A first look at Hqq->bbqq

P. Azzurri, J. Bernardini, R. Dell'Orso, F. Fiori, F. Palla, P. Spagnolo

INFN Pisa

Outline

Focus on understanding signal properties

- Signal properties at parton level
- Jet reconstruction of the signal
- First Look at Trigger Efficiencies
- QCD background starting point

/Hbb120_VBF_GEN-SIM-RECO/fiori-Hbb120_VBF_GEN-SIM-RECO-6f87d88d4f39fafeeaa69aa8e51897fd/USER

QCD bkg from MADGRAPH √s=7 TeV

Signal Event Display

VBF Higgs diagram

 η -ordered parton distributions

The most central parton is a b (from the higgs decay) only 3/4 of the times.

In pairs, the two most central partons can be:

- the two b-quarks (45%)
- one b-quark and one associated-quark (54%)
- the two associated quarks (1%)

smallest $\triangle R$ between parton pairs

the four partons are angularly quite well separated.

In 83%(97%) of signal events all six quark-pairs have $\Delta R > 1(0.5)$.

Max Δη

P. SPAGNOLO - A first look at Hqq->bbqq

Hbb meeting, 25-Feb-11

Min Δη

12

P. SPAGNOLO - A first look at Hqq->bbqq

Hbb meeting, 25-Feb-11

Signal Jet Reconstruction

Signal Jet Reconstruction

P. SPAGNOLO - A first look at Hqq->bbqq

Hbb meeting, 25-Feb-11

Signal Jet Reconstruction higgs di-jet mass **Higgs di-jet mass** anti-k, GenJets AR_m<0.60 250 R=0.3 µ=92.211(21.699) R=0.5 µ=106.431(18.734) R=0.7 µ=116.529(16.686) 200 Best resolution (σ / μ) R=0.9 µ=124.615(16.235) for R=0.7 Jets 150 higgs di-jet mass 100 120 anti-k_T PFJets ∆R_m<0_60 R=0.3 µ=77.698(21.618) 50 R=0.5 µ=91.540(20,779) 100 R=0.7 µ=101.199(20.698) R=0.9 1=109 887(21.114) 100 120 140 80 60 40 20

15

100

120

140

Signal vs QCD

The Starting Point :

4 CaloJets p_T>5GeV

Trigger efficiencies

a possible plan for Hqq->bbqq

- L1_TripleJet14 ε_s=75.70 +- 0.15% (m_H=120GeV)
- HLT: p_T(jet1)>36 p_T(jet2)>28 p_T(jet3)>18 p_T(jet4)>7 (uncorrected CaloJets) ε_s≈51% rate≈60Hz @1.7*10^32 (openHLT) → <400Hz@10^33 (?) then use HLT PFJets cutting on 4-jets p_Ts, invariant masses, ... reach ~5Hz

Hbb meeting, 25-Feb-11

Trigger efficiencies

Adding a muon (from b/c decays H \rightarrow bb $\rightarrow \mu X \sim 40\%$)

Pt (μ)> 3 GeV

signal HT50_100 HT100_250 HT250_500 ~28 Hz 14% 0.003% 0.27% 5.2%

Pt (μ)> 5 GeV

signal HT50_100 HT100_250 HT250_500 ~16 Hz 10.9% 0.003% 0.14% 3.4%

Pt (μ)> 9 GeV

signal HT50_100 HT100_250 HT250_500 ~8 Hz 6.6% 0.0015% 0.06% 1.8%

Plans

 Study a possible dedicated HLT selection for high lumi data taking using the full CaloJets kinematics information

 After the HLT selection plan to use a MVA signal/background discrimination approach with 4-jet kinematics, b-tagging and gluon tagging observables.

