Deep-learning emulators and hierarchical Bayesian inference: application to gravitational-wave astronomy

Davide Gerosa

University of Milano-Bicocca

arXiv:2203.03651
with M. Mould, S. Taylor

davide.gerosa@unimib.it
www.davidegerosa.com

Mar 13, 2023
ML_INFN weekly meeting (online)

European Research Council

Fondazione CARIPLO

LEVERHULME TRUST \qquad

INFN
ICSC
Centro Nazionale di Ricerca in HPC,
Big Data and Quantum Computing

90 waves and counting

Discovering are piling up!
About 90 black-hole binary mergers detected so far.
Will become millions in ~20 years!

Can black holes really make it?

Power emitted in gravitational waves:

$$
\frac{d a}{d t}=-\frac{64}{5} \frac{G^{3} M^{3}}{c^{5} a^{3}} \frac{q}{(1+q)^{2}}
$$

Peters 1964

GW-driven inspiral timescale

$$
t_{\mathrm{GW}} \sim a \frac{d t}{d a} \sim a^{4}
$$

Gravitational waves are efficient below
$a_{\mathrm{GW}}=1.2 \times 10^{11}\left(\frac{t_{\mathrm{GW}}}{1.4 \times 10^{10} \mathrm{yr}}\right)^{1 / 4}\left(\frac{M}{M_{\odot}}\right)^{3 / 4} \mathrm{~cm} \sim 10 R_{\odot} \quad$ stellar-mass BHS

Relativity alone cannot explain the LIGO events, we need some astrophysics

Have we been together for so long?

Yes! l've known you since you were a star

Don't you remember?
We just met in cluster

Hierarchical black-hole mergers

DG Berti 2017

Targeting a specific piece of physics here:

Orthogonal, but complementary to the usual field vs. cluster debate

An explosion of new predictions

- Masses in the pair-instability mass gap

Heger+ 2003, Woosley+ 2007

- Peculiar spin distribution peaked at 0.7

DG Berti 2017, Fishbach+ 2017

- But GW kicks require large escape speed

DG Berti 2019

- Very frequent in AGNs

Yang+2019, Tagawa+ 2020

- Promising for GW190412

DG Vitale Berti 2020, Rogriguez+ 2020

- Leading explanation for GW190521

LIGONirgo 2020

- Perhaps several events in the LIGO catalog?

Kimball+ 2021

- An exclusion region

DG Giacobbo Vecchio 2020

- ... but don't overdo it!

Zevin Holz 2022

And many more! Enough for a dedicated review DG Fishbach 2021

Populations, the Bayes way

θ
Single-event parameters: masses, spins, redshifts
Population parameters: spectral index of mass distribution, cutoffs

Inhomogeneous Poisson process:
Loredo 2004, Mandel+ 2019,

Selection effects: $\sigma(\lambda)=\int p_{\text {pop }}(\theta \mid \lambda) p_{\text {det }}(\theta) \mathrm{d} \theta$

What model for the Universe?

Option 1: Simple, parametrized functional forms Evaluating $p_{\text {pop }}(\theta \mid \lambda)$ is straightforward and can be done at each likelihood evaluation

But: Astrophysicists put a lot of effort in simulating stellar evolution, clusters, AGNs, and all of that!

Option 2:

Can we instead interpret GW data using cool astro predictions directly?

Evaluating $p_{\text {pop }}(\theta \mid \lambda)$ now is a costly simulation...

Ingredients in the blender

1. A population synthesis code

I'm not going to even try citing people here! So many excellent studies

- Early prototype with limited set of COMPAS runs Taylor DG 2018
- Current application: simple hierarchical merger populations Mould DG Taylor 2022
- Hopefully soon: full isolated formation channel inference
- Need help to do dynamics

2. Design a training bank. Space filling algorithms

- Latin hypercubes
- Now working on implementing progressive hypercube sampling

Ingredients in the blender

3. some form of data compression

- Used principal component analysis successfully Taylor, DG 2018
- Tucker decomposition to avoid array raveling?
- Non-linear dimensionality reduction schemes?

4. A powerful conditional density estimation scheme $p_{\mathrm{pop}}(\theta \mid \lambda)$

- Gaussian process regression

Taylor, DG 2018, Wong, DG 2019

- FFT-based KDE and a multilayer perceptri Mould DG Taylor 2022
- Autoregressive flows

Wong, Contardo, Ho 2020

Ingredients in the blender

5. A model for the detector $p_{\operatorname{det}}(\theta)$

- A simple SNR cut? Finn Chernoff 1992
- Pipeline injections? LIGONirgo 2019, 2021
- Some attempts at machine-learn the GW detectability.

DG Pratten Vecchio 2020, Talbot Thrane 2022
6. A sampler for $p(\lambda \mid d)$

- A vanilla nested sampling for now... but should we?

7. ...and of course the key player: the LGGONirgo data!

Just balls of black holes for now....

We need a population that is easy enough for now but non-analytic...

Key idea: take a parametrized model but allow for hierarchical mergers

In this talk a cluster is... a "thing" with a given escape speed $v_{\text {esc }}$
DG, Berti 2019, DG Giacobbo Vecchio 2021, Zevin Holz 2022

- Masses: $p(m) \propto m^{\gamma} \quad m \in\left[5 M_{\odot}, m_{\max }\right]$
- Spins: $\quad p(\chi)=\mathrm{const} \quad \chi \in\left[0, \chi_{\max }\right]$
- Pairing: $\quad p_{\text {pair }}\left(m_{1}\right) \propto m_{1}^{\alpha}$
$p_{\text {pair }}\left(m_{2} \mid m_{1}\right) \propto m_{2}^{\beta}$
- Clusters: $p\left(v_{\mathrm{esc}}\right) \propto v_{\mathrm{esc}}^{\delta}$

Just balls of black holes for now....

 We need a population that is easy enough for now but non-analytic...
Key idea: take a parametrized model but allow for hierarchical mergers

In this talk a cluster is... a "thing" with a given escape speed $v_{\text {esc }}$ DG, Berti 2019, DG Giacobbo Vecchio 2021, Zevin Holz 2022

- Masses: $\quad p(m) \propto m^{\gamma} \quad m \in\left[5 M_{\odot}, m_{\max }\right]$
- Spins: $\quad p(\chi)=\mathrm{const} \quad \chi \in\left[0, \chi_{\max }\right]$
- Pairing: $\quad p_{\text {pair }}\left(m_{1}\right) \propto m_{1}^{\alpha}$

$$
p_{\text {pair }}\left(m_{2} \mid m_{1}\right) \propto m \frac{\beta}{2}
$$

- Clusters: $p\left(v_{\mathrm{esc}}\right) \propto \sqrt{\delta}$

Six population parameters

Out of the cluster, one kick at the time

Targeted populations

Tackling inference on four event parameters

$$
\theta=\left\{M_{c}, q, \chi_{\mathrm{eff}}, \chi_{\mathrm{p}}\right\}
$$

Mould, DG, Taylor 2022

Four representative hyperparameter locations

This is a hard problem!

Strong correlations, multimodalities, spikes, gaps, degeneracies
... and we keep track of the merger generation

why $\chi_{\text {p }}$ goes up to $2 \ldots$ DG +2021

Full pipeline

Full pipeline

Full pipeline

Full pipeline

$$
\begin{gathered}
\text { Population parameters } \\
\lambda=\left\{\alpha, \beta, \gamma, \delta, m_{\max }, \chi_{\max }\right\}
\end{gathered} \longrightarrow \begin{gathered}
\text { Simulated events } \\
\left\{\left\{\vartheta_{j}^{i}\right\}_{j=1}^{\left.N_{\mathrm{h}}\left(\lambda^{i}\right)\right\}_{i=1}^{N_{\lambda}}} \longrightarrow\right.
\end{gathered} \longrightarrow \begin{gathered}
\text { Source parameters } \\
\theta=\left\{M_{\mathrm{c}}, q, \chi_{\mathrm{eff}}, \chi_{\mathrm{p}}\right\}
\end{gathered}
$$

Branching ratios

Deep learning
(DNN)

Branching function

Detection probability

Detection fractions

Deep learning
(DNN)

Selection function

$\sigma^{\prime}(\lambda)$ GW data
Hierarchical Bayes $p(\lambda \mid d) \propto \pi(\lambda) \mathcal{L}(d \mid \lambda)$

Full pipeline

Full pipeline

DOM

- A fully connected network
- A total of $\sim 70 \mathrm{k}$ parameters!
- Implemented in Google's Tensorflow
- Fast (~days) training on GPU

Interpolated distributions are statistically the same

Able to capture spikes and almost-discontinuous features

$$
d_{\mathrm{H}}(p, q)^{2}=1-\int \sqrt{p(x) q(x)} \mathrm{d} x .
$$

Layer	Neurons	Activation	Parameters
Input	10	-	0
Dense 1	128	RReLU	1408
Dense 2	128	RReLU	16,512
Dense 3	128	RReLU	16,512
Dense 4	128	RReLU	16,512
Dense 5	128	RReLU	16,512
Output	1	Absolute value	129
Total			67,585

Mould, DG, Taylor 2022

Full GWTC3 results

Inference and predictions

Masses

- Repeated mergers populate the upper mass gap
- 1 g cutoff ok with pair instability SN?
- Additional structure in the gap due to higher generations

Spins - Fat tails in the effective spin

- Fine structures in spin precession

Inference and predictions

Escape speeds

- Easy to infer secondary population parameters (here the escape speed)
- But can go crazy! Metallicity, environments, etc

Generations

- If we allow for hierarchical mergers, the fit wants to go there! cf e.g. Kimball+ 2021
- Easy to infer subchannels (here the generation)
- But can go crazy! Any label in the population...

Mould, DG, Moore, in prep

Ready for launch

- A complete, highly optimized population inference pipeline designed to digest outputs of astrophysical simulations and GW data
- Deep learning is crucial here (no other way, I think)
- Current astrophysics is admittedly too simple...
- ... but we're ready to use this beast on state-of the art models!

Deep-learning emulators and hierarchical Bayesian inference: application to gravitational-wave astronomy

Davide Gerosa

University of Milano-Bicocca

arXiv:2203.03651
with M. Mould, S. Taylor

davide.gerosa@unimib.it
www.davidegerosa.com

Mar 13, 2023
ML_INFN weekly meeting (online)

European Research Council

Fondazione CARIPLO

LEVERHULME TRUST \qquad

INFN
ICSC
Centro Nazionale di Ricerca in HPC,
Big Data and Quantum Computing

