

Sez. Milano-Bicocca

Update of LAB, acrylic and PPO measurements at Bicocca

JUNO Italia meeting – Università di Roma Tre 28-29th March 2023

Radiopurity LAB measurements

In the last months we have worked on a **measurement procedures** suitable to achieve the required sensitivity

Juno baseline request for LAB: 238 U, 232 Th, 40 K < $1 \cdot 10^{-15}$ g/g

In the latest test (before July 2022) we have achieved sensitivity at ppq level for ²³⁸U, ²³²Th and ⁴⁰K

(JUNO-doc-8698-v1)

After July 2022:

Uranium and Thorium

We studied the repeatibility of the method

Potassium

We studied chemical/radiochemical efficiency process

Main steps for ²³⁸U and ²³²Th measurements

Cleaning protocol (Pre-Irradiation)

Any manipulation or treatment of the sample could introduce contaminations before irradiation

Chemical/Radiochemical
Treatments
(Pre-Irradiation)

Allows to **remove interferences** and **concentrate** the sample

Sample irradiation

Allows to transform long life nuclide ²³⁸U/²³²Th into the radioactive short life ²³⁹Np/²³³Pa nuclide. Sensitivity <1ppt

$$^{232}_{90}Th + n \longrightarrow ^{233}_{91}Pa$$
 $^{238}_{92}U + n \longrightarrow ^{239}_{93}Np$

Radiochemical Treatments (Post-Irradiation)

Remove **remaining** interferences

γ measurements

We developed a new detector suitable to $\beta - \gamma$ coincidence measurements on liquid irradiated samples

Blank measurements

In september 2022 we have performed a new measurement on a blank sample

The blank went through all processing steps just without LAB

Date	Blank	²³⁸ U[g/g]	²³² Th[g/g]
March 2022 – T1	Mass sample 228g	(7,9±1,4)·10 ⁻¹⁵	<4,4·10 ⁻¹⁴
Sept 2022 – T2 Mass sample 230g		(9,5±1,0)·10 ⁻¹⁵	<2,4·10 ⁻¹⁴

limits @ 90% C.L.

Results achieved in September 2022 confirm the **reliability** of the measurements

Rescaling results for a LAB mass of 1kg we could achieve a sensitivity:

2·10⁻¹⁵g/g for ²³⁸U - 5·10⁻¹⁵g/g for ²³²Th

Preliminary measurement:

In october 2022 procedure has been tested on SASOL LAB sample

Sample	Mass[kg]	²³⁸ U [g/g]	²³² Th[g/g]
SASOL LAB	1	(4.9±0.3)·10 ⁻¹⁴	<4.6·10 ⁻¹⁵

Radiopurity LAB – ⁴⁰K – July 2022

Sample and container cleaning **preparation**

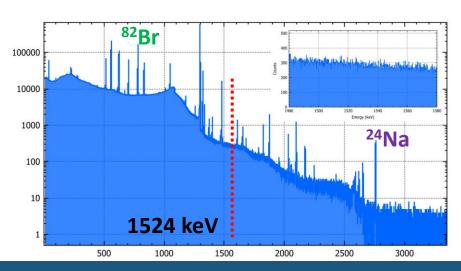
LAB + STD reference has been irradiated

γ measurements (HPGe)

Calculation of the quantity of precursor element

To study potassium contamination we irradiated a **Distilled LAB sample** (mass: **19g**)

$$n + {}^{41}K \longrightarrow {}^{42}K \xrightarrow{\beta^-} {}^{42}Ca$$


Isotopic abbundace*K*:

$$K^{39} \rightarrow \sim 93\%$$

 $K^{40} \rightarrow \sim 0.01\%$
 $K^{41} \rightarrow \sim 7\%$

Y-ray(keV)	BR(%)
312.6	0.34
1524.6	17.64

⁴⁰ K [g/g]	
< 8,3·10 ⁻¹⁵	

limits @ 90% C.L.

Potassium procedure

Sample and container cleaning **preparation**

LAB + STD reference has been irradiated

Chemical/Radiochemical Treatments

y measurements (HPGe)

Calculation of the quantity of precursor element

In order to **remove interferences** and **concentrate** the sample we have introduced two steps

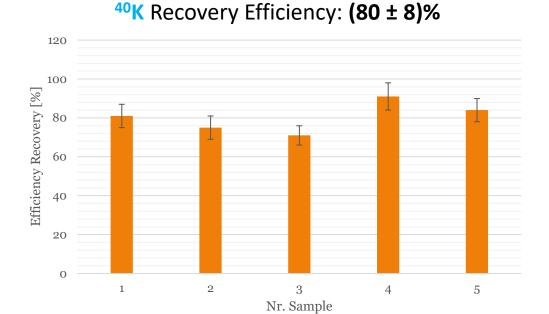
Liq-Liq Extraction

Gravimetric precipitation

Allow to transfer the contamination of **K** from **LAB sample** into a liquid solution(**NaNO**₃ + water)

Precipitation reaction allow us to **separate** potassion and deposit it on a glass filter

Well detector: ε_{rel} 60%



Preliminary results

Nr.Sample	LAB - Mass[g]
1	28
2	29
3	27
4	24
5	25

$$^{24}Na - \in_{Removal} \sim 91\%$$

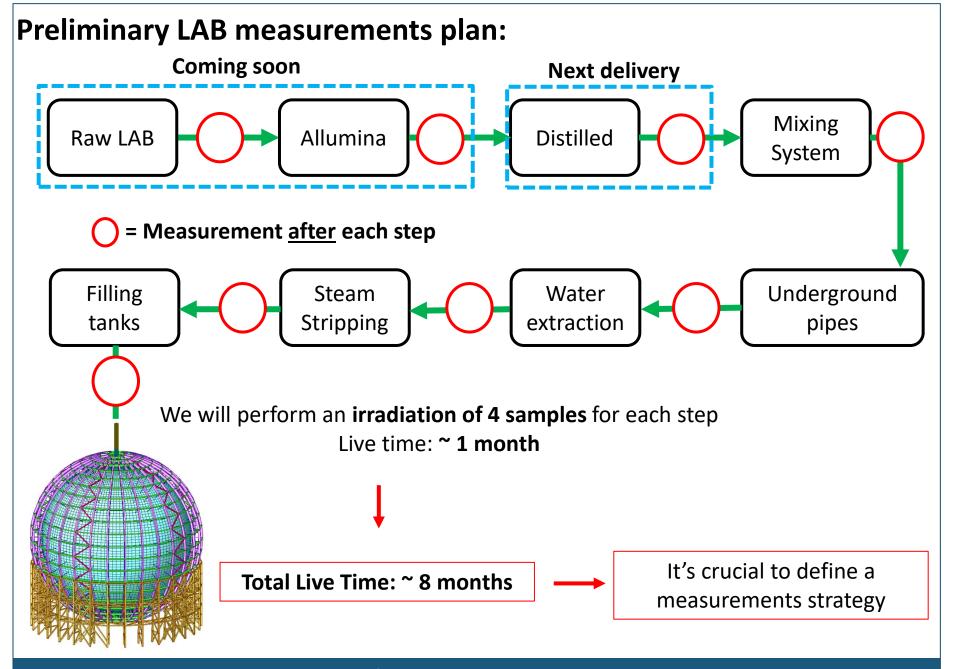
$$^{82}Br - \in_{Removal} \sim 99\%$$

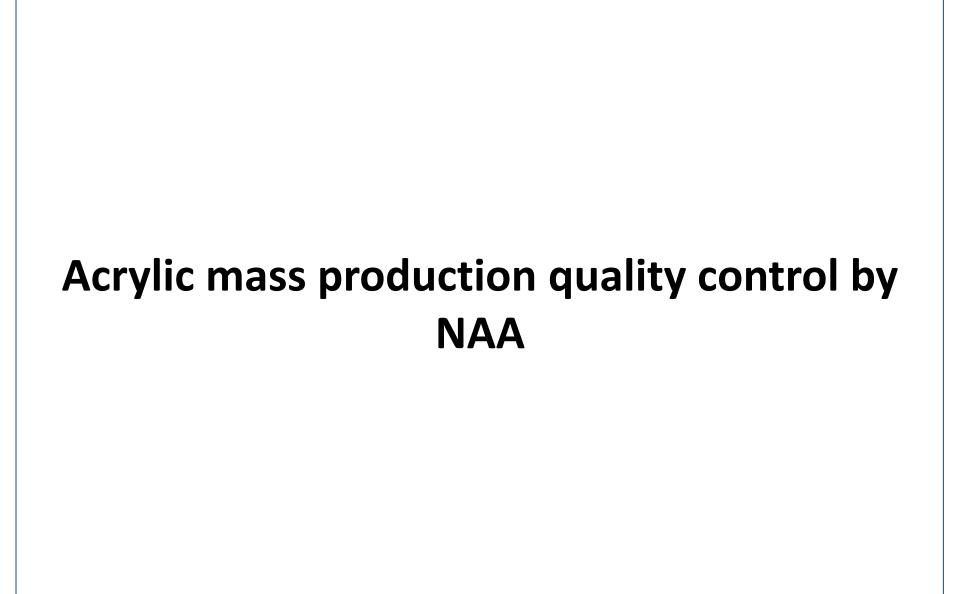
We are going to test the procedure on **LAB samples**

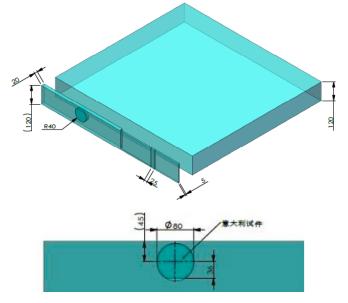
It's crucial to pay attention at the containers in which LAB is stored

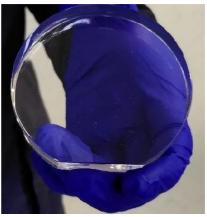
Future plan:

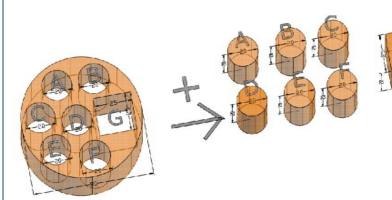
We sent to China several containers in order to get LAB samples


Containers have been **conditioned** with nitric acid and packed in **vacuum bags**

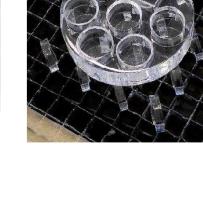





We hope that we will receive some samples in next weeks



Acrylic: Radiopurity measurements



Laser cutting of acrylic samples

Small cylinders: mass ~7g

Acrylic samples: delivery of July 2022

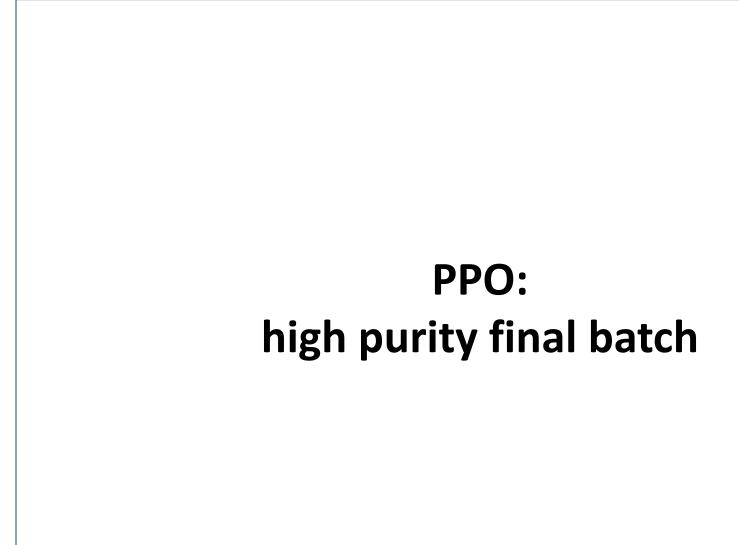
Final surface cleaning procedure

Samples received: S0305, S0309, S0313, S0401, S0407, S0413

Measured: S0305 and S0401.

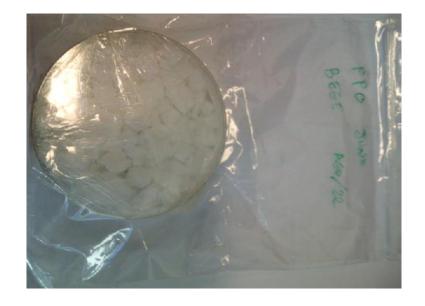
 \rightarrow

NAA on **October 26, 2022**


3 cylinders for each samples

Sample	Mass [g]	⁴⁰ K [10 ⁻¹² g/g]	²³⁸ U [10 ⁻¹² g/g]	²³² Th [10 ⁻¹² g/g]
S0305	20.9	0.35±0.02	<0.26	3.63±0.62
S0401	21.2	2.83±0.07	3.98±0.42	14.2±1.4

Noble gases inside acrylic


Sample	Mass [g]	Argon [10 ⁻⁶ g/g]	Kripton [10 ⁻⁹ g/g]
S0305	20.9	1.74±0.39	1.93±0.44
S0401	21.2	1.76±0.40	1.66±0.38

Gases are probably incorporated during panel production

HPGe measurement

Received on July 21, 2022

- Mass 0.083 kg
- Diameter 90 mm, height 20 mm
- Measuring time: 932 h

	Activity [Bq/kg]
²³² Th	
²²⁸ Ac	<0,04
²⁰⁸ TI	<0,03
²³⁸ U	
²²⁶ Ra	<0,18
²¹⁴ Bi	<0,04
²³⁵ U	<0,01
⁴⁰ K	<0,3
⁶⁰ Co	<0,01
¹³⁷ Cs	<0,01

CL 90%

PPO HP: NAA measurements

Irradiation of November 29, 2022

Sample	Mass [g]	⁴⁰ K	²³⁸ U	²³² Th
		[10 ⁻¹² g/g]	[10 ⁻¹² g/g]	[10 ⁻¹² g/g]
PPO HP	44.8	0.33±0.01	<0.5	2.9±0.4

We detected also the presence of Ar and Kr gases in the PPO sample

Sample	Mass [g]	Argon [10 ⁻⁶ g/g]	Kripton [10 ⁻⁹ g/g]
РРО НР	44.8	2.19±0.46	0.40±0.07

After NAA irradiation

Irradiation of February 16, 2023

Sample - from the same batch of previous measurement - washed with MilliQ water before irradiation to remove eventual dust (no washing was performed on the sample irradiated in November 2022)

Sample	Mass [g]	⁴⁰ K [10 ⁻¹² g/g]	²³⁸ U [10 ⁻¹² g/g]	²³² Th [10 ⁻¹² g/g]
PPO HP	30.1	0.24 ± 0.01	< 0.5	< 0.7

Next measurements: 1 bis-MSB + 2 PPO samples from China