

Istituto Nazionale di Fisica NuclearePiano TriennaleTrieste20242026272022023

Einstein Telescope

Luca Naticchioni INFN Roma

Summary

- GW science with ET
- □ From Virgo to ET
- **ET:** Infrastructure, detector, technologies
- □ The ET collaboration
- **D** Towards ET in Italy
- Conclusions

GW Science with ET ... in a nutshell

ASTROPHYSICS

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - interior structure (QCD at ultra-high densities, exotic states of matter)
 - demography
- Multi-band and -messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LISA)
 - neutrinos
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

FUNDAMENTAL PHYSICS AND COSMOLOGY

- The nature of compact objects
 - near-horizon physics
 - tests of no-hair theorem
 - exotic compact objects
- Tests of General Relativity
 - post-Newtonian expansion
 - strong field regime
- Dark matter
 - primordial BHs
 - axion clouds, dark matter accreting on compact objects
- Dark energy and modifications of gravity on cosmological scales
 - dark energy equation of state
 - modified GW propagation
- Stochastic backgrounds of cosmological origin
 - inflation, phase transitions, cosmic strings

ET Science in a nutshell

- ET will explore almost the entire Universe listening the gravitational waves emitted by black hole, back to the dark ages after the Big Bang
- ET will detect, with high SNR, hundreds of thousands coalescences of binary systems of Neutron Stars per year, revealing the most intimate structure of the nuclear matter in their nuclei

Compact Object Binary Populations

GW Science with ET

GWs from coalescing Binary Black Hole (BBH) allows to test GR in strong-field regime

GW Science with ET

Seeds and Supermassive Black Holes

- Supermassive Black Holes (SMBHs) are present at the center of many galaxies:
 - What is their history? How have they formed? What are the seeds?

GW Science with ET

Neutron stars are an extreme laboratory for nuclear physics

- The external crust is a Coulomb Crystal of progressively more neutron-reach nuclei.
- The core is a Fermi liquid of uniform neutron-rich matter ("Exotic phases"? Quark-Gluon plasma?)
- Tidal deformation from the dephasing in the GW signal → constrain the EOS of the NS.
- EM information → more stringent constrain.
- EOS describes the status of the matter in the overcritical pressure condition.

Summary

- GW science with ET
- **From Virgo to ET**
- **ET:** Infrastructure, detector, technologies
- □ The ET collaboration
- **D** Towards ET in Italy
- Conclusions

Milestones reached by Advanced detectors (LVK)

- First detection of GWs from a BBH system (GW150914)
 - Physics of BHs
- First three-detectors (LIGO-Virgo) detection of BBH (GW170814)
 - Localization: 30x thanks to Virgo, from 70 to 2 Mpc³
- First detection of GWs from a BNS system (GW170817)
 - Birth of the multimessenger astronomy with GWs
 - Costraining EOS of NS
- LVK network: localisation capabilities of a GW source
- Measurement of the GW propagation speed
- Test of GR
- Alternative measurement of H₀
- GW polarisations
- Intermediate mass black hole (GW190521)

ET ELESCOPE Near future

Binary Neutron Stars Events

• O4 run started on May 24th (LIGO);

- Virgo will join in autumn '23;
- Current detectors have a well-defined plan of upgrades and science runs in the next years.

AdV sensitivity evolution from O3 to post-O5

- Virgo collaboration decided to postpone joining O4 in order to improve the detector sensitivity.
- Many important technical issues faced (work in progress), but to reach the nominal sensitivity to enter O4 a longer commissioning is now required.

Advanced Virgo+

- Phase I: reduce quantum noise, hit against thermal noise
 - BNS range ~ 100 Mpc
- Phase II: lower thermal noise wall
 - BNS range ~ 200 Mpc

A successful Virgo operation during the next observing runs is **crucial**, also for ET!

ET EINSTEIN TELESCOPE Near future

- 2nd generation GW detectors are exploring the *local Universe*, initiating the precision GW astronomy, but to have *cosmological* investigations a factor of 10 improvement in terms detection distance is needed.
- Great results achieved even though with a sensitivity below the nominal one.
- Post-O5 Advanced detector will be able to expand the observation horizon, but still local universe!
- 3G ground-based detectors will be required to access the high redshift Universe!

Summary

- GW science with ET
- □ From Virgo to ET
- **ET: Infrastructure, detector, technologies**
- □ The ET collaboration
- **D** Towards ET in Italy
- Conclusions

ET ELESCOPE A 3G GW Observatory

Corner halls

depth about

200m

≥ 10km

ET pioneered the idea of a 3rd generation GW observatory:

- A new infrastructure capable to host future upgrades for decades without limiting the observation capabilities.
- A sensitivity at least 10 times better than the (nominal) advanced detectors on a large fraction of the (detection) frequency band.
- A dramatic improvement in sensitivity in the low frequency (2Hz 10Hz) range.
- High reliability and improved observation capability.
- Polarisation disentanglement, localization, duty cycle.

iccmoni – Anstein Telescope – Piano Triennale INFN 2024-2026, Trieste 27-28/6/23 -

ET TELESCOPE Design of ET

Einstein gravitational wave Telescope

Conceptual Design Study

2011

https://apps.et-gw.eu/tds/ql/?c=7954

Design Report Update 2020

for the Einstein Telescope

https://apps.et-gw.eu/tds/ql/?c=15418

ESFRI

ET EINSTEIN TELESCOPE

2004-3G idea 2005-ET idea 2007-ET CDR proposal 2011-ET CDR 2012-2018 Tech development (in background) 2020-ESFRI ET proposal

ET Steering Committee Editorial Team released September 2020

ESFRI Roadmap

ET EINSTEIN TELESCOPE

ESFRI ROADMAP 2021

European Strategy Forum

on Research Infrastructures

ESFRI partners:
Italy (Lead Country)
Belgium
Netherlands
Poland
Spain
The ET-PP (preparatory phase) funded by EU commission with 3.45M€:

t₀=01/09/2022 It includes also agencies and institutions belonging to:

- Austria
- France
- Germany
- Hungary
- Switzerland
- UK

ET CA originally signed by 41 in Stift^aution S^{inlandia} • Consortium currently coordinated

ET timeline presented to ESFRI

stituto Nazionale di Fisica Nuclea

Scientists

•

Requirements

- Wide frequency range
- Massive black holes (LF focus)
- Localisation capability
- (more) Uniform sky coverage
- Polarisation disentanglement
- High Reliability (high duty cycle)
- High SNR

Design Specifications

- Xylophone (multiinterferometer HF+LF)
 Design
- Underground
- Cryogenic (LF)
- Triangular shape
- Multi-detector design
- Longer arms

ET: large scale and complex infrastructure

Credit: A.Freise, 2020 XI ET Symposium

Challenging Engineering: key points

~30km of underground tunnels

- Safety (fire, cryogenic gasses, escape lanes, heat handling during the vacuum pipe backing)
- Noise (creeping, acoustic noise, seismic noise, Newtonian noise)
- Minimisation of the volumes, but preservation of future potential)
- Water handling, hydro-geology and tunnels inclination
- Cost!

EINSTEIN

• Large caverns

- In addition to the previous points:
- Stability
- Cleanliness
- Thermal stability
- Ventilation and acoustic noise

ET EINSTEIN ET design: Δ or (two) L

In the last couple of years, the collaboration started the evaluation of the best configuration for ET, considering the alternative of two L configuration (as LIGO, Cosmic Explorer) to maximize the science return and reduce risks.

Since 2011 (CDS, triangle configuration) the situation drastically changed:

- \Box First detections, GTWC-3 catalog \rightarrow BH population \rightarrow new SF and evolution models;
- □ Science case developed;
- □ Know-how with advanced (L) detectors;
- □ International scenario (+ Cosmic Explorer in US);
- □ Two candidate sites strongly supported (and a potential third site...).

The collaboration is analyzing both configurations: science case, risk assessment.

ET EINSTEIN ET design: Δ or (two) L

> COst Benefit Analysis committee (COBA) several independent codes used, same results

- Triangle (10,15 km) vs 2L (15-20 km, parallel or 45°), keeping xylophone.
- 2L (15km, 45° oriented) give better science return with respect to 10km triangle and similar to 15km triangle.
- L configuration \leftrightarrow two sites.
- 2L only High Frequency (HF) is better than single 10km triangle full xylophone (HF+LF)!
 - Two stage approach possible: commissioning of HF with a good science return, then moving to full HF-LF at room temperature and then cryogenic.
- 200-pages document and a publication submitted: <u>2L configuration</u> is generally favoured. ET-0084A-23: <u>https://apps.et-gw.eu/tds/ql/?c=16584</u>

> ET Risk Assessment committee (ETRAC) *experts in commissioning, led by L. Barsotti (LIGO)*

- Identified risk categories*, defined a risk metric, applied risk metric to risk categories ranked the possible configurations, focusing on two of them: 10km-triangle vs 15km-2L.
- First report under evaluation/review for further steps of the analysis (e.g. risk mitigation).
- 2L configuration seems strongly favoured.

*excluded: political, financial

Challenging engineering	ET Enabling Technologies	Parameter Arm length Input power (after IMC) Arm power Temperature	ET-HF 10 km 500 W 3 MW 290 K	ET-LF 10 km 3 W 18 kW 10-20 K	ET EINSTEIN TELESCOPE
New technology in cryo-cooling New	• The multi- interferometer approach asks for two parallel technology developments:	Mirror material Mirror diameter / thickness Mirror masses Laser wavelength SR-phase (rad) SR transmittance Quantum noise suppression Filter cavities	fused silica 62 cm / 30 cm 200 kg 1064 nm tuned (0.0) 10 % freq. dep. squeez. 1×300 m	silicon 45 cm/ 57 cm 211 kg 1550 nm detuned (0.6) 20 % freq. dep. squeez. 2×1.0 km	Evolved laser
New laser technology	• ET-LF: • Underground • Cryogenics	Squeezing level Beam shape Beam radius Scatter loss per surface Seismic isolation Seismic (for $f > 1$ Hz) Gravity gradient subtraction	10 dB (effective) TEM ₀₀ 12.0 cm 37 ppm SA, 8 m tall $5 \cdot 10^{-10} \text{ m/} f^2$ none	10 dB (effective) TEM ₀₀ 9 cm 37 ppm mod SA, 17 m tall $5 \cdot 10^{-10} \text{ m/} f^2$ factor of a few	technology Evolved technology in
High precision mechanics and low noise controls High quality	 Silicon (Sapphire) test r Large test masses New coatings New laser wavelength Seismic suspensions 	 Silicon (Sapphire) test masses Large test masses New coatings New laser wavelength Seismic suspensions Eroquency dependent 			optics Highly innovative adaptive optics
opto- electronics and new controls Credit: M. Punturo 20	Frequency dependent squeezing L. Naticchioni - Einstein Telescope - Piano Triennale 2026, Trieste 27-28/6/23	 Therma Frequer squeezi 	Il compensat ncy depende ng	tion ent	High quality opto- electronics and new controls

Cryo-cooling

Credit: M. Punturo 2023

ET operative temperature ~10K

Key issues

- Acoustic and vibration noises
- Laser absorption and heat extraction
- Cleanliness and contamination
- Cooling time (large masses, commissioning time, ...)
- Infrastructures
- Technology (gasses or cryo-coolers)
- Materials
- Safety

Low Frequency special focus

Credit: M. Punturo 2023

- Underground infrastructure
- 17m tall seismic filtering suspensions
 - Large impact on cavern engineering and costs
- R&D in activepassive filtering systems and seismic sensors

Image: Conor Mow-Lowry

Credits: A.Freise

New Optics

Substrates Challenge:

 Substrate (ET-HF silica / ET-LF silicon) of 200 kg-scale, diam≥45cm, with required purity and optical homogeneity/abs.

• Coating Challenge:

- major challenge over recent years:
 - Amorphous dielectric coating solutions often either satisfy thermal noise requirement (3.2 times better than the current coatings) or optical performance requirement (less than 0.5ppm) – not both
 - AlGaAs Crystalline coatings could satisfy ET-LF requirements, but currently limited to 200mm diameter.

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

Credit: M. Punturo 2023

New Laser and Opto-Electronic Technology

Credit: M. Punturo 2023

Virgo and LIGO developed CW low noise lasers at 1064nm

• In ET-HF their evolution toward higher power will be investigated

In ET-LF we will use a different wavelength because of the Silicon test masses:

• λ=1.55μm or 2μm?

New electro-optic components:

- High quantum efficiency photodiodes
- Low absorption e.o.m.
- Low dissipation faraday isolators
- L. Naticchioni Einstein Telescope Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

Other relevant challenges

Credit: M. Punturo 2023

 Auxiliary optics, adaptive optics and thermal compensation of optical aberrations

- **Vacuum** (the largest volume under UHV in the World):
 - More than 120km of vacuum pipes
 - ~1 m diameter, total volume 9.4×10⁴ m³
 - 10^{-10} mbar for H₂, 10^{-11} mbar for N₂ and less than 10^{-14} mbar for Hydrocarbons
 - Joint development with CERN involving ET and CE
- Low noise controls
- Computing
 - Computation intensive, not data intensive
- Governance & Organisation

Summary

- GW science with ET
- □ From Virgo to ET
- **ET:** Infrastructure, detector, technologies

□ The ET collaboration & management

- **D** Towards ET in Italy
- Conclusions

ET Collaboration formed

https://indico.ego-gw.it/event/411/

E I mesore XII Einstein Telescope Symposium

Official Birth of the ET Collaboration XII ET Symposium, Budapest on June 7th - 8th More than 400 scientists, out of >1200 members of the Collaboration, attended the meeting in person or remotely.

The Einstein Telescope Collaboration

ET Collaboration Demography

- The data in the ETMD suffer a certain level of inaccuracy:
 - Some RU leaders have not inserted their RU members
 - A few ET members are not updating their information

Data from the ET Member Database (ETMDB), tool based in EGO, governing the Authorization and Authentication to the ET collaboration resources: <u>https://apps.et-gw.eu/etmd</u>

Credit: M. Punturo 2023

We adopted a "particular" flavor of FTE: FRTE (full research time equivalent)

- The declared FRTE need to be matched to an effective activity
 - This will be a major effort in the next years and we should find a realistic method in the Bylaws
- Currently we have about 295 FrTE →24% on average per member - quite low

ET EINSTEIN TELESCOPE

ET Current Organization

Credit: M. Punturo 2023

ET EINSTEIN TELESCOPE

Summary

- GW science with ET
- □ From Virgo to ET
- **ET:** Infrastructure, detector, technologies
- □ The ET collaboration & management
- **Towards ET in Italy**
- Conclusions

Finanziato dall'Unione europea

ETIC Project

- ETIC is a Project funded by the Italian Ministry for University and Research (MUR) with 50M€ for 30 (36) months within the PNRR (NRRP National Recovery and Resilience Plan)
- It started the 1st of January 2023
- ETIC is lead by INFN, it involves other 2 national research institutions:
 - INAF (Italian institute for Astrophysics)
 - ASI (Italian Space Agency)
- and 11 Italian universities for a total of 27 operating units (INFN and INAF Units, Department of physics, civil engineering, architecture)

Ministero dell'Università e della Ricerca

ETIC targets

https://web.infn.it/einsteintelescope/index.php/it/home-it-it/infrastrutture-e-labs

• The ETIC aim is twice:

- Realize a network of research infrastructures located in the participating laboratories or universities addressed to the ET enabling technologies
- Realize a feasibility study of ET in Sardinia, key element of the Italian bidbook, including geotechnical and engineering studies

Consortium INFN-BO INFN-PD INFN-GE Bologna Padova INFN-PG Genova University Einstein Telescope University University Perugia University INFN-LNGS **Felescope Infrastructure** INAF-Ad INFN-PI ASI **Pisa University** INFN-RM1 La Sapienza INFN-RM2 INFN-NA University Tor Vergata Federico II University University NFN-LNS Einstein INFN-CA Cagliari University INFN

ITALY

ETIC Project: WBS

Ministero dell'Università e della Ricerca

ETIC: Budget distribution

INFN	Unibo	Unica	Unige	Unina	UniVanvitelli	UniPD
33.867.823.25 €	186.574.23 €	1.624.578.86 €	989.113.35 €	1.400.259.10 €	281.035.50 €	1.947.255.55 €
UniPG	UniPI	UniSapienza	UniRM2	INAF	ASI	GSSI
5.079.557.50 €	599.649.40 €	1.550.135.75 €	1.348.432.40 €	407.316.90 €	312.525.60 €	404.674.00 €

Ministero dell'Università e della Ricerca

Human Resources

- ETIC aims to training a new generation of young scientists and engineers for ET
- The majority of these positions have been allocated and contracts are starting in May/June/July

Months	ETIC	INFN
Tecnici laureati cat D	108	0
RTDA	432	0
CTER	162	150
Tecnologo III	492	438
Manager	30	30
Positions	ETIC	INFN
Tecnici laureati cat D	4	0
		-
RIDA	16	0
CTER	16 7	0 6
CTER Tecnologo III	16 7 21	0 6 18

Ministero dell'Università e della Ricerca

Feasibility study (Δ and L)

- The Italian candidature of the site in Sardinia passes through the WP6 of ETIC
 - European call for tender of about 17.5M€ + IVA already opened weeks ago, and it is approaching its closure.
 - Engineering studies, geotechnical studies, cost evaluation.
 - Call for tender managed by INFN LNS (G. Schillaci) within the WP6 coordinated by the Civil Engineering department (DICEA) of Sapienza – University of Rome (M. Marsella)
- This candidature is supported and surveilled at the highest level of the Italian Government!

ET candidate sites

- Two sites officially candidate to host ET:
 - EMR EUregio, border region between Nederland, Belgium and Germany
 - Sardinia (Lula area, Barbagia)
- A third potential site is located in Saxony (Lusatia), still not official
- Overall site evaluation is a complex task depending on:
 - Geophysical and environmental quality
 - Financial and organization aspects
 - Services, infrastructures

ET in Sardinia, why?

NOISE!

51

Sardinia is made of:

- > Quaternary alluvial deposits and minor intra-plate volcanism
- Tertiary sedimentary basins with volcanic units
- > Deeply eroded Mesozoic sedimentary rocks
- > Metamorphic basement widely intruded by Carboniferous-Permian Granitoids (Variscan orogenesis; 360-290 Ma)

The ET Italian candidate site is located in the stable Variscan basement of Sardinia. LOW SEISMIC

- Geodynamic quietness
- Low Anthropogenic noise
 - Low E.M. noise

ET in Sardinia, why?

Rhine

10°E Molasse basin

Alps

14°E

Foreland areas

Alps thrust belt Basement outcrops

Foredeep basins Shortening areas in the

Extensional areas in t backarc of the Apennines subduction

Sardinia, the geological framework

Far from active fault lines, the Corsica-Sardinia microplate is very stable \rightarrow low crustal deformation.

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

ET in Sardinia, where?

Δ and L layouts

The area of Sos Enattos could easily host a triangle with 10km-long sides (*base design*) and a L with 15-20km-long arms.

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

Sos Enattos former mine

The Sos Enattos site

Site comparison with other candidates

Borehole measurements comparison

In the crucial few Hz band of ET (2-10 Hz), Sos Enattos area is among the quietest sites in the world.

EMR Terziet (NL) borehole

Sardinia P2 borehole

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

Site comparison with other candidates

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

- Limburg

— Virgo

- Sardegna

Hungary

30

- 25

- 20

- 15 🔗

Site comparison with other candidates

E

EINSTEIN TELESCOPE

NL.TERZ.01.HHZ

Strong synergy with INGV

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA the FABER project

Sardinia FABER is a geophysical observatory located at Sos Enattos Mine

Infrastructure consolidation

- power line and data line upgrade
- solar power plant and electric vehicles to access the tunnel

New instrumentations

- broadband and very broadband seismometers
- magnetometer
- gravimeter
- strainmeter
- tiltmeter
- •21 micro barometer and other ambient controls

Surface laboratory

- equipment maintenance and test
- data acquisition, archive and transission
- hospitality (and lodging)

Sardinia FABER

INGV is collaborating since 2019 with INFN in the site qualification in Sardina.

Through a dedicated PNRR project INGV will contribute to the site characterization.

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

Summary

- GW science with ET
- □ From Virgo to ET
- **ET:** Infrastructure, detector, technologies
- □ The ET collaboration
- **Towards ET in Italy**
- **Conclusions**

Conclusions

- ET will be able to extend the detection horizon to the whole observable universe: routine (Multimessenger) astronomy, cosmology, fundamental physics in extreme conditions.
- ET will be the larger and more complex underground research infrastructure!
- ET will require and push great technological improvements in many fields.
- Two baselines under study: 10km- triangle and 15km- (double) L.
- ET intl. Collaboration: 211+ institutions, 23+ countries, 1437+ members, still growing!
- Italy (INFN) has a great tradition and expertise in GW detectors: larger community within ET coll. and many coordination roles.
- Italy has the best candidate site (Sardinia) and a strong support from local and national government.
- ETIC (PNRR) project is already supporting the Italian candidature: research infrastructure network and feasibility engineering study.
- Strong and fruitful synergy with other EPR in Italy: INGV & INAF.

Einstein Telescope

BACKUP SLIDES

GW Science with ET

Extreme Gravity conditions

- In GR, no-hair theorem predicts that BHs are described only by their mass and spin (and charge)
 - However, when a BH is perturbed, it reacts (in GR) in a very specific manner, relaxing to its stationary configuration by oscillating in a superpositions of quasi-normal (QN) modes, which are damped by the emission of GWs.
 - A BH, a pure space-time configuration, reacts like an elastic body → Testing the "elasticity" of the space-time fabric
 - Exotic compact bodies could have a different QN emission and have echoes.

Primordial Black Holes

- ET (and CE) will detect BH well beyond the SFR peak z²
 - comparing the redshift dependence of the BH-BH merger rate with the cosmic star formation rate to disentangle the contribution of BHs of stellar origin from that of possible BHs of primordial origin: any BBH merger at z>30 will be of primordial origin.

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

- BNS to z~2
 - 10⁵ BNS/year
 - Possibly O(10-100)/year with e.m. counterpart
- High SNR

- BBH up to z~50-100
- 10⁵ BBH/year
 - Masses $M_T \gtrsim 10^3 M_{\odot}$

The Executive Board

- On the 23rd of March, 2023 the ET Collaboration elected the Spokesperson/Deputy Spokesperson team:
- Michele Punturo
- Harald Lueck

Einstein Telescope Scientific Collaboration leadership elected

Credit: M. Punturo 2023

- The EB meets every Monday at 3pm
- You can follow its activities through the meeting minutes on the ET Collaboration Technical Documentation System (TDS): <u>https://apps.et-gw.eu/tds/</u> *
- More info here: <u>https://wiki.et-gw.eu/EB/WebHome</u> *
- ET Collaboration web site (since 2008): <u>https://www.et-gw.eu/</u> *
- Indico (all international ET coll. meetings): <u>https://indico.ego-gw.it/category/23/</u> *

(*) Services provided by EGO, based on the ETMDB service (Active Directory)

Credit: M. Punturo 2023

The Observational Science Board OSB

Credit: M. Punturo 2023

The E-Infrastructure Board

Credit: M. Punturo 2023

E IITALY

Ministero dell'Università e della Ricerca

ETIC Project: OBS

ET in Sardinia, why?

http://www.seismo.ethz.ch

Sardinia, the geological framework

In the last million years, the Sardo-Corsican block is rather stable and quite unaffected by significative seismic activity. This is due to localization of active geodynamics towards the east of Italy.

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

Peak Ground Acceleration [g]

Moderate

10% Exceedance Probability in 50 years

High Hazard

n

ET in Sardinia, why?

L. Naticchioni - Einstein Telescope - Piano Triennale INFN 2024-2026, Trieste 27-28/6/23

Good rock quality

Lithologies: Orthogneiss, granitoids, micaschists. The red triangle represents the hypothetic Δ underground trace of ET. One of the possible L traces is also shown. P2 and P3 are the borehole locations. Ongoing geological survey of the area and review of the geological maps.

