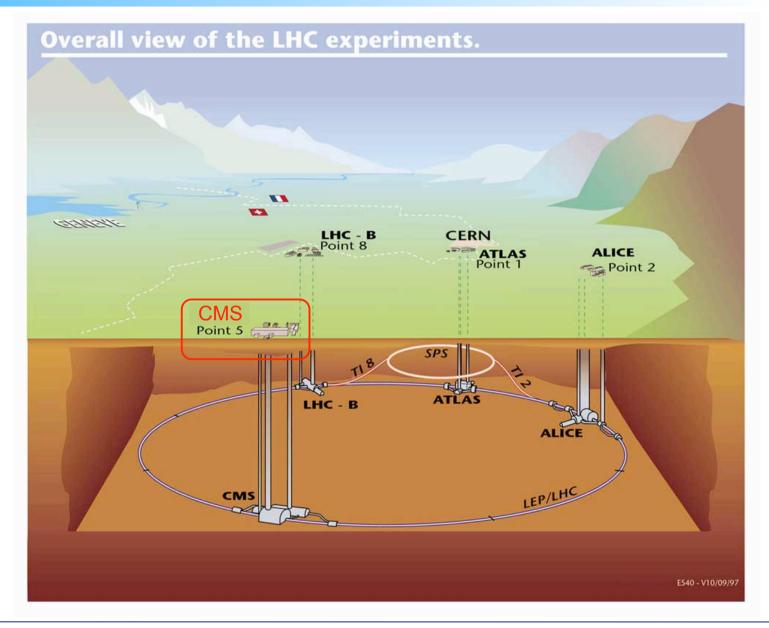


# Higgs and $Z \rightarrow \tau^+\tau^-$ in CMS



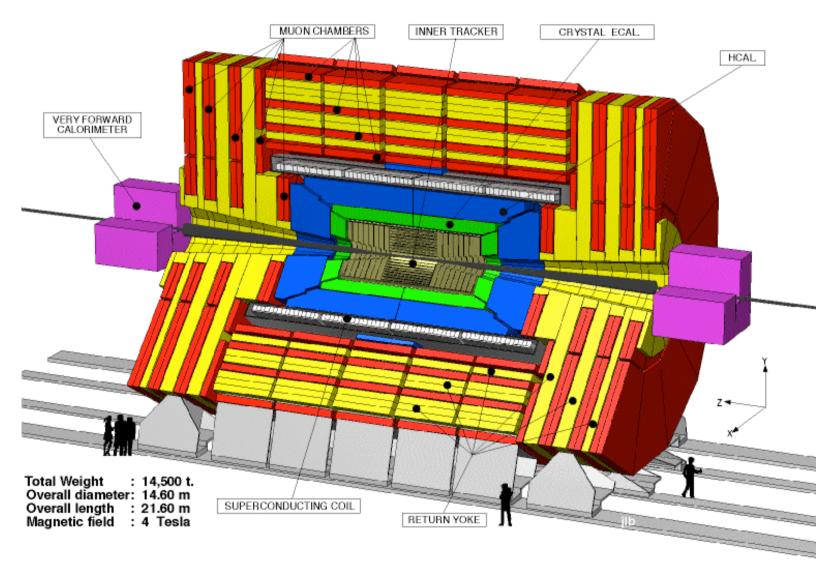
**Christian Veelken** 


for the CMS Collaboration

Moriond EWK conference March 14th 2011



# The CMS Experiment








## **The CMS Detector**







# Roadmap

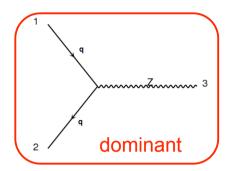


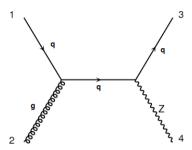


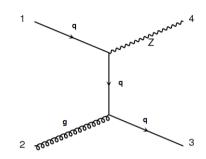
## $Z \rightarrow \tau^+\tau^-$ Cross-section Measurement

- Z  $\rightarrow$   $\tau^+\tau^-$  Production @ 7 TeV
- CMS τ Identification
- Event Selection
- Cross-section Extraction
- Results

## Higgs → τ<sup>+</sup>τ<sup>-</sup> Search


- MSSM Higgs Phenomenology
- τ<sup>+</sup>τ<sup>-</sup> Mass Reconstruction
- Limit Calculation
- Results


## **Summary**




# Z → τ<sup>+</sup>τ<sup>-</sup> Production @ 7 TeV











## CMS Measurement of $Z/\gamma^* \rightarrow I^+I^-$ , $I = e/\mu$ :

 $\sigma \cdot BR(Z/\gamma^* \rightarrow I^+I^-) = 0.931 \pm 0.026 \text{ (stat.)} \pm 0.023 \text{ (sys.)} \pm 0.102 \text{ (lumi.)} \text{ nb}$ JHEP 01 (2011) 080

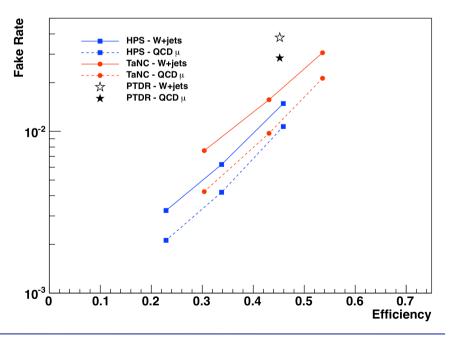
#### **NNLO Prediction:**

 $0.972 \pm 0.042 \text{ nb} (60 > M_{\parallel} < 120)$ 

## $Z \rightarrow \tau^+\tau^-$ dominant Source of high energetic $\tau$ Leptons in SM:

- Measurement of τ Identification Efficiencies
- Commissioning of τ Triggers
- Important Background in Searches for beyond the SM Physics



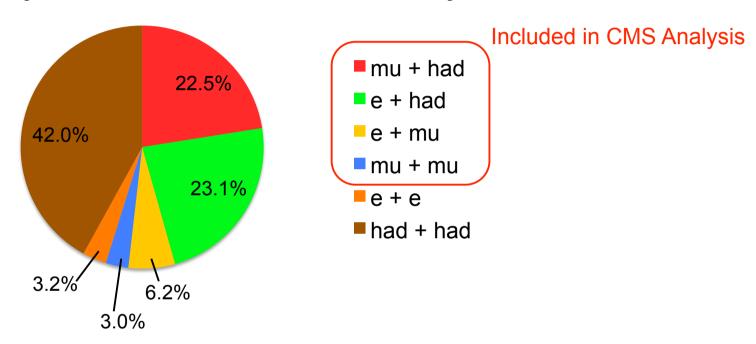

## **CMS** τ Identification



| Decay Mode                                  | Resonance | Mass $(MeV/c^2)$ | Branching ratio(%) |
|---------------------------------------------|-----------|------------------|--------------------|
| $	au^- 	o e^- ar{ u}_e  u_	au$              |           |                  | 17.8 %             |
| $	au^- 	o \mu^- ar{ u}_\mu  u_	au$          |           |                  | 17.4 %             |
| $	au^- 	o h^-  u_	au$                       |           |                  | 11.6 %             |
| $	au^-  ightarrow h^- \pi^0  u_	au$         | ρ         | 770              | 26.0 %             |
| $	au^-  ightarrow h^- \pi^0 \pi^0  u_	au$   | a1        | 1200             | 10.8 %             |
| $	au^-  ightarrow h^- h^+ h^-  u_	au$       | a1        | 1200             | 9.8 %              |
| $	au^-  ightarrow h^- h^+ h^- \pi^0  u_	au$ |           |                  | 4.8 %              |
| Other hadronic modes                        |           |                  | 1.7%               |

# Improvement in CMS τ Identification Performance

due to Reconstruction of individual Decay Modes (Vector Meson Resonances), based on Particle Flow






# Z → τ<sup>+</sup>τ<sup>-</sup> Decay Modes



## $Z \rightarrow \tau^+\tau^-$ Analysis based on Combination of Decay Modes:



## Variety of semi-leptonic and leptonic Channels analyzed

$$\Sigma Br = 54.8\%$$

N.B.: Hadronic Channel difficult (Trigger, high Backgrounds)



## **Event Selection**



For  $\mu + \tau_{had}$ ,  $e + \tau_{had}$  and  $e + \mu$  Channels,  $\mu + \mu$  Channel different (Backup)

## **Trigger**

Events triggered by single Electron/Muon Triggers P<sub>T</sub> thresholds 9-15 GeV, depending on instantaneous Luminosity

#### **Lepton Selection**

| Electrons              | Muons                  | had. τ Decays          |  |  |
|------------------------|------------------------|------------------------|--|--|
| $P_T > 15 \text{ GeV}$ | $P_T > 15 \text{ GeV}$ | $P_T > 20 \text{ GeV}$ |  |  |
| $ \eta  < 2.4$         | $ \eta  < 2.1$         | $ \eta  < 2.4$         |  |  |
| isolated               | isolated               | "loose" Tau id.        |  |  |
|                        |                        | Veto against e/μ       |  |  |

#### **Opposite Charge Lepton Pair**

#### **Transverse Mass**

e + 
$$\tau_{had}$$
,  $\mu$  +  $\tau_{had}$ :  $M_T(I + MET) < 40 \text{ GeV}$   
e +  $\mu$ :  $M_T(e + MET) < 50 \text{ GeV } \&\& M_T(\mu + MET) < 50 \text{ GeV}$ 

## **Veto Events with additional isolated Leptons**



## **Cross-section Extraction**



$$\sigma(pp \to ZX) \times \mathcal{B}(Z \to \tau^+ \tau^-) = \frac{N}{\mathcal{A} \cdot \epsilon \cdot \mathcal{B}' \cdot \mathcal{L}}$$

- N =  $N_{obs} N_{bgr}$ Background contribution  $N_{bgr}$  from Data (using 1-3 complementary Methods, depending on Channel)
- Acceptance taken from Monte Carlo
   (POWHEG + TAUOLA, PYTHIA with CMS Z2 tune for Hadronization)
- Efficiency factorized into independent Terms
   Each Term either measured directly in Data or taken from Monte Carlo and applying Data/MC Correction factor measured from Data
- Branching Ratios for  $\tau^+\tau^-$  to decay into  $\mu + \tau_{had}$ ,  $e + \tau_{had}$ ,  $e + \mu$ ,  $\mu + \mu$  taken from PDG
- Luminosity measured with Precision of 4%

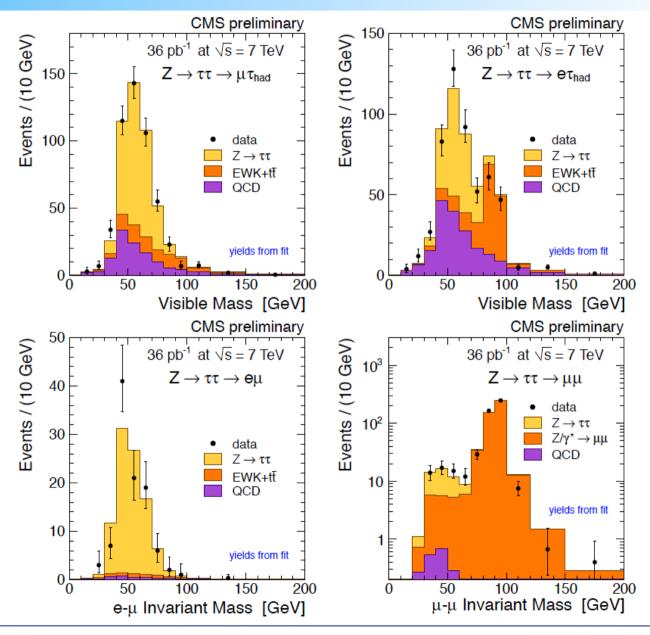


## **Event Yields**



## CMS Data, 36 pb<sup>-1</sup> @ 7 TeV

|                                                        |                         |                          |                       | $  (M \times 70 CM)$                                    |
|--------------------------------------------------------|-------------------------|--------------------------|-----------------------|---------------------------------------------------------|
|                                                        | $	au_{\mu}	au_{ m had}$ | $	au_{ m e}	au_{ m had}$ | $	au_{ m e}	au_{\mu}$ | $\tau_{\mu}\tau_{\mu} \ (M_{\mu\mu} < 70 \ \text{GeV})$ |
| $Z \rightarrow \ell^+\ell^-$ , jet fake $	au_{ m had}$ | $6.4\pm2.4$             | $15.0 \pm 6.2$           |                       |                                                         |
| $Z \rightarrow \ell^+\ell^-$                           | $12.9 \pm 3.5$          | $109.3 \pm 28.0$         | $2.4 \pm 0.3$         | $20.1 \pm 1.3$                                          |
| $t\bar{t}$                                             | $6.0 \pm 3.0$           | $2.6 \pm 1.3$            | $7.1 \pm 1.3$         | $0.15 \pm 0.03$                                         |
| $W \to \ell \nu$                                       | $54.9 \pm 4.8$          | $30.6 \pm 3.1$           |                       |                                                         |
| W 	o 	au  u                                            | $14.7 \pm 1.3$          | $7.0 \pm 0.7$            | $1.5 \pm 0.5$         | $2.5 \pm 2.5 (< 5 @95 \% CL)$                           |
| QCD                                                    | $131.6 \pm 14.1$        | $181.1 \pm 22.5$         |                       |                                                         |
| WW/WZ/ZZ                                               | $1.6 \pm 0.8$           | $0.8 \pm 0.4$            | $3.0 \pm 0.4$         |                                                         |
| Total Background                                       | $228.4 \pm 15.8$        | $346.4 \pm 36.7$         | $14.0\pm1.8$          | $22.8 \pm 2.8$                                          |
| Total Data                                             | 516                     | 540                      | 101                   | 58                                                      |


Background Estimates quoted in Table obtained from Data-driven Methods

> 600 Z  $\rightarrow$   $\tau^+\tau^-$  Signal Events selected in CMS Data



## **Control Plots**



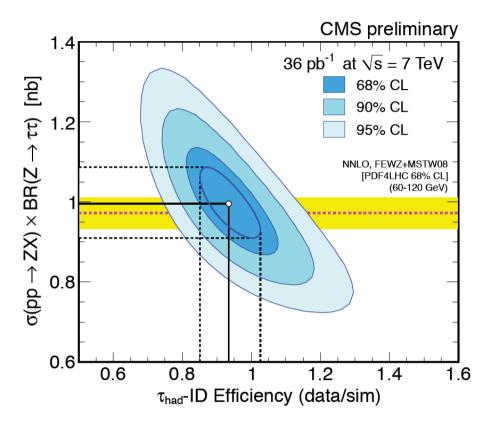


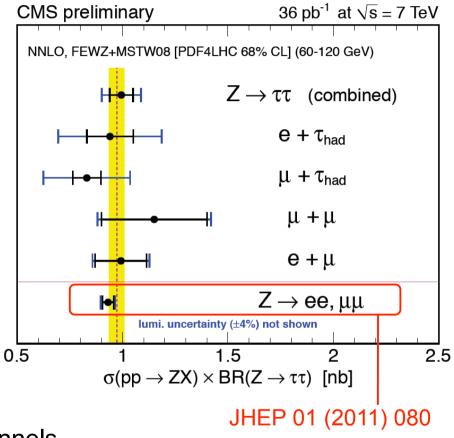


## **Systematic Uncertainties**



| Source                                      | $	au_{\mu}	au_{ m had}$ | $	au_{ m e}	au_{ m had}$ | $	au_{ m e}	au_{\mu}$ | $	au_{\mu}	au_{\mu}$ |  |
|---------------------------------------------|-------------------------|--------------------------|-----------------------|----------------------|--|
| trigger                                     | 0.2 % 3 %               |                          | 0.2 %                 | 0.3 %                |  |
| lepton identification and isolation         | 1.0 %                   | 1.1 %                    | 1%                    | 1%                   |  |
| $	au_{ m had}$ identification               | 23 %                    |                          | -                     | -                    |  |
| efficiency of topological selections        | 2 %                     |                          | -                     |                      |  |
| likelihood selection efficiency             | - 2                     |                          | 2%                    |                      |  |
| acceptance due to $\tau$ energy scale, 3 %  | 3.5 %                   |                          | -                     | -                    |  |
| acceptance due to e energy scale, 2%        | - 1.6%                  |                          | 1.6 %                 | -                    |  |
| acceptance due to $\mu$ momentum scale, 1 % | 1% -                    |                          | 1%                    | 2%                   |  |
| luminosity                                  | 4 %                     |                          |                       |                      |  |
| parton distribution functions               | 2 %                     |                          |                       |                      |  |


Largest Uncertainty: hadronic Tau Identification Efficiency


- → τ<sub>had</sub> Identification Efficiency constrained by Ratio of Event Yields in semi-leptonic/leptonic Channels
- $\rightarrow$  Determine Z  $\rightarrow$   $\tau^+\tau^-$  Cross-section by simultaneous Fit of all four Channels



## **Simultaneous Fit Results**







- → Good Agreement between all four Channels
- → Extracted Cross-Section in good Agreement with Theory Prediction (NNLO)
- → Data/MC Correction factor for Tau Identification Efficiency compatible with 1.0



## $Z \rightarrow \tau^+\tau^-$ Cross-section Results



#### **Individual Channels:**

$$\begin{split} &\sigma\left(pp\to ZX\right)\times \mathcal{B}\left(Z\to \tau^+\tau^-\right)_{\mu\tau} &= 0.83\pm 0.07\,(\text{stat.})\pm 0.04\,(\text{syst.})\pm 0.03\,(\text{lumi.})\pm 0.19\,(\tau\text{-ID})\,\text{nb} \\ &\sigma\left(pp\to ZX\right)\times \mathcal{B}\left(Z\to \tau^+\tau^-\right)_{e\tau} &= 0.94\pm 0.11\,(\text{stat.})\pm 0.03\,(\text{syst.})\pm 0.04\,(\text{lumi.})\pm 0.22\,(\tau\text{-ID})\,\text{nb} \\ &\sigma\left(pp\to ZX\right)\times \mathcal{B}\left(Z\to \tau^+\tau^-\right)_{e\mu} &= 0.99\pm 0.12\,(\text{stat.})\pm 0.06\,(\text{syst.})\pm 0.04\,(\text{lumi.})\,\text{nb} \\ &\sigma\left(pp\to ZX\right)\times \mathcal{B}\left(Z\to \tau^+\tau^-\right)_{\mu\mu} &= 1.15\pm 0.25\,(\text{stat.})\pm 0.10\,(\text{syst.})\pm 0.05\,(\text{lumi.})\,\text{nb}. \end{split}$$

#### Combined:

$$\sigma \cdot BR(Z/\gamma^* \rightarrow \tau^+\tau^-) = 0.99 \pm 0.06 \text{ (stat.)} \pm 0.08 \text{ (sys.)} \pm 0.04 \text{ (lumi.)} \text{ nb}$$

Measured  $Z \rightarrow \tau^+\tau^-$  Cross-section in good Agreement with NNLO Expectation and CMS Measurement of  $Z/\gamma^* \rightarrow I^+I^-$ ,  $I = e/\mu$  Cross-section

N.B.:  $Z \rightarrow \tau^+\tau^-$  Analysis benefits from reduced Luminosity Uncertainty of 4% (was 11% at time of  $Z/\gamma^* \rightarrow I^+I^-$ ,  $I = e/\mu$  Analysis)

# And the Higgs?



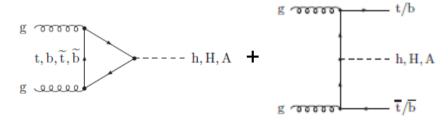
# **MSSM Higgs Phenomenology**



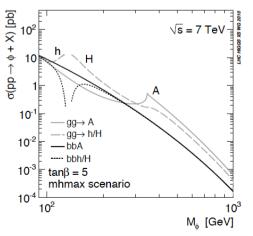
FeynHiggs 2.5

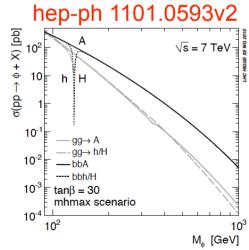
#### **Minimal Supersymmetric Standard Model**

2 Higgs doublets → 5 physical Higgs Bosons:


- 2 CP-even neutrals: h, H scalar
- 1 CP-odd neutral: A pseudo-scalar
- 2 charged: H<sup>+</sup>, H<sup>-</sup>

CP-odd and 1 CP-even Higgs Boson degenerate in Mass


ass 50, m<sub>A</sub>


At Born level MSSM described by 2 Parameters:  $\tan \beta$ ,  $m_A$  (Dependency on SUSY Parameters via radiative Corrections)

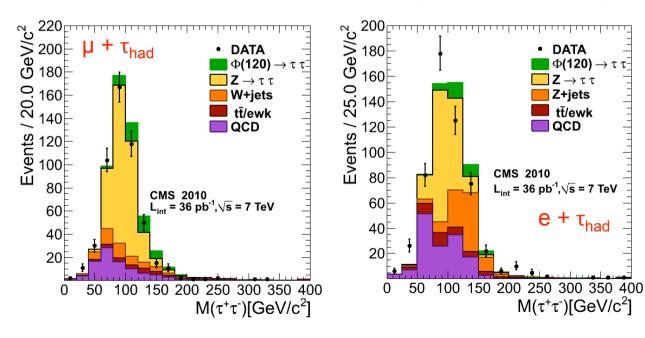
2 main Production Processes:

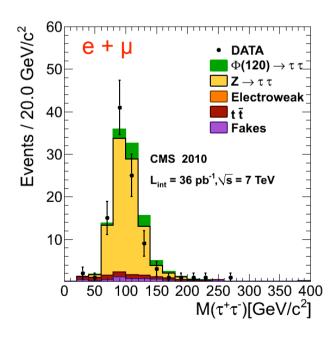


Cross-section increases ~tan  $\beta^2$ 






FeynHiggs 2.5 (2006)




## τ<sup>+</sup>τ<sup>-</sup> Mass Reconstruction



- Likelihood Fit of momenta of visible Decay Products and of Neutrinos produced in  $\tau$  Decays
- $\bullet$  At present uses Likelihood Terms for  $\tau$  Decay kinematics and missing  $E_T$
- Yields "physical" Solution for every Event
- Improvement in Resolution wrt. previous Techniques





→ Clear Z Mass Peak seen in CMS Data



## **Limit Calculation**



Based on fitting  $M_{\tau\tau}$  Template histograms to  $M_{\tau\tau}$  Distribution observed in Data for 3 Channels:  $\mu$  +  $\tau_{had}$ , e +  $\tau_{had}$ , e +  $\mu$ 

95% Confidence Level upper Limit computed via Bayesian Inference

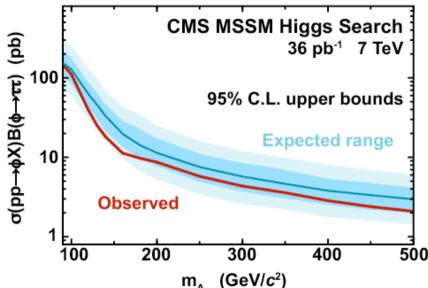
$$\int_{\sigma=0}^{\sigma_{95\%}} \frac{\int \mathcal{L}(\text{data}, \sigma, \nu) \, \pi(\sigma) d\nu}{\int \mathcal{L}(\text{data}, \sigma', \nu') \, \pi(\sigma') d\sigma' d\nu'} d\sigma = 0.95$$

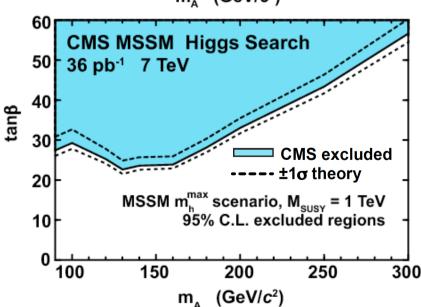
using flat Prior Probability  $\pi(\sigma)$  on Higgs Cross-section  $\sigma > 0$ .

Likelihood: 
$$\mathcal{L}(m_{\tau\tau}; \sigma_{\tau\tau}, \{\nu\}) = \mathcal{L}_{m_{\tau\tau}}(m_{\tau\tau}; \sigma_{\tau\tau}, \{\nu\}) \cdot \prod_{n} \mathcal{L}_{n}(\nu_{n}; \bar{\nu}_{n}, \Delta \bar{\nu}_{n})$$

 $\mathcal{L}_{m_{\tau\tau}}(m_{\tau\tau};\sigma_{\tau\tau},\{\nu\})$ : Product over all Bins of the  $M_{\tau\tau}$  Distribution of  $-\log(Poisson\ Probability)$  to observe  $N_{obs}$  Events given N expected

 $\mathcal{L}(\nu; \bar{\nu}, \Delta \bar{\nu})$ : Constraint on Nuisance Parameter  $\nu$  (Scale or Shape, e.g. Efficiency, Energy scale, Background Yield) from independent Measurement


Expected Limit obtained by "toy" Experiments: Median expected Limit and 68%, 95% CL Intervals computed from Distribution of "toy" Limits


Christian Veelken



# MSSM Higgs → τ⁺τ⁻ Limit Results







• Observed and expected Limits on  $\sigma \times Br$  computed for different Mass Hypotheses  $m_A$ 

## **Approximation**

$$mA \le 120 \text{ GeV}$$
:  $\sigma = \sigma_h + \sigma_A$ 

mA ~ 130 GeV: 
$$\sigma = \sigma_h + \sigma_H + \sigma_A$$

$$mA \ge 140 \text{ GeV}$$
:  $\sigma = \sigma_H + \sigma_A$ 

φ: Sum of scalar + pseudo-scalar Higgs

- → Observed Limit in Agreement with expected Sensitivity
- Upper Limit on  $\sigma \times$  Br converted into Limit on MSSM Parameter tan  $\beta$
- Relation between σ, Br and tan β taken from LHC Higgs Cross Sections Working Group (for m<sub>h</sub><sup>max</sup> SUSY benchmark scenario)

hep-ph 1101.0593v2

 Theory Uncertainty estimate according to Working Group Recommendations



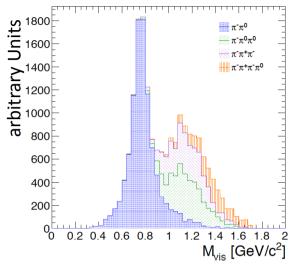
# Summary



# $Z \rightarrow \tau^+\tau^-$ Production has been analyzed in four Channels: $\mu + \tau_{had}$ , $e + \tau_{had}$ , $e + \mu$ and $\mu + \mu$

- An unambiguous Signal is established in all Channels
- The Z → τ<sup>+</sup>τ<sup>-</sup> Cross-section is measured @ 7 TeV center-of-mass Energy and found to be in good Agreement with Z → I<sup>+</sup>I<sup>-</sup>, I = e/μ Cross-section measured by CMS as well as with Theory Predictions (NNLO)

## No evidence for Higgs $\rightarrow \tau^+\tau^-$ Signal observed in CMS Data


- Observed Limit tracks expected Limit
- "Full" τ+τ- Mass reconstructed using novel Likelihood Technique
- The world's most stringent Limits on MSSM Higgs → τ<sup>+</sup>τ<sup>-</sup>
   Production to date has been set

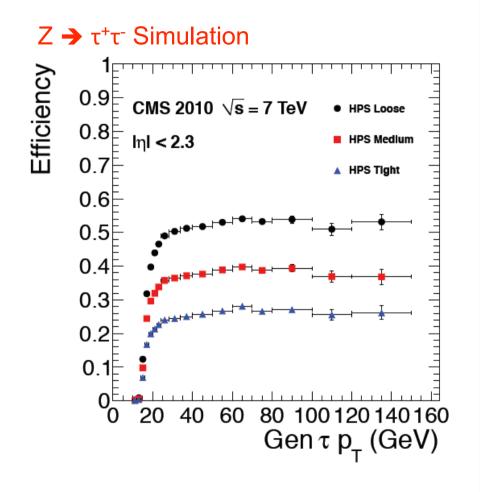
# Backup Material

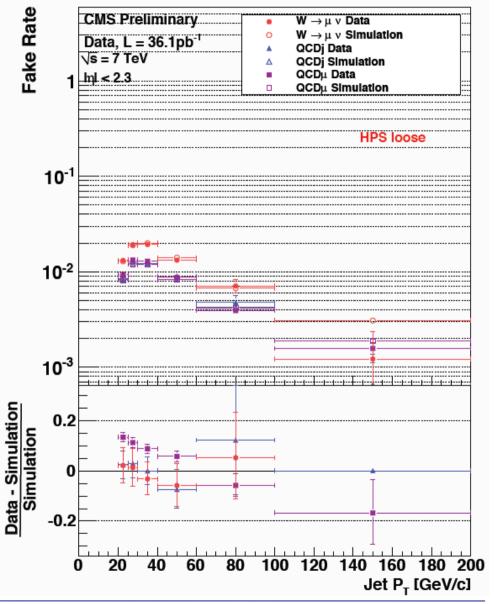


# τ Decay Modes






| Decay Mode                                  | Resonance  | Mass (MeV/ $c^2$ ) | Branching ratio(%) |
|---------------------------------------------|------------|--------------------|--------------------|
| $	au^- 	o e^- \bar{\nu}_e \nu_{	au}$        |            |                    | 17.8 %             |
| $	au^- 	o \mu^- ar{ u}_\mu  u_	au$          |            |                    | 17.4 %             |
| $	au^- 	o h^-  u_{	au}$                     |            |                    | 11.6 %             |
| $	au^-  ightarrow h^- \pi^0  u_	au$         | ρ          | 770                | 26.0 %             |
| $	au^-  ightarrow h^- \pi^0 \pi^0  u_	au$   | <i>a</i> 1 | 1200               | 10.8 %             |
| $	au^-  ightarrow h^- h^+ h^-  u_	au$       | a1         | 1200               | 9.8 %              |
| $	au^-  ightarrow h^- h^+ h^- \pi^0  u_	au$ |            |                    | 4.8 %              |
| Other hadronic modes                        |            |                    | 1.7%               |


→ Tau Identification ≅ Reconstruction of well-known Vector Meson resonances



## **CMS Tau id. Performance**









## **Event Selection μ + μ Channel**



## **Trigger**

Events triggered by single Muon Triggers
P<sub>T</sub> threshold 9-15 GeV, depending on instantaneous Luminosity

#### **Lepton Selection**

| 1 <sup>st</sup> Muon    | 2 <sup>nd</sup> Muon   |  |  |
|-------------------------|------------------------|--|--|
| P <sub>T</sub> > 19 GeV | $P_T > 10 \text{ GeV}$ |  |  |
| $ \eta  < 2.1$          | η  < 2.1               |  |  |
| isolated                | isolated               |  |  |

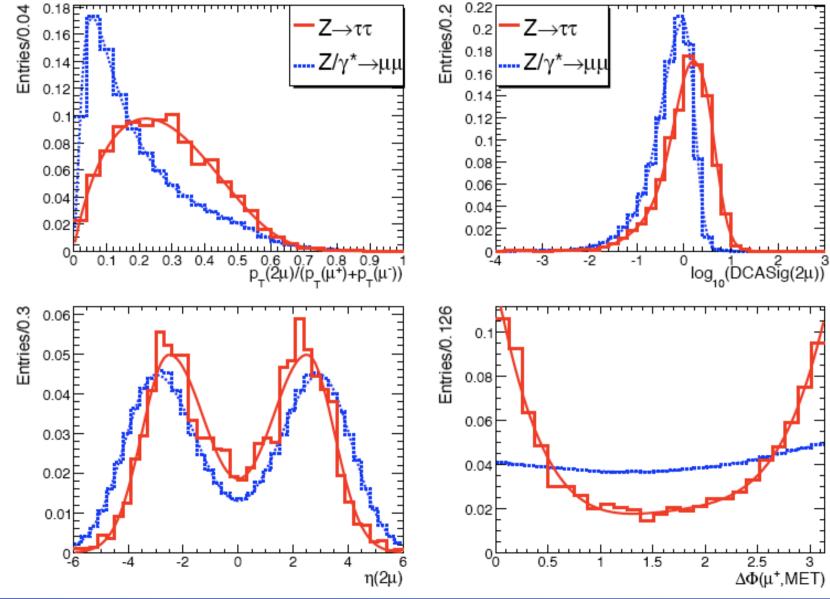
## 1<sup>st</sup> + 2<sup>nd</sup> Muon of opposite Charge

$$\Delta \phi(\mu,\mu) < 2.0 \text{ rad}$$

Missing 
$$E_T < 50 \text{ GeV}$$

$$Z \rightarrow \tau^+\tau^- \rightarrow \mu^+\mu^-/Z \rightarrow \mu^+\mu^-$$
 Likelihood > 0.87

• 
$$P_T(\mu^+ + \mu^-)/(P_T^{\mu^+} + P_T^{\mu^-})$$


• DCA between μ<sup>+</sup>, μ<sup>-</sup> Tracks

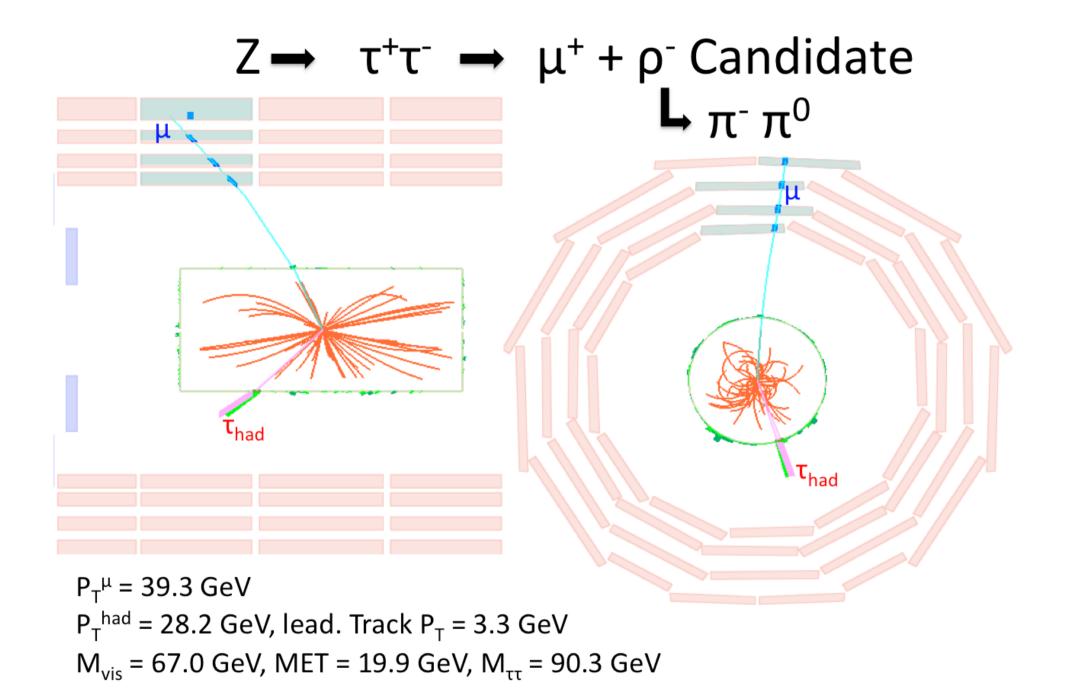
• Δφ(μ<sup>+</sup>, MET)



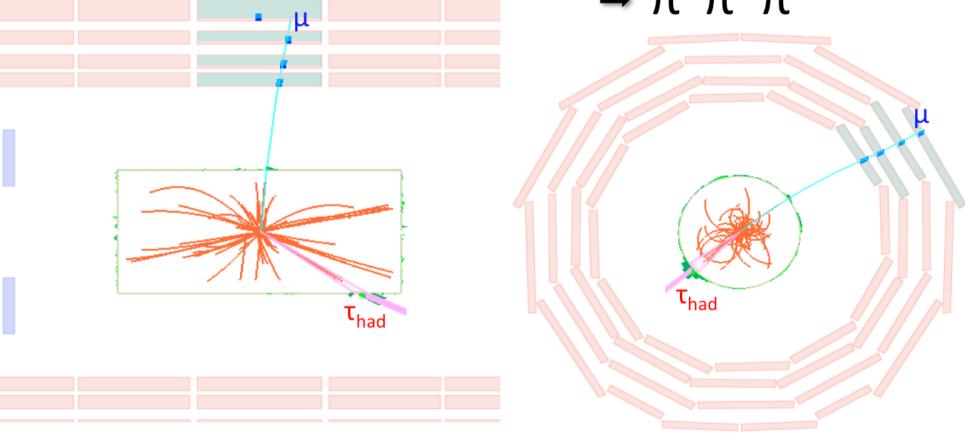
# $Z \rightarrow \tau^+\tau^- \rightarrow \mu^+\mu^-/Z \rightarrow \mu^+\mu^-$ Likelihood








# Z → τ<sup>+</sup>τ<sup>-</sup> Acceptance × Efficiency

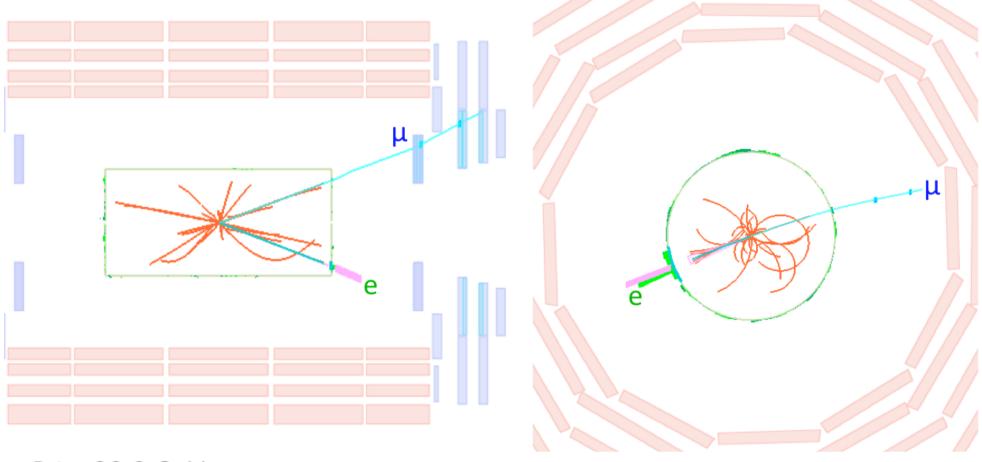



|                                  | $	au_{\mu}	au_{ m had}$ | $	au_{ m e}	au_{ m had}$ | $	au_{ m e}	au_{\mu}$ | $	au_{\mu}	au_{\mu}$ |
|----------------------------------|-------------------------|--------------------------|-----------------------|----------------------|
| Acceptance: $\mathcal{A}$        | 0.13                    | 0.12                     | 0.074                 | 0.16                 |
| Selection efficiency: $\epsilon$ | 0.37                    | 0.23                     | 0.55                  | 0.17                 |
| Mass window correction: $f_c$    | 0.97                    | 0.97                     | 0.98                  | 0.99                 |

- Acceptance taken from  $Z \rightarrow \tau^+\tau^-$  Monte Carlo (POWHEG + TAUOLA) Fraction of Events generated with 60 <  $M_{\tau\tau}$  < 120 GeV for which visible Decay Products of both  $\tau$  Leptons are within  $|\eta|$  Range and above  $P_T$  thresholds (depending on Decay Mode/Channel)
- Efficiency defined as Fraction of  $Z \rightarrow \tau^+\tau^-$  Events within Acceptance that passes all Event Selection criteria, measured either directly in Data or taken from Monte Carlo and applying Data/MC Correction factor measured from Data
- Mass window Correction factor corrects for Z/γ\* → τ⁺τ⁻ Events which pass Event Selection, but are not generated within Mass window 60 < M<sub>ττ</sub> < 120 GeV</li>



 $Z \rightarrow \tau^+\tau^- \rightarrow \mu^+ + a_1^- Candidate$   $L \pi^- \pi^+ \pi$ 




 $P_{T}^{\mu} = 20.5 \text{ GeV}$ 

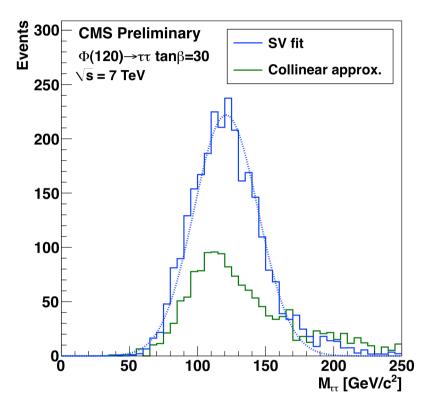
 $P_T^{had}$  = 35.5 GeV, lead. Track  $P_T$  = 18.5 GeV

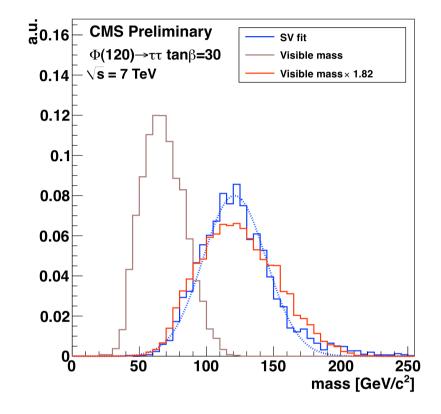
 $M_{vis}$  = 62.7 GeV, MET = 6.2 GeV,  $M_{\tau\tau}$  = 98.3 GeV

# $Z \rightarrow \tau^+\tau^- \rightarrow e^- + \mu^+$ Candidate



$$P_t^{e} = 29.9 \text{ GeV}$$


$$P_{T}^{\mu} = 16.3 \text{ GeV}$$


 $M_{vis}$  = 44.2 GeV, MET = 17.4 GeV,  $M_{\tau\tau}$  = 91.4 GeV



# M<sub>ττ</sub> Resolution



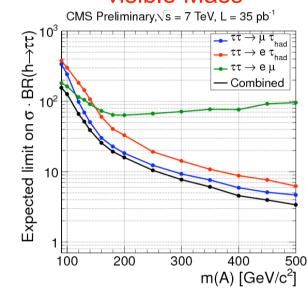


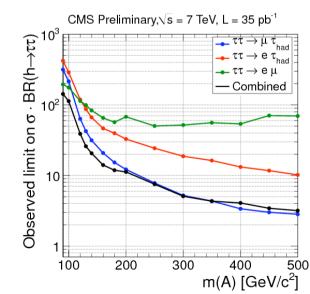


Compared to collinear Approximation, Likelihood algorithm:

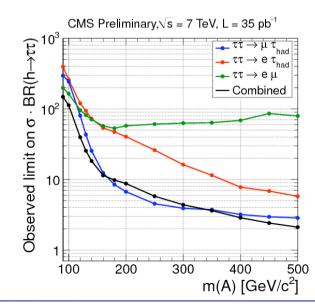
- provides better Resolution
- increases Event Statistics by Factors ~ 2

Compared to visible Mass, Likelihood algorithm:


• improves relative Resolution  $\Delta M_{\tau\tau}/M_{\tau\tau}$ 




# **Observed vs. Expected Limits**

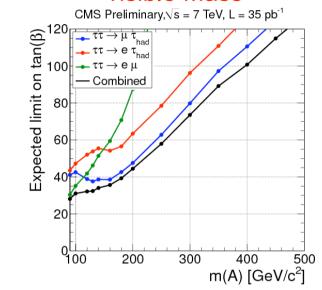


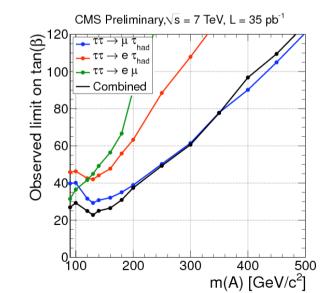

#### visible Mass



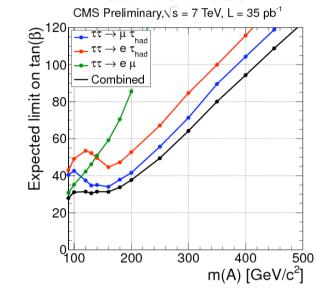


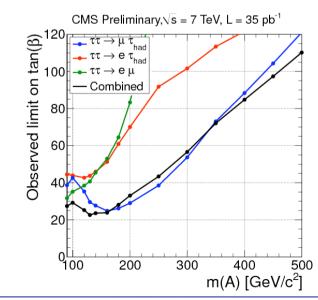
# "full" $\tau^+\tau^-$ Mass CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 35 pb<sup>-1</sup> (L) Hall $\tau \tau \to e \tau_{had}$ $\tau \tau \to e \tau_{had}$ $\tau \tau \to e \mu$ Combined 100 200 300 400 500 m(A) [GeV/c<sup>2</sup>]




# **Observed vs. Expected Limits**





#### visible Mass





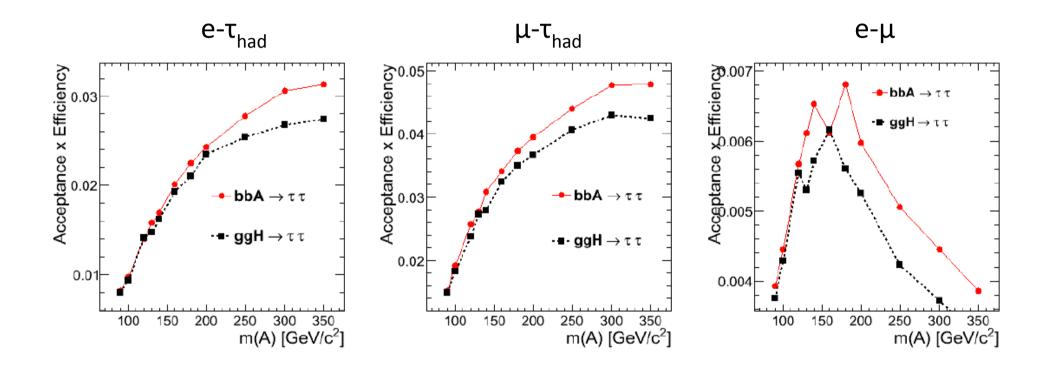
#### "full" τ<sup>+</sup>τ<sup>-</sup> Mass







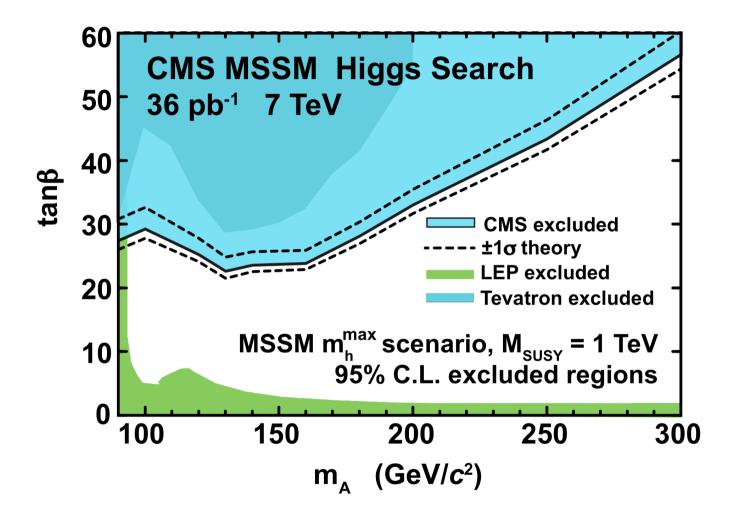
# **Limit Fit Nuisance Parameters**




| Parameter                                                  | Channels    | Distribution       | Output                    |
|------------------------------------------------------------|-------------|--------------------|---------------------------|
| Luminosity                                                 | all         | Ln(1.0, 1.11)      | $0.99^{+0.11}_{-0.10}$    |
| $Z 	o \ell \ell$                                           | all         | Ln(0.96, 1.04)     | $0.957^{+0.035}_{-0.028}$ |
| Tau id. efficiency                                         | ετ, μτ      | Ln(1.0, 1.23)      | $0.917^{+0.064}_{-0.062}$ |
| Elecron id. efficiency                                     | ет, еµ      | Ln(0.968, 1.036)   | $0.971^{+0.024}_{-0.023}$ |
| Elecron trigg. efficiency                                  | ет          | Ln(0.959, 1.02)    | $0.961^{+0.019}_{-0.019}$ |
| Muon efficiency                                            | µт, еµ      | Ln(0.963, 1.005)   | $0.963^{+0.003}_{-0.003}$ |
| Electron energy scale                                      | ет, еµ      | G(0,1)             | $-0.1^{+0.8}_{-0.7}$      |
| Hadronic tau energy scale                                  | ετ, μτ      | G(0,1)             | $+0.3^{+0.6}_{-0.9}$      |
| Non-tau jet energy scale                                   | all (SVfit) | G(0,1)             | $-0.2^{+0.9}_{-0.7}$      |
| Unclusteded candidates energy scale                        | all (SVfit) | G(0,1)             | $-0.1^{+0.6}_{-0.6}$      |
| QCD background                                             | μτ          | Γ(107, 1.45)       | 148+13                    |
| W background                                               | μτ          | Γ(132, 0.52)       | 66_5                      |
| $Z \rightarrow \mu\mu$ , $\mu \rightarrow \tau$ background | μτ          | Γ(13.4, 0.98)      | $11.1^{+3.4}_{-2.8}$      |
| $Z \rightarrow \mu\mu$ , jet $\rightarrow \tau$ background | μτ          | Γ(7.1, 0.90)       | $5.2^{+2.4}_{-1.8}$       |
| $t\bar{t}$                                                 | μτ          | Ln(6, 1.5)         | $4.6^{+2.1}_{-1.5}$       |
| di-boson                                                   | μτ          | Ln(1.6, 1.5)       | $1.3^{+0.7}_{-0.4}$       |
| QCD background                                             | еτ          | Γ(61.9, 2.92)      | $214^{+18}_{-17}$         |
| W background                                               | ετ          | Γ(90.3, 0.42)      | $38^{+4}_{-4}$            |
| Z  ightarrow ee, $e  ightarrow 	au$ background             | ετ          | Ln(109.3, 1.26)    | $80^{+12}_{-11}$          |
| $Z \rightarrow ee$ , jet $\rightarrow \tau$ background     | ет          | $\Gamma(5.9, 2.6)$ | $14^{+7}_{-5}$            |
| $tar{t}$ and di-boson background                           | ет          | Ln(3.4, 1.5)       | $3.1^{+1.6}_{-1.0}$       |
| QCD, W and $Z \rightarrow \ell\ell$ background             | еµ          | Ln(3.9, 1.31)      | $3.6^{+1.1}_{-0.9}$       |
| tt̄ background                                             | еµ          | Ln(7.1, 1.18)      | $6.9^{+1.2}_{-1.1}$       |
| Di-boson background                                        | еµ          | Ln(3.0, 1.13)      | $3.0^{+0.4}_{-0.3}$       |



# **Higgs Acceptance** × Efficiency

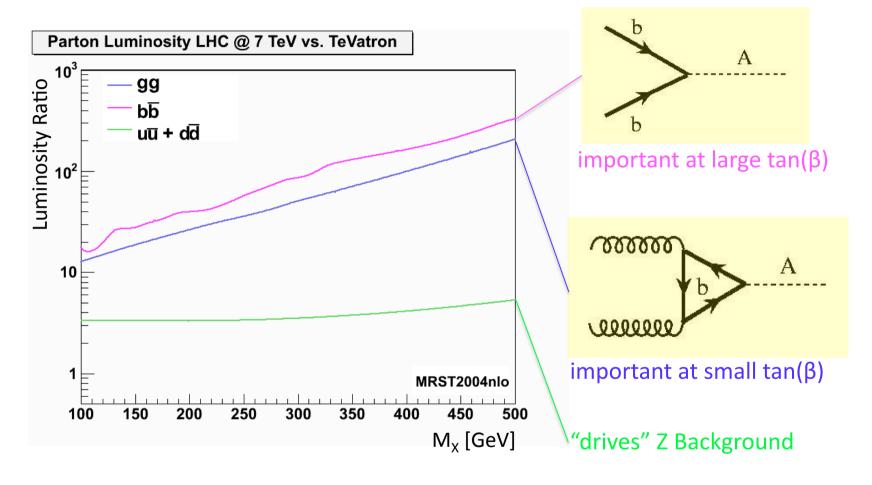







# CMS vs. TeVatron/LEP Limits





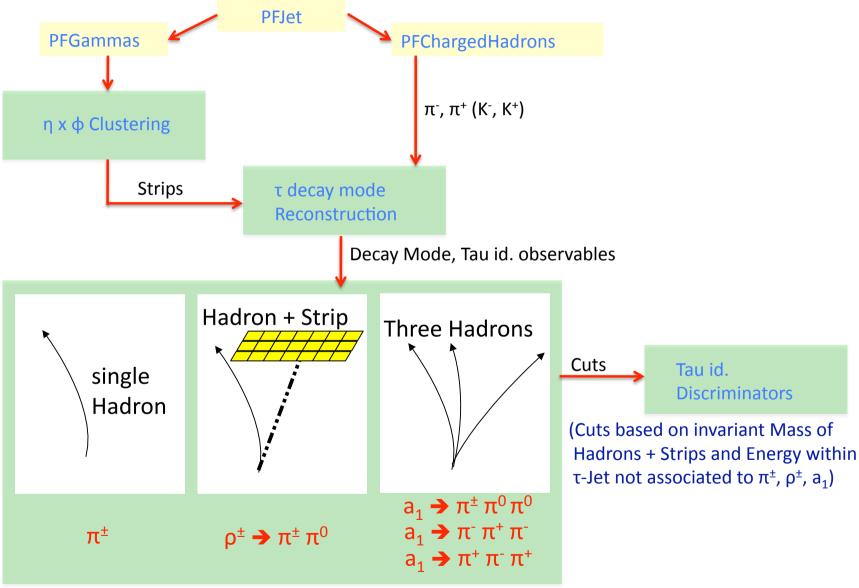

CMS Limit more stringent than TeVatron Limit over whole Mass range



# **Parton Luminosities LHC @ 7 TeV**






→ 36pb<sup>-1</sup> of LHC @ 7 TeV Data correspond to O(1fb<sup>-1</sup>) of TeVatron Data

Ratio of MSSM Higgs Signal/Z Background Cross-sections in favor of LHC



# **The Hadron + Strips Algorithm**



