

Timing and optical properties of the JUNO liquid scintillator

Meeting JUNO-Italia 28-29 Marzo 2023

INFN-Milano:

Davide Basilico, <u>Marco Beretta</u>, Augusto Brigatti, Barbara Caccianiga, <u>Federico Ferraro</u>, Cecilia Landini, Paolo Lombardi, Alessandra Re, Gioele Reina

> INFN-Perugia: Catia Clementi, Aldo, Fausto Ortica, Aldo Romani

Index

Introduction

- SHELDON: time distribution
- Emission spectrum
- Absorbance
- Conclusions

Introduction

- Optical properties of the liquid scintillator are of crucial importance to JUNO
 → this talk
- We developed an experimental setup (SHELDON) to measure the time distribution of light and the Cherenkov contribution in the JUNO liquid scintillator → this talk
- We developed another experimental setup (SHELDON-REWIND) to measure the refractive index and the group velocity at different wavelengths
 → next talk by Gioele Reina
- We are also working on the impact of our experimental result on JUNO SNiPER → next to next talk by Marco Malabarba

Index

Introduction

- SHELDON: time distribution
- Emission spectrum
- Absorbance
- Conclusions

The SHELDON project: scientific goals

Separation of cHErenkov Light for Directionality Of Neutrino

Two main goals:

Accurate measurement of fluorescence time distribution (fluorescence parameters)

Impact on the JUNO experiment:

- event reconstruction
- particle identification via PSD
- improved description of fluorescence parameters in the JUNO MC

Study of the Cherenkov radiation in the JUNO LS (relative contribution)

Impact on the JUNO experiment:

- Improved understanding of energy response
- Possible reconstruction of the direction of incident neutrino

SHELDON's laboratory @ UNIMI

JUNO LS recipe: LAB + 2.5 g/L PPO + 3.0 mg/L bis-MSB

SHELDON: overview of the setup

Components of the setup:

JUNO LS sample

2 PMTs, one weakly coupled

Neutral filter

2 Digitizers (5 GS/s each)

LabVIEW DAQ software

Technique:

Time-Correlated Single Photon Counting

SHELDON: implementation of veto system

Components of the setup:

2 plastic scintillators EJ 200 Linear Edge Discriminator Coincidence Unit 3rd Digitizer (5 GS/s)

Improved LabVIEW DAQ software

INSTALLED

SHELDON: fluorescence time distribution

Alpha source fluorescence time distribution

Normalized **fluorescence** time distribution obtained using an alpha source

10⁶ events (obtained in 10 days)

Light emission is **not** prompt

SHELDON: fit model

To describe the fluorescence time distribution **4 components** are needed

The fourth component becomes dominant after ~300 ns

DAQ time window: 1600 ns

SHELDON: preliminary results

Measurement of **fluorescence time distribution** using two different radioactive sources

The two curves have different tails

We have measured this using the muon veto

We have to measure the proton time profile using an AmBe source

	τ_1 [ns]	$ au_2$ [ns]	$ au_3$ [ns]	τ_4 [ns]
α	4.52 ± 0.02	19.22 ± 0.32	96.5 ± 1.9	619 ± 11
e^-	4.51 ± 0.01	17.37 ± 0.21	82121±1.9	503 ± 8
	q_1 [%]	ga PSRY	q ₃ [%]	q_4 [%]
lpha	56.87 ± 0.2 %	22.84 ± 0.22	12.78 ± 0.16	8.27 ± 0.62
e^-	66.81 ± 0.50	21.67 ± 0.40	7.45 ± 0.14	4.44 ± 0.65

We have measured the time profile for alpha and beta sources with veto

SHELDON: preliminary results

Measurement of **fluorescence time distribution** using two different radioactive sources

The two curves have different tails

We have measured this using the muon veto

We have to measure the proton time profile using an AmBe source

	$\tau_1 [ns]$	τ_2 [ns]	$\tau_3 [ns]$	τ_4 [ns]
α	4.52 ± 0.02	19.22 ± 0.32	96.5 ± 1.9	619 ± 11
e^-	4.51 ± 0.01	17.37 ± 0.21	82.2±1.9	503 ± 8
	$q_1 \begin{bmatrix} 07\\ 70 \end{bmatrix}$	ga PSR	q_3 [%]	<i>q</i> ₄ [70]
α	56.87 ± 0.29	22.84 ± 0.22	12.78 ± 0.16	8.27 ± 0.62
e^-	66.81 ± 0.50	21.67 ± 0.40	7.45 ± 0.14	4.44 ± 0.65
	statistical uncertainties only			

We have measured the time profile for alpha and beta sources with veto

Fluorescence time in SNiPER

Particles	Fast(ns)/ Ratio	Slow(ns)/ Ratio	Slower(ns)/ Ratio	Slowest(ns)/ Ratio
n, p^+	4.5/61.4%	15.7/23.2%	76.2/9.0%	367/6.4%
α	4.345/49.82%	17.64/27.39%	89.045/14.67%	544.48/8.12%

Talk of Yaoguang Wang "Detector simulation status" 18/07/2022

Fluorescence time in SNiPER

	Provided by the	e Munich group as prel	iminary results	Slowest(ns)/ Ratio
Particles	Fast(ns)/ Ratio	Slow(ns)/ Ratio	Slower(ns)/ Ratio	
γ, e^+, e^-	4.6/70.7%	15.1/20.5%	76.1/6.0%	397/2.8%
n, p ⁺	4.5/61.4%	15.7/23.2%	76.2/9.0%	367/6.4%
α	4.345/49.82%	17.64/27.39%	89.045/14.67%	544.48/8.12%

Talk of Yaoguang Wang "Detector simulation status" 18/07/2022

Fluorescence time in SNiPER

	Provided by the Munich group as preliminary results			
Particles	Fast(ns)/ Ratio	Slow(ns)/ Ratio	Slower(ns)/ Ratio	Slowest(ns)/ Ratio
γ,e ⁺ ,e [−]	4.6/70.7%	15.1/20.5%	76.1/6.0%	397/2.8%
n, p ⁺	4.5/61.4%	15.7/23.2%	76.2/9.0%	367/6.4%
α	4.345/49.82%	17.64/27.39%	89.045/14.67%	544.48/8.12%

Talk of Yaoguang Wang "Detector simulation status" 18/07/2022

We still don't know the source of this parameters

Fluorescence time in SNiPER: comparison

Fluorescence time in SNiPER: comparison

Fluorescence time in SNiPER: comparison

One difference in our measurements is the different LAB used as solvent: Sasol (Milano) vs Helm (Munich)

Another difference is the in the analysis: analytical vs numerical convolution, IRF, ...

The LAB that we used (SASOL) is different from the LAB used by the Munich group (HELM) whose results are in SNiPER

2 LS samples produced in Perugia,SASOL and HELM, distributed both toMilan and Munich

DecayTime counts 10-2 10-3 E 10-4 10⁻⁵ 10-6 200 400 600 800 1200 1400 1600 1000 0 time (ns)

Fluorescence time distribution obtained using a ⁶⁰Co source

The measured time distribution is very similar

statistical uncertainties only

Index

- Introduction
- SHELDON: time distribution
- Emission spectrum
- Absorbance
- Conclusions

Measured @ Università degli Studi di Perugia thanks to: Fausto, Aldo e Catia

JUNO LS mixtures produced, in Perugia, using Sasol LAB and Helm LAB have:

• Different light yield

Measured @ Università degli Studi di Perugia thanks to: Fausto, Aldo e Catia

JUNO LS recipe: LAB + 2.5 g/L PPO + 3.0 mg/L bis-MSB

JUNO LS mixtures produced, in Perugia, using Sasol LAB and Helm LAB have:

- Different light yield
- Similar spectrum

JUNO LS recipe: LAB + 2.5 g/L PPO + 3.0 mg/L bis-MSB

JUNO LS mixtures produced, in Perugia, using Sasol LAB and Helm LAB have:

- Different light yield
- Similar spectrum

The spectrum implemented in SNiPER is different!

JUNO LS recipe: LAB + 2.5 g/L PPO + 3.0 mg/L bis-MSB

DB LS recipe: LAB + 3.0 g/L PPO + 15 mg/L bis-MSB

JUNO LS mixtures produced, in Perugia, using Sasol LAB and Helm LAB have:

- Different light yield
- Similar spectrum

The spectrum implemented in SNiPER is different!

 \rightarrow it was inherited from DayaBay

Index

- Introduction
- SHELDON: Time profile measurement
- Emission spectrum
- Absorbance
- Conclusions

Absorbance

Measured using a Jasco V-760 spectrophotometer in Milan

Absorbance

This parameter is expected to be much different after on-site purification

Index

- Introduction
- SHELDON: Time profile measurement
- Emission spectrum
- Absorbance
- Conclusions

Conclusions

- We proved that observed **differences** with respect to other existing measurements on fluorescence parameters are **not due to different producers**
- The emission spectra of LAB from different producers show different yield but the overall shape is the same
- We observe **very small differences in the absorbance**, but we expect it to be much different after on-site purification
- Our results on the fluorescence parameters can be inserted in SNiPER to evaluate their impact on event reconstruction and Pulse-Shape Discrimination
- We are still improving our analysis on the **fluorescence time distribution** to achieve solid, accurate results

Thank you for your attention

Backup

single-photon counting set -up

Fluorescence decay of LAB samples

SHELDON: Impulse Response Function

SHELDON: Impulse Response Function

Normalized couts

Diffuser **HL PMT** LS sample 0 Neutral filter + LL PMT Optical fiber

The measurement of the Impulse Response Function is performed using a laser.

The laser has a pulse duration of 75 ps.

A diffuser is placed at the end of the optic fibre to mimic a point like emission

Measurement of fluorescence time profile with the single photon counting technique

Time-correlated single photon counting (TCSPC) is a technique to measure the fluorescence decay time.

Under certain hypothesis ($R_{sp} \leq R_{tr}$), the time of arrival of the photons w.r.t. to the trigger reproduces the fluorescence time distribution.

In our application, one PMT provides the START signal (trigger) and the other PMT gives the STOP signal.

Index

• The SHELDON project

- Measurement of fluorescence parameters
- Separation of the Cherenkov contribution
- Evaluation of the Cherenkov contribution
- Conclusion

Cherenkov contribution at different wavelengths

Cherenkov light can be separated from scintillation light thanks to its spectral features.

The JUNO LS emission spectrum has a maximum at 400 nm

The Cherenkov spectrum (not to scale) decreases as $1/\lambda^2$ and extends above the scintillation spectrum.

Using appropriate optical filters it is possible to select the light in a **desired wavelength interval**, separating scintillation and Cherenkov light.

44

Cherenkov contribution at different wavelengths

45 marco.beretta@unimi.it

Cherenkov contribution at different wavelengths

JUNO EU-AM 24-25 October

marco.beretta@unimi.it

46

Index

• The SHELDON project

- Measurement of fluorescence parameters
- Separation of the Cherenkov contribution
- Evaluation of the Cherenkov contribution
- Conclusion

Evaluation of the Cherenkov contribution

Using the new measurement of the **refractive index**

-> Gioele Reina's Talk

And a Geant4 simulation of our setup developed by Gioele Reina

(master student @ UNIMI)

48

Evaluation of the Cherenkov contribution

Using the new measurement of the refractive index

-> Gioele Reina's Talk

And a Geant4 simulation

of our setup

developed by

Gioele Reina

(master student @ UNIMI)

marco.beretta@unimi.it

Evaluation of the Cherenkov contribution

We will measure the Cherenkov contribution in the JUNO LS comparing real data with simulations

marco.beretta@unimi.it

50