

Università degli Studi di Padova

Towards the atmospheric mass splitting Δm_{31}^2 in JUNO

Vanessa Cerrone, on behalf of the Padova analysis group

29/03/2022 -- JUNO Italia meeting, Roma Tre Università e INFN

ORSA (Oscillated Reactor Spectrum Analysis)

Model

- Reactor model
- Backgrounds model
- Covariances
- SNIPER
- Detector response

Cost function

- χ^2 (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- Nested sampling

ORSA (Oscillated Reactor Spectrum Analysis)

ORSA (Oscillated Reactor Spectrum Analysis)

- Reactor model
- Backgrounds model
- Covariances
- SNIPER
- Detector response

Cost function

- χ^2 (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- Nested sampling

Model selection

Analysis workflow

MC simulations (SNiPER)

Reactor IBDs, ⁹Li/⁸He, Accidentals, Geo-neutrinos

*DocDB <u>9177</u>- <u>9405</u>

*DocDB <u>9177</u>- <u>9405</u>

IBD dataset and pre-selection

J22.1.0-rc4

OMILRec*

~96k

None

No

Production configuration:

- Offline software version:
- Reconstruction algorithm:
- Unoscillated IBD events:

ORSA *selection configuration:

- Spatial selection cut: $\Delta r < 3 \text{ m}$
- Temporal selection cut: $\Delta t < 2 \text{ ms}$
- Energy cuts:
- FV cut

*DocDB 9177-9405

 Efficiency
 Evts/day

 100%
 57.4 [1]

E R 2

 Efficiency
 Evts/day

 100%
 57.4 [1]

1. Fiducial volume (FV) cut r < 17.2 m

1. Fiducial volume (FV) cut r < 17.2 m

EfficiencyEvts/day100%57.4 [1]91.1%52.3

- 2. Energy cut
 - Prompt energy $E_p \in (0.7, 12) \text{ MeV}$
 - Delayed energy $E_d \in (1.9, 2.5) \cup (4.4, 5.5)$ MeV

1. Fiducial volume (FV) cut r < 17.2 m

2. Energy cut

- Prompt energy $E_p \in (0.7, 12)$ MeV
- Delayed energy $E_d \in (1.9, 2.5) \cup (4.4, 5.5)$ MeV **99.9%**

3. Time/vertex cut

• $\Delta t < 1 \; {
m ms}$ $\Delta r < 1.5 \; {
m m}$

Efficiency

100%

91.1%

100%

1.50

1.75

2.00 0

IBD: selection efficiency

4000

2000

Counts / 12.9 µs

0.25

0.50

0.75

1.00

Δ*r* [m]

1.25

⁹Li/⁸He cosmogenic background

- Energetic cosmic muons interacting with ¹²C in the LS can produce radioactive isotopes
- ⁹Li and ⁸He are the major correlated cosmogenic background source
 - They can decay emitting a β^- and a neutron mimicking a reactor IBD signal
- Total background level after new muon veto strategy: 0.9 cpd*
 - Apply IBD selection cuts to residual contribution

Isotope	Branching ratio**	Expected yield [2][3]	Rate after muon veto*
⁹ Li	51 %	127.1 cpd	0.81 cpd
⁸ He	16.1 %	40.4 cpd	0.09 cpd

**in a neutron-unstable excited state

[2] Physical Review C 81.2 (2010): 025807. [3] Journal of Cosmology and Astroparticle Physics 2013.08 (2013): 049.

6.8.2

INF

⁹Li/⁸He: selection efficiency

⁹Li

⁸He

	Efficiency	Evts/day	Efficiency	Evts/day
	100%	0.81 [4]	100%	0.09 [4]
1. Fiducial volume (FV) cut r < 17.2 m	91.2%	0.75	91.4%	0.082
2. Energy cut				
• Prompt energy $E_p \in (0.7, 12)$ MeV	99.6 %	0.74	99. 8%	0.082
• Delayed energy $E_d \in (1.9, 2.5) \cup (4.4, 5.5)$ MeV	99.9%	0.74	99.9%	0.082
3. Time/vertex cut				
• $\Delta t < 1 \ { m ms}$ $\Delta r < 1.5 \ { m m}$	98.4 %	0.72	98.3%	0.08
Combined efficiency	89%	0.72	90%	0.08

⁹Li/⁸He shape and rate

- ⁹Li rate after IBD selection cuts: 0.72
- ⁸He rate after IBD selection cuts: 0.08

Geo-neutrinos background

- Geo-neutrinos are produced by radioactive decay chains of Uranium and Thorium inside the Earth
- Detected geo-neutrinos are $\bar{\nu_e}$ originating from β^- decay branches of 238 U and 232 Th
 - They can be detected through IBD → same signature as the reactor antineutrinos.

lsotope	Contribution [1]	Expected yield
238 U	77 %	1.155 cpd
²³² Th	23 %	0.345 cpd

[1] Chin. Phys. C 46, 123001 (2022)

²³⁸U geo- ν energy distribution (after FV cut)

²³²Th geo-*v*: selection efficiency

²³⁸U geo-*v*: selection efficiency

Geo- ν shape and rate

- ²³²Th geo- ν rate after IBD selection cuts: 0.28 cpd
- ²³⁸U geo- ν rate after IBD selection cuts: 0.94 cpd

Radioactivity dataset

- Study based on Reco EDM variables
- Detsim samples from Mock Data challenge (/eos/juno/dirac/juno/production/radioactivity/centos7_ amd64_gcc830/Pre-Release/J22.1.0-rc0/scratch/)

IBD anti-selection to tag uncorrelated events* Correlated pairs (e.g., Bi-Po) are discarded from the start

ORSA selection configuration:

- Spatial selection cut: $\Delta r < 3 \text{ m}$
- Temporal selection cut: $\Delta t < 2 \text{ ms}$
- Energy cuts: None
- FV cut
 No

Uncorrelated coincidences energy spectrum

*DocDB <u>9405</u> - <u>9614</u>

Radioactivity dataset

- Study based on Reco EDM variables
- Detsim samples from Mock Data challenge (/eos/juno/dirac/juno/production/radioactivity/centos7_ amd64_gcc830/Pre-Release/J22.1.0-rc0/scratch/)

IBD anti-selection to tag uncorrelated events* Correlated pairs (e.g., Bi-Po) are discarded from the start

ORSA selection configuration:

- Spatial selection cut: $\Delta r < 3 \text{ m}$
- Temporal selection cut: $\Delta t < 2 \text{ ms}$
- Energy cuts: None
- FV cut
 No

Rate of radioactivity from MC sample (102.0 \pm 0.1 Hz) \approx 8.8 x 10⁶ evts/day

Accidental background: different approach

- Selection efficiency terms cannot be computed independently for radiogenic background
 - IBD-like approach is an approximation and leads to a biased accidentals rate
 - Vertex and energy selection efficiencies cannot be calculated individually and then combined
- Analytical approach (similar to [5])
 - Accounts for energy-radius correlation
 - Radioactive background rate is computed from the MC sample data

• Rate of accidentals: $R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$

Accidentals: efficiency factor

- Preliminary energy cut: E > 0.7 MeV
- Construct all possible $\,\Delta r\,$ combinations among N

events $N_{comb} = N(N-1)$ satisfying IBD cuts:

- Fiducial volume (FV) cut r < 17.2 m
- Energy cut
 - Prompt energy $E_p \in (0.7, 12)$ MeV
 - Delayed energy $E_d \in (1.9, 2.5) \cup (4.4, 5.5)$ MeV
- Vertex cut $\Delta r < 1.5$ m

• Calculate efficiency factor
$$\varepsilon = \frac{N_{sel}}{N_{comb}}$$

Accidentals: efficiency factor

- Preliminary energy cut: E > 0.7 MeV
- Construct all possible $\,\Delta r\,$ combinations among N

events $N_{comb} = N(N-1)$ satisfying IBD cuts:

- Fiducial volume (FV) cut r < 17.2 m
- Energy cut
 - Prompt energy $E_p \in (0.7, 12)$ MeV
 - Delayed energy $E_d \in (1.9, 2.5) \cup (4.4, 5.5)$ MeV
- Vertex cut $\Delta r < 1.5$ m

• Calculate efficiency factor
$$\varepsilon = \frac{N_{sel}}{N_{comb}}$$

E > 0.7 MeV

$$R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$$

1.
$$\varepsilon = \frac{N_{sel}}{N_{comb}} = (1.41 \pm 0.01) \times 10^{-6}$$

Accidentals: background rate

- Radioactivity background rate is obtained directly from the dataset
- Consider only events with E > 0.7 MeV
- Calculate time difference between
 consecutive events
- Uncorrelated events $\rightarrow R_p = R_d$

$$R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$$

1.
$$\varepsilon = \frac{N_{sel}}{N_{comb}} = (1.41 \pm 0.01) \times 10^{-6}$$

2. $R_p = R_d = (39.4 \pm 0.1)$ Hz

$$R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$$

1.
$$\varepsilon = \frac{N_{sel}}{N_{comb}} = (1.41 \pm 0.01) \times 10^{-6}$$

2. $R_p = R_d = (39.4 \pm 0.1) \text{ Hz}$

3. $\Delta t = 1 \text{ ms}$

29/03/23

$$R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$$

1.
$$\varepsilon = \frac{N_{sel}}{N_{comb}} = (1.41 \pm 0.01) \times 10^{-6}$$

2.
$$R_p = R_d = (39.4 \pm 0.1) \text{ Hz}$$

3.
$$\Delta t = 1 \text{ ms}$$

4. $R_{acc} = (0.189 \pm 0.002) \text{ evts/day}$

With muon veto: $R_{acc} = (0.172 \pm 0.002) \text{ evts/day}$

Signal and background rates

	Event type	Rate from SNiPER MC [events/day]	Rate from common input [events/day]
From MC	IBD candidate	47.1	47.1
	⁹ Li∕ ⁸ He	0.8	0.8
	Geo-v	1.22	1.2
	Accidentals	0.17	0.8
From [1]	World reactors	1.0	1.0
	Atmospheric v	0.16	0.16
	Fast neutrons	0.1	0.1
	¹³ C(α,n) ¹⁶ O	0.05	0.05

29/03/23 Vanessa Cerrone - JUNO Italia meeting

Accidentals rate

*for a room temperature density of 0.86g/mL arXiv:2107.03669v2

- According to this calculation 0.8 evts/day correspond to a FV of ≈ 17.37 m
- With FV cut at 17.37 m, IBD rate increases from 47.1 to 48.4 evts/day
- Volume is increased by $\approx 2.7 \%$
- FV gain corresponds to ≈ 535 ton of liquid scintillator* (1.9 x Borexino active mass!)

Outlook: optimization of selection cuts

- Optimization of selection cuts to further increase signal to noise ratio
 - Cut following (Δr , Δt) equiprobability curves

	Standard cut	Optimized cut
IBD	47.1 cpd	47.1 cpd
Accidentals	0.172 cpd	≈ 0.13 cpd*

*scaled with analytical method

Future outlook: sensitivity to Δm_{31}^2

- Optimization of selection cuts for this specific physics channel
- Sensitivity to Δm_{31}^2 :

Bias on a

0.00252 Δm

 $\Delta \chi^2$

Resolution

• Non-linearity and resolution parameters highly affect the estimation of Δm_{31}^2

ζ.

0.80250

0.00254

- No significant dependence on background rates
- Possibility to enlarge FV to increase signal rate

Bias on b

0.00252

 Δm_{1}^2

Bias on M Th

25

Bias on N acc

0.00254

- SNIPER MC simulations of spectral components used to extrapolate rate and shape
 - Residual rate after IBD selection cuts is obtained for reactor IBD signal and for some major background components (geo-neutrinos, ⁹Li/⁸He, accidentals)
- IBD, geo-neutrinos, ⁹Li/⁸He rates are found to be comparable with common inputs
- Accidental coincidences rate of ~ 0.17 cpd lower than previous calculation (0.8 cpd)
 - Critical input parameter for NMO analysis
 - Needs further discussion and crosschecks
- Possibility to enlarge fiducial volume + optimized cuts: better signal to noise ratio

Thank you

IBD distributions

- Treating selection variables as uncorrelated (IBD-like approach) works if:
 - Events are uniformly distributed inside LS $\rightarrow \Delta r$ distribution does not depend on FV cut
 - Energy distribution is independent of radius → After FV cut energy distribution is uniform

IBD: radial distribution

• Events are uniformly distributed inside LS $\rightarrow \Delta r$ distribution does not depend on FV cut

This plot is for delayed event

Accidental background distributions

• Are events uniformly distributed inside the

detector? Is Δr distribution depending on FV

 Is energy distribution independent of radius and uniform after FV cut?

Accidental background distributions

• Are events uniformly distributed inside the

detector? Is Δr distribution depending on FV

Is energy distribution independent of radius

Accidentals: energy distribution

- Most events inside LS are due to ¹⁴C (β spectrum end point at \approx 156 KeV)
- Note: still no access to MC truth of secondary particles

Radioactivity correlations

Correlated pairs are

identified thanks to selection

algorithm

Accidentals: Δr distribution ($\approx 10^8$ combinations)

• Δr distribution for accidentals

35

Accidentals rate calculation (prompt energy cut at 0.8 MeV)

$$R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$$

1.
$$\varepsilon = \frac{N_{sel}}{N_{comb}} = (1.30 \pm 0.01) \times 10^{-6}$$

2.
$$R_p = R_d = (39.4 \pm 0.1) \text{ Hz}$$

3.
$$\Delta t = 1 \text{ ms}$$

4.
$$R_{acc} = (0.175 \pm 0.002) \text{ evts/day}$$

Accidentals rate calculation (including correlated pairs)

$$R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$$

1.
$$\varepsilon = \frac{N_{sel}}{N_{comb}} = (1.57 \pm 0.01) \times 10^{-6}$$

2.
$$R_p = R_d = (40.6 \pm 0.3) \text{ Hz}$$

3.
$$\Delta t = 1 \text{ ms}$$

4.
$$R_{acc} = (0.224 \pm 0.004) \text{ evts/day}$$

Accidentals rate calculation (with correlated pairs + E_{prompt} > 0.8 MeV)

$$R_{acc} = R_d \cdot R_p \cdot \Delta t \cdot \varepsilon$$

1.
$$\varepsilon = \frac{N_{sel}}{N_{comb}} = (1.45 \pm 0.01) \times 10^{-6}$$

2. $R_p = R_d = 58.9 \text{ Hz}$ from radiopurity paper [7]

3. $\Delta t = 1 \text{ ms}$

4. $R_{acc} = (0.435 \pm 0.003) \text{ evts/day}$

[7] arXiv:2107.03669v2

Accidentals rate

- According to this calculation 0.8 evts/day correspond to a FV of ≈ 17.37 m
- With FV cut at 17.37 m, IBD rate increases from 47.1 to 48.4 evts/day
- Volume is increased by $\approx 2.7 \%$
- FV gain corresponds to ≈ 535 ton of liquid scintillator* (1.9 x Borexino active mass!)

*for a room temperature density of 0.86g/mL arXiv:2107.03669v2

Background spectra (CI)

⁹Li/⁸He energy distributions

⁸He energy distribution (after FV cut)

⁹Li dataset and pre-selection

OMILRec

~50k

None

No

Production configuration:

- Offline software version: J22.1.0-rc4
- Reconstruction algorithm:
- Number of events:

ORSA selection configuration:

- Spatial selection cut: $\Delta r < 3 \text{ m}$
- Temporal selection cut: $\Delta t < 2 \text{ ms}$
- Energy cuts:
- FV cut

⁸He dataset and pre-selection

Production configuration: J22.1.0-rc4 Offline software version: **OMILRec** Reconstruction algorithm: Number of events: ~50k **ORSA** selection configuration: Spatial selection cut: $\Delta r < 3 \text{ m}$ Temporal selection cut: $\Delta t < 2 \text{ ms}$ Energy cuts: None FV cut No

⁹Li: selection efficiency

1. Fiducial volume (FV) cut r < 17.2 m

2. Energy cut

- 99.6% 0.74 $E_p \in (0.7, 12) \text{ MeV}$ • Prompt energy
- Delayed energy $E_d \in (1.9, 2.5) \cup (4.4, 5.5)$ MeV 99.9% •

З. Time/vertex cut

- $\Delta t < 1 \text{ ms}$ $\Delta r < 1.5$ m •

98.4% 0.72

Efficiency

100%

91.2%

Evts/day

0.75

0.74

Combined efficiency

⁸He: selection efficiency

Combined efficiency

Geo-v energy distributions

