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pHe collisions)  
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JINST 17 (2022)

● Why? PID calibration for LHCb fixed-target beam-gas data suffers from the low statistic

● PID efficiencies are one of the dominant uncertainties in analyses 

● What? Learn from fixed-target most abundant sample how the PID depends on the event 
features and robustly extrapolate for a lower-statistic one 

● How? Model the training PID classifiers 
through a maximum-likelihood fit with 
the composition of multinormal functions 
initialized with neural networks fed with 
the feature values

● Who?

https://iopscience.iop.org/article/10.1088/1748-0221/17/02/P02018
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Introduction and 
motivation
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The LHCb detector
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Introduction and motivation ML model Use cases and prospects Conclusions

● Designed for heavy flavour physics, the instrumented region covers                     mrad

z

● Complementary wrt other LHC experiments
● Tracking system: VErtex LOcator + tracking 

stations upstream and downstream of a 
magnet
○ 0.5-1% p resolution for p < 300 GeV/c
○ 10-80 μm IP resolution 

● Particle identification (PID): Two Cherenkov 
detectors (RICH) + calorimetric and muon 
systems

● Flexible and versatile trigger

JINST 3 S08005 (2008) 
JIMPA 30 (2015) 1530022

Nominal Interaction 
Point (IP, z = 0)

y

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08005
https://www.worldscientific.com/doi/abs/10.1142/S0217751X15300227
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The LHCb detector in fixed-target mode (I)
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Introduction and motivation ML model Use cases and prospects Conclusions

● In proximity of the LHCb IP, the proton-nucleus interaction can 
be  fully reconstructed!

● Since 2011, LHCb is equipped with the System for Measuring 
Overlap with Gas (SMOG) 
○ Used to complement the  LHC luminosity measurement by 

reconstructing the LHC beams transverse profiles via proton 
collisions with the small quantity of injected gas (10-7 mbar) 

JINST 9, (2014) P12005

● Forward detector + gas target = highest-energy fixed-target ever!

beam1 beam2

LHCb IP

https://iopscience.iop.org/article/10.1088/1748-0221/9/12/P12005
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The LHCb detector in fixed-target mode (II)
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Introduction and motivation ML model Use cases and prospects Conclusions

SMOG HeLHC p SMOG He

e.g. 6.5 TeV LHC protons on at-rest He correspond to a 
nucleon-nucleon centre-of-mass energy             110 GeV

LHC p
Lab frame CM frameLHCb-PUB-2018-015
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● Intermediate energy to SpS and LHC scales
● Many collision systems (Z dependence)
● Access to the moderate Q2 and large target 

Bjorken-x (the nucleon momentum fraction 
carried by the colliding parton) region

Unique experimental inputs
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● pA and PbA fixed-target samples collected during special runs in 2015-2018

http://cds.cern.ch/record/2649878
https://cds.cern.ch/record/2649878/files/LHCb-PUB-2018-015.pdf
https://cds.cern.ch/record/2649878
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Particle identification at LHCb
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Introduction and motivation ML model Use cases and prospects Conclusions

● Problem: the simulation cannot be fully trusted, 
hence PID is calibrated on decays selected with no 
PID info and then applied to the signal of interest 

● How to distinguish pions, kaons and (anti)protons produced in each collision?

Reconstruction of the Cherenkov angle

Fit to Cherenkov rings to define likelihood 
functions for each particle hypothesis

● How robust is the extrapolation, provided that the 
calibration and application phase-spaces differ? 
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Fixed-target particle identification at LHCb
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Introduction and motivation ML model Use cases and prospects Conclusions
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● Example: 
● Prompt antiprotons are counted with a 

template fit to PID variables 
● PID fit quality not satisfactory and PID found 

as one of the dominant contributions to the 
systematic uncertainty

● Calibration channels can be reconstructed and selected with high statistics in pp data, but 
statistics is not sufficient in some of the fixed-target collected samples

● PID calibration from pp cannot be efficiently applied to fixed-target because of the poor 
phase-space coverage (different occupancy, momentum, z distribution…)    

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2018-031.html
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ML model
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Calibration channels
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Introduction and motivation ML model Use cases and prospects Conclusions

● The                               ,                       and                                decays are reconstructed and 
selected (with no PID cuts) in the SMOG largest-statistics sample (pNe) 

● Large purity achieved for Λ and Ks thanks to their description in the Armenteros plot

● sPlot performed on φ by fitting the invariant mass with a 
Voigtian + first-order polynomial 

● Weights validated as being the pion contamination suppressed 
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Gaussian Mixture Model
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Introduction and motivation ML model Use cases and prospects Conclusions

● For each decay channel, the 2D DLL distribution      (e.g DLL
p,π and DLL

p,K 
) is modelled with 

a sum of N
g
 multinormal distributions:

● All multinormal parameters are a function of the features θ, representing the physical 
quantities affecting the RICH response

● To properly take into account correlations and to enhance the template tails statistical 
significance, each parameter is the output of a Neural Network (NN) fed with θ

● Number of multinormal N
g
 and the NN structure (depth, nodes..) defined by the user



Saverio Mariani 
                                                  

Feature variables choice 
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Introduction and motivation ML model Use cases and prospects Conclusions

● Which features do affect most the RICH response?
● Ordered according to the max. Kolmogorov-Smirnov 

(KS) distance between all pairs of DLL histograms 
plotted in bins of each variable

● Relevant features reflect particle kinematics, 
detector occupancy and reconstruction quality

● Geometry added to consider the difference between 
training (detached) and validation (prompt) particles 
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Preprocessing and training
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Introduction and motivation ML model Use cases and prospects Conclusions

● To ease the convergence, DLL variable are rescaled to [0, 1] (MinMaxScaler algorithm), 
features are converted into Gaussians (QuantileTransformer algorithm)

●  For each calibration decay, training on n
p
 pNe events by minimizing a loss defined as the 

opposite of the maximum likelihood:

(being w
i
 the sPlot weights for the φ line) 

[1], [2]

● NN weights are adjusted as a function of θ to 
maximize the likelihood wrt training data 

● The xp(θ) relation is learned!
● Steep decreasing, followed by a gentle one 

and an oscillation around the minimum

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://arxiv.org/pdf/0905.0724.pdf
https://arxiv.org/pdf/1911.01303.pdf
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Validation

PID4SMOG: a ML approach to fixed-target PID analysis at LHCb 15

Introduction and motivation ML model Use cases and prospects Conclusions

● To verify that the trained model has correctly learned to reproduce the data, these are 
compared in bins of all possible feature pairs (below p є [12.0, 15.5) MeV/c, η є [4.1, 4.4) ) 
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Validation (II)
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Introduction and motivation ML model Use cases and prospects Conclusions

● Also, based on the available information, the model is able to draw a smooth template in 
low statistics phase-space regions!
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Use cases 
and prospects
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Generalization to pHe and pAr data samples
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Introduction and motivation ML model Use cases and prospects Conclusions

● Using the trained models, templates are produced for prompt antiproton candidates in the 
2016 pHe and 2015 pAr data, according to their feature distributions (different wrt pNe!)

● Fit procedure followed in the antiproton measurement repeated with the composition of 
simulated and predicted templates and compared

Simulation PID4SMOG

● Improvement in the data description evident and measured in the KS distance!
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Generalization to pHe and pAr data samples (II)
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Introduction and motivation ML model Use cases and prospects Conclusions

● Procedure iterated in kinematic bins and KS distance between data and simulated or 
predicted templates composition measured

● Difference between KS with simulation and prediction mostly show positive values
● Our model offers an equal or better data description than the detailed simulation 

pHe pAr
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Other use cases
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Introduction and motivation ML model Use cases and prospects Conclusions

● PID eff calculated via PID4SMOG 
already in two other analyses:

●
○ A possible correlation between kaon tracks 

from φ decays inducing a bias in PID studies 
is investigated by training a model on 2017 
pp D0  data and predicting DLLs for kaons 
from 2017 pp φ

○ The match of the prediction (not taking into 
account the possible correlation) with φ 
data excludes the effect     

○ Detached-to-prompt antiproton ratio in pHe 
○ Quarkonia and D0 production in 2017 pNe   

● Also, for pp, where statistics is sufficient, PID4SMOG can be used to compare different 
calibration channels:

LHCb-PAPER-2022-006

LHCb-PAPER-2022-015

https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2022-006.html
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2022-015.html
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● Plan is to move to density estimation via normalizing flows, efficiently supported in TF2, 
to overcome the dimensionality limitation

● PID5SMOG is on the horizon, but, unfortunately, people power is very limited atm

Prospects
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Introduction and motivation ML model Use cases and prospects Conclusions

● Main limitation of the model atm is that it only supports a bidimensional target (which was 
motivated, being the goal the π-K-p separation)
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Conclusions
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Conclusions
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Introduction and motivation ML model Use cases and prospects Conclusions

● PID4SMOG: Data-driven machine-learning-based approach to the PID conceived to perform 
robust extrapolations (for SMOG, this mitigates one of the dominant uncertainties)
○ Calibration channels reconstructed and selected in pNe data for pions, kaons, protons
○ Training data modelled as a Gaussian Mixture Model with all parameters determined by 

Neural Networks fed with a set of relevant experimental features
○ Significant improvement in the description of pHe and pAr samples wrt simulation
○ Some use-cases  for SMOG and pp data presented and prospects to overcome 

limitations are clear

Thanks for your attention! 
Follow up? saverio.mariani@cern.ch
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DLL distribution for fixed-target data
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Introduction and motivation ML model Use cases and prospects Conclusions
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Model application in kinematic bins
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Introduction and motivation ML model Use cases and prospects Conclusions
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● Overtraining not a worrying issue in 
this application, since goal is to 
learn a relation 

● Possibly, multinormal parameters 
could be rapidly adapted to training 
data in phase-space corners

Overtraining?
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Introduction and motivation ML model Use cases and prospects Conclusions

● Smooth parameters evolution as a 
function of features indicates this is 
not the case 


