EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Introduction

WP9 – RF, Magnets & Beamline Components
WP leaders: S. Antipov, F. Nguyen
1st Meeting on March 15th 2023

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

What is about and how it started

European Plasma Research Accelerator with eXcellence In Applications

EuPRAXIA

2020 Publication of Conceptual Design Report 600+ page CDR, 240 scientists contributed

EUPRAXIA

A European Strategy for Accelerator Innovation

Horizon2020

PRESENT EXPERIMENTS

Demonstrating 100 GV/m routinely

Demonstrating **GeV** electron beams

Demonstrating basic **quality**

ESFRI Landmarks Roadmap 2021

(Physical Sciences & Engineering)

Two new entries in 2021: **Einstein Telescope (ET)** and **EuPRAXIA** EuPRAXIA is the only accelerator facility selected in the last 6 years EuPRAXIA is the first plasma accelerator facility ever included

R. Assmann – EuPRAXIA 1st Workshop – 29 June 2016

EuPRAXIA INFRASTRUCTURE

Engineering a high quality, compact plasma accelerator

5 GeV electron beam for the 2020's

Demonstrating user readiness

Pilot users from FEL, HEP, medicine, ...

PRODUCTION FACILITIES

Plasma-based **linear** collider in 2040's

Plasma-based **FEL** in 2030's

Medical, industrial applications soon

Preparatory Phase Main Goals

- Technical WP's (correspond to Project Clusters):
 - Update of CDR concepts and parameters, towards technical design (full technical design requires more funding)
 - Specify in detail Excellence Centers and their required funding: TDR related R&D, prototyping, contributions to construction
 - Help in defining funding applications for various agencies
- Output defined in milestones & deliverables with dates

- Compact magnets (both electromagnets and permanent magnets) for beam capture and transport
- Radiofrequency high power sources and structures for conventional acceleration
- Governing Board Magnetic undulators for f (Decision-making body) tron laser Steering production Committee Scientific Advisory Board **Technical &** Industrial Advisory Not into Plasma (WP10), Laser (WP12) or D Board WP13) components **Board of Financial** different WPs! \rightarrow It does not mean to prevent synergie Sponsors

Important feedback: constraints from the 2nd site choice (WP16 outcomes)

High quality, high stability electron and photon beams in compact physical layout

WP7 - E-Needs and Data Policy WP13 - Diagnostics R. Fonseca, IST S. Pioli, INFN WP8 - Theory & Simulation J. Vieria. IST Paths H. Vincenti, CEA WP9 - RF, Magnets & Beamline Components S. Antipov. DESY F. Nguyen, ENEA WP10 - Plasma Components & Systems K. Cassou, CNRS J. Osterhoff, DESY WP11 - Applications G. Sarri, U Belfast E. Chiadroni, U Sapienza WP12 - Laser Technology, Liaison to Industry L. Gizzi, CNR P. Crump, FBH

A. Cianchi, U Tor Vergata R. Ischebeck, EPFL WP14 - Transformative Innovation B. Hidding, U Strathclyde S. Karsch, LMU WP15 - TDR EuPRAXIA @SPARC-lab

C. Vaccarezza, INFN R. Pompili, INFN WP16 - TDR EuPRAXIA Site 2 A. Molodozhentsev. ELI-Beamlines

R. Pattahil, STFC

Description

Project: 101079773 — EuPRAXIA — HORIZON-INFRA-2021-DEV-02

Associated with document Ref. Ares(2022)5382240 - 26/07

Work Package Name	RF, Magnets and Beamline Components				
Start Month	1	End Month	48		

Objectives

- The primary objective of this WP is to steer the technical progress on the development and design of accelerator components, in particular:
- 1. Radiofrequency high power sources and structures for conventional acceleration
- 2. Design of compact magnets (both electromagnets and permanent magnets)
- 3. Design of magnetic undulators for free-electron laser production
- For each item a TRL must be properly defined and assessed and if possible, a report on the progress in order check the final technology readiness level will be produced.

Description

- This WP brings together experts from several partner institutes to assess and develop conventional accelerator components and systems for implementation in the EuPRAXIA accelerator and beamlines, namely radiofrequency (RF) sources and structures for beam acceleration and phase space manipulation, compact beam optics magnets for electron beam capture and transport between laser plasma accelerator (LPA) stages, and innovative magnetic undulators for free-electron laser (FEL) applications. These components will aim to support high quality, high stability electron and photon beams produced in compact physical layout.
- The components and systems evaluated in this WP are:
- Bright and compact RF injectors, with the related components for RF-laser synchronization;
- High gradient X-band RF structures: feasibility of an active energy correction scheme;
- Compact high gradient and highly tunable magnets for LPA beam transport;
- Short period high field undulator magnets for Hard X-ray FELs.
- Potential prototype R&D will be reviewed for the various components in collaboration with all involved partners. The WP will organize scientific and technical workshops to identify the most relevant concepts and prototypes for the TDR phase. This status overview will allow the elaboration of coordinated funding requests to solve the technical and scientific challenges in a coordinated way at the national and European levels.

- Review potential R&D prototypes, identify the most relevant concepts and prototypes for the TDR phase
- Coordinate funding requests at national and European level (see D9.1 Deliverable later on)

- Assess technical readiness level of RF, magnet, undulator technology
- Update concepts and parameters (e.g. previously addressed in the CDR) towards TDR

- D9.1 Report on structures to be funded from national/bilateral/european level for RF, Magnets and beamlines components (M12)
- D9.2 Report on technical results achieved in the field of RF, Magnets and beamlines components (M24)
- M.20 Update of concepts for EuPRAXIA, systems status report (M24)
- D9.3 TRL Report and maturity assessment on the development of RF, Magnets and beamlines components (M42)

Participants: the crew

Grant Preparation (Work packages - Effort screen) — Enter the info.									
Participant	WP1	WP2	WP3	WP4	WP5	WP6	WP7	WP8	WP9
1 - INFN	108.00	6.00	10.00	54.00			6.00	6.00	6.00
2 - CNR		2.00						4.00	
3 - ELETTRA	4.00				30.00				
4 - ENEA									4.00
5 - UNI SAPIENZA						30.00			6.00
6 - UNITOV					48.00				
7 - CEA								37.00	
8 - CNRS			6.00			22.00		22.00	
9 - THALES									
10 - DESY			6.00					6.00	18.00
19 - IP-ASCR								24.00	6.00
20 - CERN				2.00					2.00
21 - IASA		8.00	8.00	8.00					8.00
22 - CLPU								2.00	2.00
23 - HUJ									
24 - Fraunhofer	2.00								
25 - ALBA-CELLS									4.00
31 - UKRI									10.00
32 - ULIV		46.00							
33 - USTRATH									
34 - UOXF									
Total Person-Months	123.00	68.00	30.00	64.00	102.00	52.00	60.00	179.00	66.00

Lead beneficary

66 person-months over 4 years

First in line: D9.1 Deliverable

Deliverable D9.1 – Report on structures to be funded from national/bilateral/european level for RF, Magnets and beamlines components

Project: 101079773 - EuPRAXIA - HORIZON-INFRA-2021-DEV-02

Associated with document Ref. Ares(2022)5382240 - 26/07/2022

Туре	R — Document, report	Dissemination Level	PU - Public	
Due Date (month)	12	Work Package No	WP9	

Description

Work plans for RF, magnets and beamlines components are reviewed and updated for on-schedule implementation of the full EuPRAXIA RI. A detailed collaborative EuPRAXIA work plan in this area is defined, connecting to work at existing research infrastructures. Required funding is analysed and described, to be used for EuPRAXIA discussions with funding bodies at national/bilateral/European levels.

Our understanding: after a short highlight of RF, magnet & beamline technologies, with references to the published EuPRAXIA CDR, we have to focus on present and possible funding schemes needed to fulfill the WP9 work plan \rightarrow "structures"

- We asked the management for confirmation
- Deliverable template already circulated

- Wide open "get to know each other", to assess interests, expectations and areas where to contribute
- To start synchronizing towards each Deliverable/Milestone
- For discussion: identify common interests, form topical teams better right after all contributions
- To schedule next meetings, next actions
- Please, do not forget to send me or Sergey Today's presentations of yours!
 Very many thanks!
- Do not hesitate to pile us up with questions, doubts, comments!