

JUNO @ Ferrara Report – 28 marzo 2023

Fabio Mantovani – mantovani@fe.infn.it

Istituto Nazionale di Fisica Nucleare

Università degli Studi di Ferrara

Two techniques to enhance particle reconstruction in JUNO: Liquid Scintillator purification and Waveform analysis

Michele Montuschi

Supervisor: Prof. Fabio Mantovani

Ph.D. in Physics – Cycle XXXV – Ferrara, 17 March 2023

Summary

- JUNO Overview
- Liquid scintillator physics
- Technological challenges
- Distillation Plant
- Steam Stripping Plant
- Realization and assembly
- Conclusions

Distillation

Steam Stripping

Realization

- The plants were assembled in skids for an easier shipping and mounting
- Skids and tanks were assembled at Polaris s.r.l. (Misinto):
 - Realization of pipes and connections
 - Pre-assembly carried out horizontally
 - Disassembled system in single skids for shipping
- All connections and the most delicate parts have been assembled by us
- Every component and connection of the system has been tested:
 - Pneumatic and vacuum test
 - Roughness and cleaning quality control
 - Helium leak test
 - Single leak rate < 10⁻⁸ mbarL/s
 - Integral leak rate < 10⁻⁶ mbarL/s

Distillation plant construction

• Where:

installation in the Over Ground LS building

• When:

25 April 2022 - start of the Distillation plant installation5 May 2022 - end of "Phase 1" of Distillation plant installation

- 6 skids, 1 vertical tank, 1 horizontal tank, 1 pump skid
- Main issues:
 - Installation to be performed from the roof of the building using dedicated truck cranes (QY220T – 220 tons truck crane; QY25T – 25 tons truck crane)
 - Removal of the roof of the building
 - Some heavy and large flanges need to be mounted (DN500 DN1000 flanges)
 - Huge plant, a lot of components, to be aligned very precisely (1 mm)

Assembling of the distillation column and vertical tanks

Final Assembly

Construction of the column

Steam stripping final assembly

I helped to design and to build a pilot LS purification system, focusing on the control system and operations. As a result, the LS absorption length increased to 24.4m and Rn content was reduced by 96%

Final Plant Design

Conclusions

I contributed to LS purification plant design, implementing the control system and writing the operative procedures. This allowed to comply with the European (PED and ATEX) & Chinese (SELO) safety standards and JUNO collaboration's physics/technical constraints (Flow = 7000 l/h, T<210 °C, energy recovery).

Combining LOC and ROL geoneutrino signals Some sketches

General picture

ROC (Local Crust): portion of crust of 10° x 10° centered in JUNO.

ROL (Rest of Lithosphere): continental lithospheric mantle and the remaining crust obtained subtracting the LOC.

MANTLE: sublithospheric mantle

TOTAL: ROL + LOC + Mantle

	Oscillated geoneutrino flux [10 ⁶ cm ⁻² s ⁻¹]		
	U	Th	Th/U
LOC	X ± Y		
ROL			
LOC+ ROL			
Mantle Poor H			
Mantle Medium H			
Mantle High H			
Total Poor H			
Total Medium H			
Total High H			

We need the Probability Density Functions (PDF)

	Oscillated geoneutrino flux [10 ⁶ cm ⁻² s ⁻¹]			
	U	Th	Th/U	
LOC	X _L ^{+YL1} _{-YL2}			
ROL	$X_{R}^{+YR1}_{-YR2}$			
LOC+ ROL				

Combining LOC + ROL

Recognizing (LOC+ROL) in experimental spectrum..

Subtracting (LOC+ROL) from experimental spectrum..

Subtracting (LOC+ROL) from experimental spectrum..

Si sta lavorando bene 🙂