
SABRE-North activities

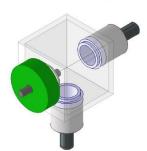
Giulia D'Imperio on behalf of SABRE-North collaboration

08/02/2023

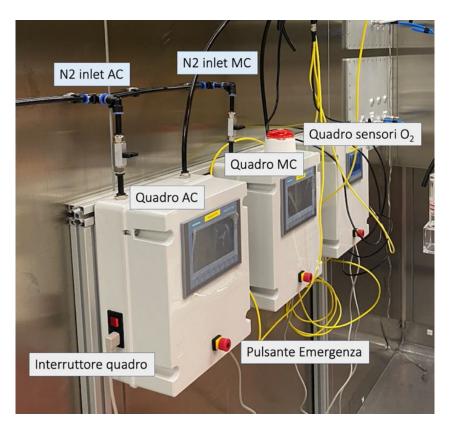
SABRE glovebox

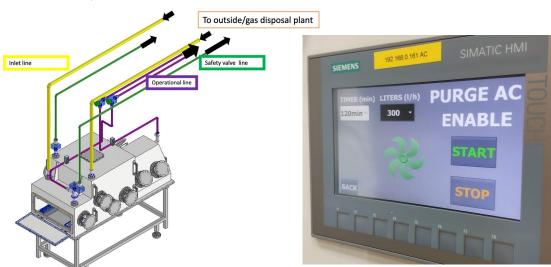
- Located in the Clean Room (CR1) in Hall C
- Two volumes
 - antechamber (AC)
 - main chamber (MC)
- Fluid handling control panel
- Internal tools for handling and shifting objects from one volume to the other

Sensors


The glovebox is equipped with the following sensors:

- AC, MC and room are equipped with identical sensors of:
 - Pressure
 - o Temperature
 - Humidity (relative)
- Two O₂ sensors operative at high temperature (about 100°C), mounted on dedicated supports, one for AC and one for MC
- Humidity sensors:
 - o portable thermo-hygrometer Hygropalm → Dew point and relative humidity
 - Dewpoint Xentaur sensor (up to -100 C) → Dew point, ppm (by volume) and g/m3




- AC and MC panels:
 - → monitor pressure, temperature, relative humidity in AC, MC, room
 - → set PURGE or FLOW modes
 - → emergency buttons
- O_2 panel:
 - → measure O₂level in AC and MC
 - → calibrate O₂sensors
- Emergency button: isolate completely the system

Two operational modes:

- PURGE → continuous flux of nitrogen
- FLOW → maintain slight overpressure wrt to room (0.4 mbar and 0.8 mbar in AC and MC), compensate for the insertion of hands, etc..

- Test the FLOW mode in AC and MC
 - check that the nominal overpressure is maintained
 - add/remove hands controlling that the system acts as expected, tune the parameters for opening/closing valves
- Test the **PURGE mode** in AC and MC
 - tune the N2 fluxes in AC and MC
 - check that humidity and O2 level decreases during the flux
 - complete the purging in AC and MC reaching the nominal level of humidity

Requirements

Humidity reference level to operate safety Nal naked crystals:

- COSINE paper [Eur. Phys. J. C 80, 814 (2020)]: "humidity level was maintained to be less than a **few tens of ppmv** (H2O)"
- COSINUS glovebox: 5-20 ppmv, up to 85 ppmv
- Dry room operating at RMD for cut/polish of crystals → <5% RH

In our operations we reached **2.5% RH @17 °C** fluxing the MC with 600 lt/h for 72 h(*).

→ corresponds to ~500 ppmv and -30°C dew point

Humidity slowly rises during operations, but remains <5% RH in 5-6 h

^{*}similar result was achieved after fluxing for 12 h with 600 lt/h.

Crystal operations in glovebox

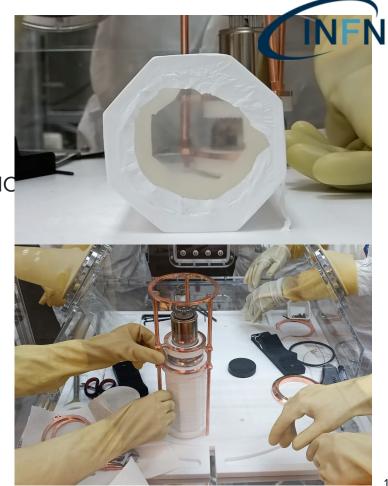
- 27/09/2022 change of teflon reflector Nal-33
 - → removed original teflon from PU, new teflon from italian company
- 29/11/2022 change of teflon reflector Nal-33
 - → use new teflon from RMD
- 07/12/2022 first mounting of Nal-37 in the new enclosure
- 24/01/2023 dismount and remount Nal-37 with new delrin internal parts

All operations were **successful**: no damage of the crystals, **humidity <5% RH** for the whole duration of the activity (5-6 h)

Change teflon reflector

Sequence of operations

- 1. Insert enclosure from AC & move to MC
- Open enclosure in the MC & extract crystal+PMTs
- 3. Unmount crystal & remove reflector
- 4. Wrap crystal with new reflector
- 5. Mount again the module: crystal+PMTs
- 6. Insert module in the enclosure & close
- 7. Move enclosure from MC to AC
- 8. Extract enclosure from AC



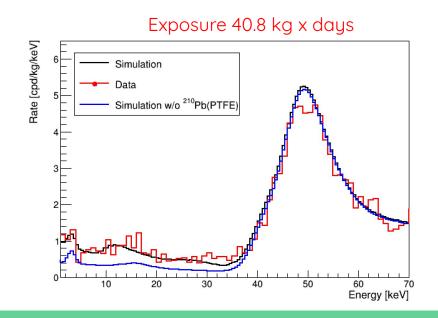
Mount crystal in the enclosure

Sequence of operations


- Insert enclosure from AC & move to MC
- Insert crystal and PMTs from AC and move to MC
- Remove crystal from protective bags
- Wrap the crystal with reflector
- 5. Mount the module: crystal+PMTs+ holders
- Insert module in the enclosure & close
- Move enclosure from MC to AC
- Extract enclosure from AC

Some operations in common with the sequence for changing reflector

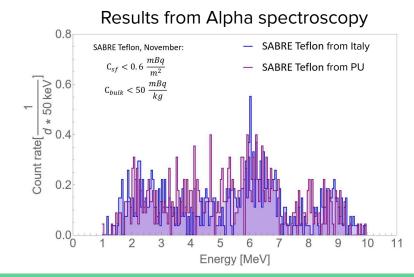
SABRE area in Hall B

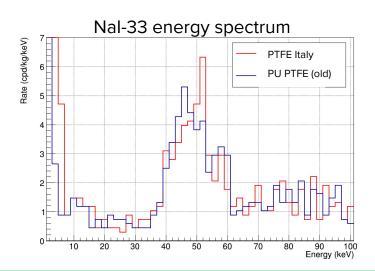


New copper shielding

After decommissioning in Hall C (July 2022) we mounted an improved **passive** shielding in Hall B:

- ~30 cm copper on all sides + PE base
- new setup to test effect of teflon replacement

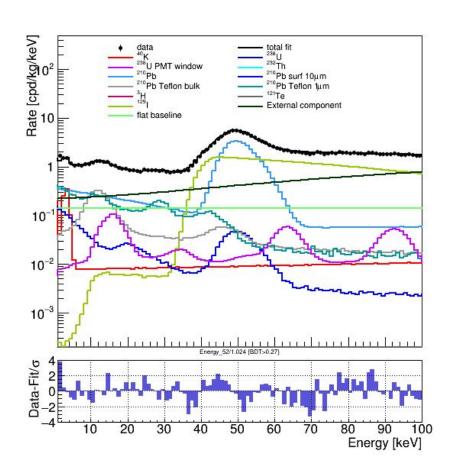




INFN

Results on Nal-33

- After 27/09/22 the light yield has dropped from 12 p.e./keV to 6.6 p.e./keV
- After 29/11/22 the light yield went to 7.2 p.e./keV
- Change of the teflon of NaI-33 does not change significantly the background rate in the region around 12 keV

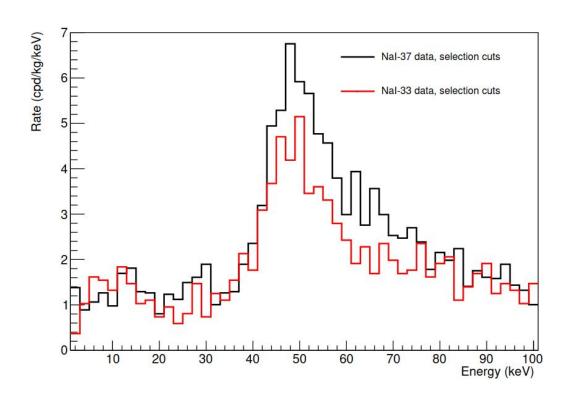


New background model of Nal-33 (preliminary)

Range: [2;100] keV

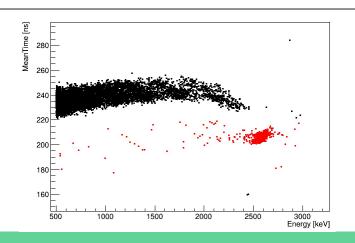
Parameter	Value	Sigma
Flat baseline	123.56 counts	30.33 counts
40K	0.161 mBq/kg	0.023 mBq/kg
238U	4.1 ·10 ⁻⁶ mBq/kg	0.005 mBq/kg
3H	1.16 ·10 ⁻⁸ mBq/kg	0.0009mBq/kg
232Th	4.1 ·10 ⁻⁷ mBq/kg	0.001 mBq/kg
1291	1.086 mBq/kg	0.017 mBq/kg
210Pb crystal surf 10µm	0.12 mBq	0.053 mBq
210Pb bulk	0.555 mBq/kg	0.007 mBq/kg
210Pb teflon surf 1µm	0.0118 mBq	0.0020 mBq
210Pb teflon bulk 238U PMT windows	10.43 mBq/kg _{PTFE} 0.022 mBq/kg	1.10 mBq/kg _{PTFE} 0.005 mBq/kg
External component	1.082	0.005 mBq/kg
•		

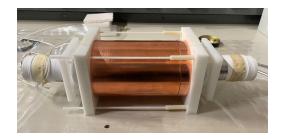
Reduced Chi2 = 1.74398

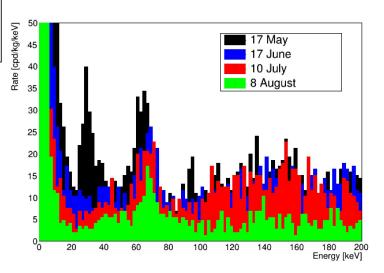


- During the mounting of 07/12/2022 we found a problem in delrin holders design
 - → air gap of few mm between PMT window and crystal
- Light yield ~5 p.e./keV, very noisy runs
- After 24/01/23 with new holders and better optical contact (with optical grease Saint Gobain 630)
 - → light yield improved to 8 p.e./keV
- Alpha rate 0.76+/-0.02 mBq/kg
- From ICP-MS Nal-37 has 7.8 ppb of potassium, Nal powder batch different from both Nal-33 and Nal-35

Preliminary results on Nal-37


- caveat: no acceptance correction, few days of data taking
- higher ²¹⁰Pb content of Nal-37 is visible in the 50 keV region
- residual cosmogenics in Nal-37 in the regions around 30 keV and 70 keV




Nal-35 crystal

- α rate: 0.48 mBq/kg
 - \rightarrow compatible with NaI-33
- working to put again Nal-35 in measurement with 4 inch PMTs

Data taking in Hall B from Aug 2022 Exposure: 279 kg x days

Nal-35 crystal runs for pyrate development

Pyrate dataset:

/nfs/sabre2/data/AustralianDAQ_NaI-33/ProcessedFiles/CrystalProcessed 16-21Sept2022.root

Chimera dataset:

/nfs/sabre2/data/SABRENorth/flat_output/Flat_HallB_new_6da
ys.root

• Raw files for pyrate (from 16 to 21 September):

/nfs/sabre2/data/AustralianDAQ NaI-33

• Raw files for Chimera (from run 30 to 35):

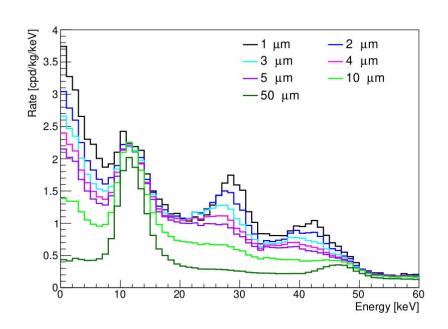
/nfs/sabre2/data/SABRENorth/HallB new/NaI-033/daq

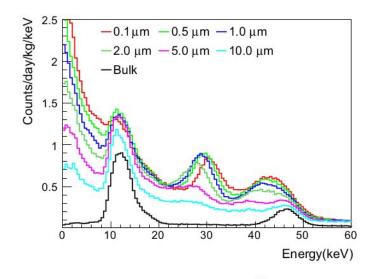
Summary

- The SABRE glovebox allows to operate naked crystals in safe conditions
 - → relative humidity down to 2.5%
- PTFE wrapping replacement in Nal-33 didn't have the expected effect
 - → different PTFE reflector give similar background
 - → new background model including PTFE bulk contamination of ²¹⁰Pb gives a good fit result
- Nal-37 preliminary analysis show a higher ²¹⁰Pb content in the crystal bulk with respect to Nal-33 and Nal-35
- Next activities: low energy spectrum and background model of both NaI-35 and NaI-37, pyrate development

Extra slides

Background model of NaI-33 (published)




Source	Activity in NaI-33 [mBq/kg]	Rate in ROI in NaI-33 [cpd/kg/keV]
⁴⁰ K	0.15 ± 0.02	0.12 ± 0.02
²¹⁰ Pb (bulk)	0.461 ± 0.005	0.325 ± 0.004
²²⁶ Ra	0.0059 ± 0.0006	0.0049 ± 0.0005
²³² Th	0.0016 ± 0.0003	
^{3}H	≤0.005	≤ 0.05
^{129}I	1.29 ± 0.02	
²¹⁰ Pb (PTFE)	$0.83 \pm 0.06 \text{mBq}$	0.46 ± 0.03
²³⁸ U (PMTs quartz window)	$0.31 \pm 0.05 \text{ mBq}$	0.011 ± 0.002
Other (flat)		0.39 ± 0.02
Total		1.36 ± 0.04

Eur. Phys. J. C (2022) 82:1158

²¹⁰Pb teflon spectra

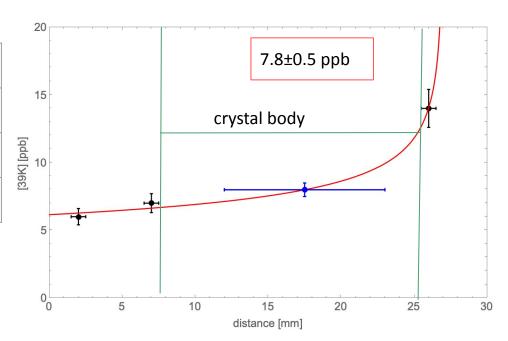


Fig. 5 Comparison of background spectra of ²¹⁰Pb simulated for various surface thicknesses of PTFE reflector. The activity of 1 mBq/kg is used to normalize the simulation results

ICP-MS measurement of ³⁹K in Nal-37

	Seastar	LNGS
tip 1	6	
tip 2	7	10
tail	14	19

accuracy 20%

