x) = xr

∞

∑
k=0

ckxk

rc0 = 0
1
5 c0 + c1(r + 1) = 0
4

25 c0 + 1
5 c1 + c2(2 + r) = 0

11
125 c0 + 4

25 c1 + 1
5 c2 + c3(3 + r) = 0

…

fhom(x) = 5 − x −
3
10

x2 +
11
150

x3 + . . .



SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1

fpart(x) = fhom(x)∫
x

0
dx′￼

1
(x′￼+ 2)

f −1
hom(x′￼)

=
1
2

x −
7
40

x2 +
2
75

x3 + . . .

f(x) = c fhom(x) + fpart(x)

= 1 +
3
10

x −
47
200

x2 +
3

250
x3 + …



SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1

f(x) = c fhom(x) + fpart(x)

= 1 +
3
10

x −
47
200

x2 +
3

250
x3 + …

‣ This procedure can be generalised to systems of differential equations; 
‣ The method has been firstly implemented in the Mathematica package DiffExp for a real 

kinematic variable [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] 
‣ The great advantage of this approach is that we can reach arbitrary precision just by adding more 

terms in the serie


