

Istituto Nazionale di Fisica Nucleare

SHOW WITH THE WITH TH

Università degli Studi di Padova

Accelerating Neutrino Physics Analysis with GPU Parallelization

Andrea Serafini on behalf of the Padova group

andrea.serafini@pd.infn.it

Model

- Reactor model
- Backgrounds model
- Covariances
- SNIPER
- Detector response

Cost function

- χ² (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- Nested sampling

Cost function

- χ² (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- Nested sampling

Results

- Best fit values
- Posteriors

- Correlations
 - Model selection 4

Model

- Reactor model
- Backgrounds model
- Covariances
- SNIPER
- Detector response

Cost function

- χ² (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- Nested sampling

Model

- Reactor model
- Backgrounds model
- Covariances
- SNIPER
- Detector response

Cost function

- χ² (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- Nested sampling

6

Model

- **Reactor model**
- Backgrounds model
- Covariances
- SNIPER
- Detector response

Cost function

- χ^2 (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- **Nested sampling**

Model

- Reactor model
- Backgrounds model
- Covariances
- SNIPER
- Detector response

Cost function

- χ² (Pearson, Neyman, combined)
- Likelihood (binned, extended)

Fitter

- Minuit
- Markov Chains MC
- Nested sampling

Results

Data processing

Event selection

......

Energy reconstruction

Unbinned likelihood calculation
Poisson term

$$f \\ \mathcal{L}(\theta) = P(N_{evts}|\theta) \cdot \prod_{i}^{N_{evts}} P(E_{i}, \bar{r}_{i}, t_{i}|\theta)$$
Reconstructed energy E_{rec}
 $P_{rec}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = f_{rec}(E_{i}, \bar{r}_{i}, t_{i}|\theta)$
Reconstructed energy E_{vis}
 $P_{vis}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = \int f_{vis}(E_{vis}, \bar{r}_{i}, t_{i}|\theta) \cdot G(E_{vis}, E_{i}) \cdot dE_{vis}$

Unbinned likelihood calculation
Poisson term

$$\int_{\mathcal{L}} (\theta) = P(N_{evts}|\theta) \cdot \prod_{i}^{N_{evts}} P(E_{i}, \bar{r}_{i}, t_{i}|\theta)$$
Reconstructed energy E_{rec}
 $P_{rec}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = f_{rec}(E_{i}, \bar{r}_{i}, t_{i}|\theta)$
Reconstructed energy E_{vis}
 $P_{vis}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = \int_{f_{vis}(E_{vis}, \bar{r}_{i}, t_{i}|\theta) \cdot G(E_{vis}, E_{i}) \cdot dE_{vis}$
 $P_{dep}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = \int_{f_{dep}} (nl(E_{dep}), \bar{r}_{i}, t_{i}|\theta) \cdot G(nl(E_{dep}), E_{i}) \cdot dE_{vis}$

Unbinned likelihood calculation
Poisson term

$$f(\theta) = P(N_{evts}|\theta) \cdot \prod_{i}^{N_{evts}} P(E_{i}, \bar{r}_{i}, t_{i}|\theta)$$
Reconstructed energy E_{rec} $P_{rec}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = f_{rec}(E_{i}, \bar{r}_{i}, t_{i}|\theta)$
Reconstructed energy E_{vis} $P_{vis}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = \int f_{vis}(E_{vis}, \bar{r}_{i}, t_{i}|\theta) \cdot G(E_{vis}, E_{i}) \cdot dE_{vis}$
Schullator nonlinearity of
Deposited energy E_{vis} $P_{\overline{v}}(E_{i}, \bar{r}_{i}, t_{i}|\theta) = \int f_{dep}(nl(E_{dep}), \bar{r}_{i}, t_{i}|\theta) \cdot G(nl(xs(E_{\overline{v}})), E_{i}) \cdot dE_{vis}$

Our model

Detector response:

- IBD cross section (w/ recoil) (fixed)
- Energy resolution
- Liquid scintillator nonlinearity

Neutrino oscillations:

Signal components:

PDFs (fixed)

Normalizations

Constrained with prior at 0.5%

Constrained with DayaBay prior

Constrained with prior at 5%

Unbinned likelihood numerical computation

In theory:

$$\mathcal{L}(\theta) \cong \prod_{i}^{N_{evts}} \int P(E_{vis}) \cdot G(E_{vis}, E_i) \cdot dE_{vis}$$

Unbinned likelihood numerical computation

In theory:

$$\mathcal{L}(\theta) \cong \prod_{i}^{N_{evts}} \int P(E_{vis}) \cdot G(E_{vis}, E_i) \cdot dE_{vis}$$

In practice:

- $\mathcal{L}(\theta) \rightarrow \log \mathcal{L}(\theta) \quad (\Pi \rightarrow \Sigma)$
- $\int \rightarrow \Sigma$

$$\log \mathcal{L}(\theta) \cong \sum_{i}^{N_{evts}} \log \left(\sum_{j}^{N_{bins}} P(E_j) \cdot G(E_j, E_i) \cdot \Delta E_j \right) = \sum_{i}^{N_{evts}} \log \sum_{j}^{N_{bins}} C_{i,j}$$

Unbinned likelihood numerical computation

In theory: $\mathcal{L}(\theta) \cong \prod_{i}^{N_{evts}} \int P(E_{vis}) \cdot G(E_{vis}, E_i) \cdot dE_{vis}$ $I_{i} = \mathcal{L}(\theta) \rightarrow \log \mathcal{L}(\theta) \quad (\Pi \rightarrow \Sigma)$ $\int \Delta \Sigma$ N_{evts} N_{bins} N_{bins}

$$\log \mathcal{L}(\theta) \cong \sum_{i}^{N_{evts}} \log \left(\sum_{j}^{N_{bins}} P(E_j) \cdot G(E_j, E_i) \cdot \Delta E_j \right) = \sum_{i}^{N_{evts}} \log \sum_{j}^{N_{bins}} C_{i,j}$$

Complexity scales with $N_{evts} \times N_{bins}$!

But the computation of the $C_{i,j}$ is independent \rightarrow "embarrassingly parallel" computation

Implementing parallelization in likelihood calculation

Single-thread $\Delta t = \Delta t_1 + \Delta t_2$ $\log \mathcal{L}(\theta) \cong \sum_{i}^{N_{evts}} \log \sum_{i}^{N_{bins}} C_{i,j}$ 1. **Element calculation** 2. Vector reduction 5,1 N_{bins} 5,3 N_{evts}

Implementing parallelization in likelihood calculation Δt_1 **Multi-thread** Δt_2 Δt N_{threads} $\log \mathcal{L}(\theta) \cong \sum_{i}^{N_{evts}} \log \sum_{i}^{N_{bins}} C_{i,j}$ **Element calculation** 1. 2. Vector reduction 5,1 **N**_{bins} 5,3 N_{evts}

GPU accelerators: taking parallelization to the next level

Performances: call-back time of cost function

Multi-threading implemented in both CPU and GPU!

Multi-threading on **GPU** can achieve **performances x100**

Less time for computations
+ More time for analyses [©]

A case study: Δm_{31}^2 - precision

"What if parameters are different from what we expect? (but we still manage to measure them)" \rightarrow precision loss

A case study: Δm_{31}^2 - precision

"What if parameters are different from what we expect? (but we still manage to measure them)" \rightarrow precision loss

A case study: Δm^2_{31} - precision

Important to maximize number of **selected events**:

Towards the atmospheric mass splitting Δm^2_{31} in JUNO

Vanessa Cerrone, on behalf of the Padova analysis group 29/03/2022 -- JUNO Italia meeting, Roma Tre Università e INFN

A case study: Δm_{31}^2 - accuracy

"What if we fail in fitting/estimating one or more parameter?" \rightarrow possible bias, accuracy loss

A case study: Δm_{31}^2 - accuracy

"What if we fail in fitting/estimating one or more parameter?" \rightarrow possible bias, accuracy loss

Final remarks

- » Unbinned likelihood gives us more freedom in treating space/time-dependent effects:
 - performs comparably to binned likelihood/ χ^2 when no additional info is provided \rightarrow we need to test performances when space/time effects are included
- » In unbinned likelihood computation time scales linearly with the number of events
 - luckily the N_{evts} × N_{bins} computations required are almost fully independent
 → perfect for parallelization
- » **GPUs** are a "no-brainer" when considering **parallelization**
 - Multi-threading implemented in the ORSA fitting framework for both GPU and CPU
 → x100 reduction in computation time
 (e.g., only 10 seconds for an Asimov binned fit with Minuit)