RUN 1: LY studies with diferrent gas flows

Rita Antonietti

The aim of the analysis is to understand if the LY dependes on the gas flow

-> The LY has been studied with different gas flow:

Flow (l/h)	Range Run
20	4205 - 4256
	4315 - 4509
	5110 - 5162
	5508 - 5565
10	5566 - 5729
3	4512 - 4780
1	5164 - 5490

Parameter	Value
Exp time [s]	0.3
GEMs HV [V]	420
55Fe distance [cm]	25

Sc_integral distribution

The distribution has been fitted by: Exp + Exp + Cruijff function

-> The mean of the Cruijff function defines the ⁵⁵Fe peak

The fit has done on each run taken in exam

⁵⁵Fe peak

4

-> The gain decreases with increasing P
-> The gain increases with increasing T

Dependence on Temperature?

-> The temperature is costant in the two ranges taken in exam

Dependence on Pressure?

Dependence on Pressure?

Focus on yellow points (total flow = 1 l/h)

Charge

10

Conclusion

We have to investigate:

- the spikes;
- The dependece on the pressure

Why does the LY increase when the gas flow is 1 l/h ? Due to hot spot?