The impact of the liquid scintillator optical properties on the energy resolution

1

Marco Malabarba: marco.malabarba@mi.infn.it Università degli studi di Milano & INFN JUNO Italian Meeting 28/03/2023

OUTLINE

- Liquid scintillator properties:
 - → Optical phenomena implemented in SNiPER;
 - → SNiPER Monte Carlo simulations;
 - → Impact of a few optical properties on the energy resolution;

- Experimental measurements in Milan:
 - → Impact of the refractive index;
 - → Impact of the newly measured spectrum;

LS PARAMETERS

Plots from the JUNOwiki page: <u>https://juno.ihep.ac.cn/mediawiki/index.php/Analysis:Basic_Distributions_of_JUNO</u>

When: 2021

A PLOT OF THE LS PARAMETERS

A PLOT OF THE LS PARAMETERS

From: Daya Bay inherited

Fluorescence times

PARTICLE	τ_1 [ns] /	$\tau_2 \text{ [ns]} /$	τ_3 [ns] /	$\tau_4 \text{ [ns]} /$
	ratio	ratio	ratio	ratio
e^-,e^+,γ	4.6 /	15.1 /	76.1 /	397 /
	70.7%	20.5%	6.0%	2.8%
p, n	4.5 /	15.7 /	76.2 /	367 /
	61.4%	23.2%	9.0%	6.4%
α	4.345 /	17.64 /	89.045 /	544.48 /
	49.82%	27.39%	14.67%	8.12%

From: e⁻ and p Munich α unknown

When: e⁻ and p 2021 α recent

When: <2015

SNIPER SIMULATIONS

To evaluate the impact of the scattering, absorption, re-emission, Cherenkov and quenching:

- 1. "Ideal" liquid scintillator (no scattering, absorption, re-emission, quenching and Cherenkov)
- 2. Scattering, absorption and re-emission enabled;
- 3. All the optical phenomena enabled;

SNIPER SIMULATIONS: THE METHOD

- Version of SNiPER used: J22.1.0-rc4 with the new parameters; (LY=9846/MeV, fC=0.51, k_B= 12.05e3*g/cm2/MeV, k_c=0) (see doc-DB 8400);
- All the primary particles were generated near the center of the detector (r=25cm).

PARTICLE	E _{kin}
e+	[0 - 9] MeV
e-	[0.5 - 9] MeV

ENERGY RESOLUTION STUDIES: THE METHOD

ENERGY RESOLUTION STUDIES: THE METHOD

E(e-)=4MeV

ENERGY RESOLUTION WITH AN IDEAL SCINTILLATOR

Positron results

Energy resolution @ 1.022MeV: (2.17 ± 0.03) %

> $a = (2.14 \pm 0.05) \%$ $b = (0.22 \pm 0.06) \%$ $c = (0.43 \pm 0.33) \%$

> > Elisa Percalli's talk

With **7 years** of **data-taking**, the **neutrino mass ordering sensitivity** is <u>**5.0**</u> σ

11

ENERGY RESOLUTION WITH PROPAGATION EFFECTS

Positron results

Energy resolution @ 1.022MeV: (2.63 ± 0.04) %

> a = (2.39± 0.06) % b = (0.36 ± 0.05) % c = (1.16 ± 0.17) %

With **7 years** of **data-taking**, the **neutrino mass ordering sensitivity** is <u>**3.9**</u> σ

ENERGY RESOLUTION FOR POSITRONS

Positron results

Energy resolution @ 1.022MeV: (3.19 ± 0.05) %

> a = (2.36 ± 0.09) % b = (0.72 ± 0.04) % c = (2.17 ± 0.13) %

With **7 years** of **data-taking**, the **neutrino mass ordering sensitivity** is <u>**3.0**</u> σ

ENERGY RESOLUTION FOR ELECTRON

Electrons results

Energy resolution @ 1MeV: $(2.21 \pm 0.03) \%$ $a = (2.09 \pm 0.06) \%$ $b = (0.29 \pm 0.07) \%$ $c = (0.49 \pm 0.19) \%$

Energy resolution @ 1MeV: (2.60 ± 0.04) % $a = (2.50 \pm 0.05)$ % $b = (0.33 \pm 0.06)$ % $c = (0.73 \pm 0.13)$ %

Energy resolution @ 1MeV: $(2.74 \pm 0.05) \%$ $a = (2.53 \pm 0.09) \%$ $b = (0.72 \pm 0.04) \%$ $c = (2.92 \pm 0.17) \%$

LS OPTICAL PROPERTY MEASUREMENTS

The currently implemented **LS optical properties** are **outdated** and were measured for different scintillators and they impact on JUNO energy resolution

⇒ Many groups are working on new measurements of JUNO LS optical properties

In Milan we are working on the measurements of:

- refractive index;
- **<u>emission spectrum</u>** (with the collaboration of Perugia's group);
- fluorescence times;
- absorption;

THE GOAL OF THE SIMULATION STUDIES

In Milan we are measuring the JUNO LS refractive index in the range ~400nm - ~1000nm with a refractometer

 \rightarrow Gioele Reina's talk

THE GOAL OF THE SIMULATION STUDIES

In Milan we are measuring the JUNO LS refractive index in the range ~400nm - ~1000nm with a refractometer

The refractive index since is a very important parameter as it is related with the Cherenkov radiation which:

has a huge impact on the energy resolution;

- carries information on the event directionality.

THE GOAL OF THE SIMULATION STUDIES

In Milan we are measuring the JUNO LS refractive index in the range ~400nm - ~1000nm with a refractometer

We want to **understand** through simulations:

• How much the **refractive index impacts** on the **energy resolution**;

When we will have our data we will be able to **provide** a **better energy resolution** estimate

• How much the **refractive index impacts** on the **event reconstruction** (energy and position).

We can **understand** the **precision needed** for the measurement

SIMULATIONS VARYING THE REFRACTIVE INDEX

To study the **impact** of the **refractive index on** the **energy resolution** the refractive index was modified: its **default values were changed of various percentages**

SIMULATIONS VARYING THE REFRACTIVE INDEX

To study the **impact** of the **refractive index on** the **energy resolution** the refractive index was modified: its **default values were changed of various percentages**

SIMULATIONS VARYING THE REFRACTIVE INDEX

To study the **impact** of the **refractive index on** the **energy resolution** the refractive index was modified: its **default values were changed of various percentages**

Such huge variations are **still possible**, especially at **low wavelength**

The variations were executed at high wavelength as well to be as conservative as possible

HOW TO CHANGE THE DEFAULT REFRACTIVE INDEX

python tut_detsim.py --no-gdml --evtmax 500 --seed 8684843 --output [detsim_rootfile] --user-output [detsim_user_rootfile] –cerenkov-yield 0.51 <u>--replace-param</u>

Material.LS.ConstantProperty.ScintillationYield:9846/MeV,Material.LS.scale.LSL Y_NewPMTModelScale:1.0,Material.LS.ConstantProperty.BirksConstant1:0.012 05*g/cm2/MeV,Material.LS.ConstantProperty.BirksConstant2:0.0,**Material.LS. RINDEX**:RINDEX_MODIFIED_MINUS_5_PERCENT --anamgr-normal-hit gun --particles e- --momentums 1.0 --momentums-interp KineticEnergy --volume pTarget --material LS --volume-radius-max 250

HOW TO CHANGE THE DEFAULT REFRACTIVE INDEX

1.55 *eV 1.404195 python tut_detsim.py -- no 2.10499 *eV 1.406 [detsim_rootfile] --user-OL2.27077 *eV 1.411795 --replace-param *eV 1.416925 2.55111 2.84498 *eV 1.420725 Material.LS.ConstantProp 3.06361 *eV 1.42386 Y NewPMTModelScale:1.(4.13281 *eV 1.45008 05*g/cm2/MeV,Material.L 6.2 *eV 1.537575 6.526 *eV 1.53672 RINDEX:RINDEX_MODIFIE6.889 *eV 1.45065 --particles e- --momentum 7.294 *eV 1.476775 pTarget -- material LS -- vol 8.267 *eV 1.70335 8.857 *eV 1.58099 9.538 *eV 1.476775 10.33 *eV 1.38092 15.5 *eV 1.0

ed 8684843 --output le] –cerenkov-yield 0.51

16/MeV,Material.LS.scale.LSL pperty.BirksConstant1:0.012 Constant2:0.0,**Material.LS.** anamgr-normal-hit gun rp KineticEnergy --volume

RESULTS VARYING THE REFRACTIVE INDEX

e+ results

25

e- results

28

THE EMISSION SPECTRUM

SIMULATIONS VARYING THE EMISSION SPECTRUM

With the precious collaboration of Perugia's group we have recently measured the emission spectrum of JUNO LS as well:

SIMULATIONS VARYING THE EMISSION SPECTRUM

With the precious collaboration of Perugia's group we have recently measured the emission spectrum of JUNO LS as well:

SIMILARITIES:

- Double peak, 1st at ~400nm, 2nd at ~425nm;
- Very similar descending profiles after the second peak.

DIFFERENCES:

- Main peak;
- Different ascending profile.

SIMULATIONS VARYING THE EMISSION SPECTRUM

With the precious collaboration of Perugia's group we have recently measured the emission spectrum of JUNO LS as well:

SIMILARITIES:

- Double peak, 1st at ~400nm, 2nd at ~425nm;
- Very similar descending profiles after the second peak.

DIFFERENCES:

- Main peak;
- Different ascending profile.

HOW TO MODIFY THE EMISSION SPECTRUM

python tut_detsim.py --no-gdml --evtmax 500 --seed 8684843 --output [detsim_rootfile] --user-output [detsim_user_rootfile] –cerenkov-yield 0.51 <u>--replace-param</u>

Material.LS.ConstantProperty.ScintillationYield:9846/MeV,Material.LS.scale.LSL Y_NewPMTModelScale:1.0,Material.LS.ConstantProperty.BirksConstant1:0.012 05*g/cm2/MeV,Material.LS.ConstantProperty.BirksConstant2:0.0,**Material.LS. FASTCOMPONENT**:EMISSION_SHELDON,**Material.LS.SLOWCOMPONENT**:EMI SSION_SHELDON --anamgr-normal-hit gun --particles e- --momentums 1.0 --momentums-interp KineticEnergy --volume pTarget --material LS --volume-radius-max 250

THE IMPACT OF THE EMISSION SPECTRUM ON THE ENERGY RESOLUTION

Positron results

Energy resolution worsens

with the newly measured spectrum

Energy resolution @ $1.022 \text{MeV}: (2.95 \pm 0.05) \%$ $a = 2.34 \pm 0.08$ $b = 0.63 \pm 0.04$ $c = 1.80 \pm 0.14$

Energy resolution @ 1.022MeV: (3.13 ± 0.03) % a = 2.59 ± 0.08 b = 0.59 ± 0.04 c = 1.61 ± 0.17

THE IMPACT OF THE EMISSION SPECTRUM ON THE ENERGY RESOLUTION

Electron results

Energy resolution worsens

with the newly measured spectrum

Energy resolution @ $1 \text{MeV}: (2.55 \pm 0.04) \%$ $a = 2.49 \pm 0.06$ $b = 0.62 \pm 0.04$ $c = 0.36 \pm 0.27$

Energy resolution @ $1 \text{MeV}: (2.76 \pm 0.04) \%$ $a = 2.65 \pm 0.03$ $b = 0.63 \pm 0.03$ $c = 0.0 \pm 0.4$

AN EXPLANATION FOR THE RESULTS

CONCLUSIONS

- Many **liquid scintillator optical properties** have a significant **impact** on the **energy resolution** and hence on neutrino mass ordering sensitivity: their precise measurements are required;
- We are currently measuring JUNO LS refractive index and emission spectrum;
- The refractive index has **a small impact on the energy resolution**;
- With the collaboration of Perugia's group we **measured** the LS **emission spectrum** as well. Due to a small peak around 360nm, the simulations with our spectrum show that the **energy resolution worsens significantly**.

THE MEASUREMENT OF THE REFRACTIVE INDEX

Refer to: Gioele Reina (<u>gioele.reina@mi.infn.it</u>), Marco Beretta (<u>marco.beretta@unimi.it</u>), Davide Basilico (<u>davide.basilico@mi.infn.it</u>) for further details

The Cherenkov, the Rayleigh scattering and the absorption were turned on again:

e+ results, WIP

The Cherenkov, the Rayleigh scattering and the absorption were turned on again:

