Perspectives on hadronic final states, from up close & far away Università di Genova (Genoa, Italy), 2023.05.24

Matt LeBlanc (Manchester) matt.leblanc@cern.ch, @TopPhysicist

The University of Manchester

- **collisions** (Proxy for parton momentum).
- Jets are complex: composite objects w/ multiple scales, large areas.

- **Theoretical** complexity:
 - fixed-order aspects
 - resummation-dominated aspects
 - non-perturbative aspects

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 2

Jets are formed when high-energy quarks and gluons are produced in LHC

- **Experimental** complexity:
 - Calorimeter signals
 - Charged-particle tracks

CARTOON FROM E. METODIEV

ATLAS, <u>EPJC 79 (2019) 290</u>

ATLAS, PLB 816 (2021) 136204

- Experimentalists at the LHC work hard to calibrate the jet energy scale (JES) using *in situ* balance measurements.
 - Not a topic for today, but one near & dear to me: **ATLAS** has recently achieved sub-% JES precision over the widest-ever kinematic range!

ATLAS JES

Run 2: <u>EPJC 81 (2021) 689</u> **Run 3 (brand new!)**: <u>2303.17312</u>

JETS AND QCD FEATURE PROMINENTLY IN MOST PHYSICS @ THE LHC!

		$\sqrt{s} = 8 \text{ TeV}$	
		$m_{\rm top}^{\ell+ m jets}$ [GeV]	
k	Results $(i = 0, 5)$	172.08	
0	Statistics	0.39	
	$-$ Stat. comp. (m_{top})	0.11	
	- Stat. comp. (JSF)	0.11	
	- Stat. comp. (bJSF)	0.35	
1	Method	0.13 ± 0.11	
2	Signal Monte Carlo generator	0.16 ± 0.17	
3	Hadronization	0.15 ± 0.10	L,
4	Initial- and final-state QCD radiation	0.08 ± 0.11	
5	Underlying event	0.08 ± 0.15	as
6	Colour reconnection	0.19 ± 0.15	
7	Parton distribution function	0.09 ± 0.00	
8	Background normalization	0.08 ± 0.00	
9	W/Z+jets shape	0.11 ± 0.00	
10	Fake leptons shape	0	
11	Data-driven all-jets background		
12	Jet energy scale	0.54 ± 0.02	
13	Relative b -to-light-jet energy scale	0.03 ± 0.01	
14	Jet energy resolution	0.20 ± 0.04	
15	Jet reconstruction efficiency	0.02 ± 0.01	
16	Jet vertex fraction	0.09 ± 0.01	
17	b-tagging	0.38 ± 0.00	
18	Leptons	0.16 ± 0.01	
19	Missing transverse momentum	0.05 ± 0.01	
20	Pile-up	0.15 ± 0.01	
21	All-jets trigger		
22	Fast vs. full simulation		
	Total systematic uncertainty	0.82 ± 0.06	
	Total	0.91 ± 0.06	

ATLAS, <u>EPJC 79 (2019) 290</u>

TOP MASS MT

odelling arious pects of QCD....

JMR

modelling

Partor

showe

ES → odelling here!

Source of uncertainty Avg. impact 0.372 Total 0.283 **Statistical** 0.240 Systematic Experimental uncertainties Small-R jets 0.038 Large-R jets 0.133 $E_{\mathrm{T}}^{\mathrm{miss}}$ 0.007 0.010 Leptons *b*-jets 0.016 *b*-tagging *c*-jets 0.011 0.008 light-flavour jets 0.004 extrapolation Pile-up 0.001 0.013 Luminosity Theoretical and modelling uncertainties Signal 0.038 Backgrounds 0.100 $\hookrightarrow Z + jets$ 0.048 $\hookrightarrow W + jets$ 0.058 $\hookrightarrow t\bar{t}$ 0.035 \hookrightarrow Single top quark 0.027 0.032 \hookrightarrow Diboson \hookrightarrow Multijet 0.009 MC statistical 0.092

ATLAS, <u>PLB 816 (2021) 136204</u>

ATLAS Jet Energy Scale

ATLAS, <u>2303.17312</u> (brand new!)

the choice of nominal MC model in many places...

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 6

• Even with our latest techniques, the *in situ* JES uncertainty is still driven by

		$\sqrt{s} = 8$ TeV	
		$m_{\rm top}^{\ell+\rm jets}$ [GeV]	
k	Results $(i = 0, 5)$	172.08	
0	Statistics	0.39	
	$-Stat. \ comp. \ (m_{top})$	0.11	
	-Stat. comp. (JSF)	0.11	
	– Stat. comp. (bJSF)	0.35	
1	Method	0.13 ± 0.11	
2	Signal Monte Carlo generator	0.16 ± 0.17	
3	Hadronization	0.15 ± 0.10	Various
4	Initial- and final-state QCD radiation	0.08 ± 0.11	
5	Underlying event	0.08 ± 0.15	aspects of
6	Colour reconnection	0.19 ± 0.15	QCD
7	Parton distribution function	0.09 ± 0.00	
8	Background normalization	0.08 ± 0.00	
9	W/Z+jets shape	0.11 ± 0.00	
10	Fake leptons shape	0	
11	Data-driven all-jets background		
12	Jet energy scale	0.54 ± 0.02	JES/JER →
13	Relative <i>b</i> -to-light-jet energy scale	0.03 ± 0.01	Large parts from
14	Jet energy resolution	0.20 ± 0.04	MC Madalling
15	Jet reconstruction efficiency	0.02 ± 0.01	
16	Jet vertex fraction	0.09 ± 0.01	
17	b-tagging	0.38 ± 0.00	
18	Leptons	0.16 ± 0.01	
19	Missing transverse momentum	0.05 ± 0.01	
20	Pile-up	0.15 ± 0.01	
21	All-jets trigger		
22	Fast vs. full simulation		
	Total systematic uncertainty	0.82 ± 0.06	
	Total	0.91 ± 0.06	

TOP MASS MT

ATLAS, <u>EPJC 79 (2019) 290</u>

P

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 7

SIGNAL MC PDFS

JET ENERGY SCALE OFFEN DRIVEN BY PARTON SHOWER + HADRONISATION MODELLING)

PARTON SHOWER ISR

HADRONISATION FSR COLOUR REC. / UE

> CARTOON FROM E. METODIEV

Perspectives on hadronic final states

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 8

FROM UP

CLOSE

Part 1: Jet Substructure

ATLAS soft-drop mass + observables PRL 121, 092001 (2018), PRD 101, 052007 (2020)

ATLAS Lund jet plane PRL 124, 222002 (2020)

Perspectives on hadronic final states

Part 2: Event Shapes Multijet Event Isotropies w/ Optimal Transport **ATLAS-STDM-2020-20**

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 9

FROM UP CLOSE

+ FAR AWAY

1. Start with anti- k_t jet.

Dasgupta, Fregoso, Marzani, Salam, JHEP 09 (2013) 029, Larkowski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

<u>The Soft-Drop / modified Mass-Drop Algorithm</u>

1. Start with anti- k_t jet.

Dasgupta, Fregoso, Marzani, Salam, JHEP 09 (2013) 029, Larkowski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 14

2. Recluster with C/A algorithm. (Angle-ordered!)

<u>The Soft-Drop / modified Mass-Drop Algorithm</u>

1. Start with anti- k_t jet.

Dasgupta, Fregoso, Marzani, Salam, JHEP 09 (2013) 029, Larkowski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 15

Soft-drop!

2. Recluster with C/A algorithm. (Angle-ordered!)

3. Check soft-drop condition at each node, starting with the widest-angle emission.

Stop when one passes!

Precision Jet Substructure: Soft-Drop Observables

ATLAS, <u>PRD 101, 052007 (2020)</u>, <u>PRL 121, 092001 (2018)</u>

- **Goal:** provide experimental testbed for the first high-accuracy (>LL) JSS predictions:
- **Mass** $\rho = \log_{10}(m_j / p_T^j)$ NLL <u>1704.02210</u> <u>1712.05105</u> *today NNLL <u>1603.06375</u> <u>1603.09338</u> <u>1803.03645</u> <u>1811.06983</u>
 - Angle $R_g = \Delta R(j_1, j_2)$ NLL <u>1908.01783</u>
 - **Balance** $Z_{g} = p_{T^{j2}} / p_{T^{j1}}$ NLL 2106.04589
- JSS measurements made in **dijet events**:
 - No backgrounds,
 Measured different ß values q/g admixture, broad kinematic range. *p*_T ~ 300 GeV — 2 TeV
- → more/less NP-QCD
 - Measured calorimeter and track-based signals

See also: CMS, JHEP 11 (2018) 113 (soft-drop mass)

Soft-Drop Jet Mass

ATLAS, <u>PRD 101, 052007 (2020)</u>, <u>PRL 121, 092001 (2018)</u>

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 17

"Relative Mass" $\rho = \log(m_{SD}^2/p_T^2)$

Marzani, Schunk & Soyez!

Soft-Drop Jet Mass: increasing NP-QCD

ATLAS, PRD 101, 052007 (2020), PRL 121, 092001 (2018)

"Relative Mass" $= log(m_{SD}^{2}/p_{T}^{2})$

Agreement deteriorates, 'well-understood' region shrinks, uncertainties increase!

Calo- and track-based JSS

ATLAS, PRD 101, 052007 (2020)

- **Advantages:** Smaller angles, softer signals, better resolution (more bins).
- IRC safety (collinear-unsafe). Trade-offs:

Track-based *measurement provides* a cross-check on calorimeter-based measurement.

Also, more precise reference data for improving MC models.

Reduced uncertainties!

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 19

Aside: CMS JSS Angularities Measurement

CMS, JHEP 01 (2022) 188

JSS ANGULARITIES

Products of relative constituent energies and angles, varying weight of each component

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} z_{i}^{\kappa} \left(\frac{\Delta R_{i}}{R}\right)^{\beta}$$

- Both ATLAS and CMS have made comparisons of **charged+neutral &** charged-only pictures.
 - Similar observations can be made using data from both collaborations
 - Perhaps surprising, given CMS's "particle-flow" reconstruction.

Similar levels of (dis)agreement!

Charged picture has significantly more reach into collinear region (10x)!

CALORIMETER-ONLY

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 21

INNER-DETECTOR-ONLY

Lund jet plane *Dreyer, Salam & Soyez <u>JHEP 12 (2018) 064</u>*

• Lund Plane : tool used by PSMC authors for 34 years & counting (Andersson et al. Z.Phys.C 43 (1989) 625)

- Newly applied to JSS by **Dreyer** et al.
 - **Key concept:** probe entire angle-ordered emission history of originating parton.
 - Parameterise emissions of **angle-ordered picture** in terms of their **relative energies (z)** and **angles** $(\Delta R).$
- Powerful, physics-forward representation of JSS:
 - ML/AI (<u>1903.09644</u>, <u>2012.08526</u>), q/g tagging (<u>2112.09140</u>), PS development (<u>1805.09327</u>, <u>2205.02861</u>), analytics (2007.06578), heavy-flavour (2106.05713, 2112.09650, 2202.05082)
 - ... we'll have a whole LJP workshop at CERN in July!

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 22

Lund jet plane: data ATLAS, <u>PRL 124, 222002 (2020)</u>

- Factorises different physics effects into different regions.
 - Soft splittings vs. even splittings, wide-angled vs. collinear.

Lund jet plane: data ATLAS, <u>PRL 124, 222002 (2020)</u>

- Factorises different physics effects into different regions.
 - Soft splittings vs. even splittings, wide-angled vs. collinear.
- Calorimeter granularity is too coarse to resolve the most collinear splittings.
 - Use tracks in jets \rightarrow smallest angular scales!

Lund jet plane: data

ATLAS, <u>PRL 124, 222002 (2020)</u>

- Factorises different physics effects into different regions.
 - Soft splittings vs. even splittings, wide-angled vs. collinear.
- Calorimeter granularity is too coarse to resolve the most collinear splittings.
 - Use tracks in jets → smallest angular scales!
 - Perturbative region, uniformly populated (lower-left corner).
 - •Non-Perturbative region, enhanced by hadronisation (diagonal band).

- Easier to see factorised effects by slicing through LJP.
- Utility in data for improving MC models (e.g. hadronisation models \rightarrow JES)
 - Can improve one aspect of simulation without disturbing another
 - Can mask nonperturbative aspects from classifiers

• Re-tuned Sherpa AHADIC hadronisation (*n.b.* tuned

ATLAS, <u>ATL-PHYS-PUB-2022-021</u>

z

- Easier to see factorised effects by slicing through LJP.
- Utility in data for improving MC models (e.g. hadronisation models \rightarrow JES)
 - Can improve one aspect of simulation without disturbing another
 - Can mask nonperturbative aspects from classifiers

- Calculation with NLL resummation compared
- Non-perturbative corrections small despite charged-only measurement.
- Agrees well w/ measurement in perturbative

LJP + Parton Showers >LL

Dasgupta, Dreyer, Hamilton, Monni, Salam & Soyez, <u>PRL 125, 052002 (2020)</u> https://gsalam.web.cern.ch/gsalam/panscales/

• Can the >NLL revolution for JSS be generalised?

```
had LO \rightarrow NLO \rightarrow NNLO,
now LL \rightarrow NLL \rightarrow NNLL!
want Parton Showers: LL \rightarrow NLL
```

- Parton Shower Monte Carlos are probably the most \bullet widely-used theoretical HEP tool.
 - We know that the current generation have limitations:
 - Only ~LL accurate
 - Do not provide realistic estimates of uncertainties
 - Performance difficult to evaluate - tuned to data (empirical)
- LJP can be used to construct observables sensitive to \bullet higher-order effects (PanScales, NLL).

DELTA-PHI BETWEEN TWO EMISSIONS WITH HIGHEST KT

SPIN CORRELATIONS

INCREASE KT-CUT + INTEGRATE IN LJP (COUNT EMISSIONS) -> SPLITTING FUNCTIONS (2→2, 2→3)

> SEE ALSO LH19 2003.01700

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 29

Perspectives on hadronic final states

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 30

FROM UP

CLOSE

Part 1: Jet Substructure

ATLAS soft-drop mass + observables PRL 121, 092001 (2018), PRD 101, 052007 (2020)

ATLAS Lund jet plane PRL 124, 222002 (2020)

Perspectives on hadronic final states

Part 2: Event Shapes Multijet Event Isotropies w/ Optimal Transport **ATLAS-STDM-2020-20**

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 31

FROM UP CLOSE

+ FAR AWAY

... INTERPOLATE BETWEEN COLLIDER EVENT TOPOLOGIES.

... INTERPOLATE BETWEEN COLLIDER EVENT TOPOLOGIES.

GLUON OBSERVATION (JADE, 1980)

Fig. 3. The planarity distribution compared with model predictions.

$$T_{\alpha\beta} = \sum_{i} P_{i\alpha} P_{i\beta} \Big/ \sum_{i} P_{i}^{2} ,$$

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 33

THEY HAVE SEEN A WIDE VARIETY OF APPLICATIONS IN COLLIDER PHYSICS FOR OVER 50 YEARS.

Transverse thrust

One common *definition of thrust:*

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 34

Fun reference: finding the thrust axis with quantum annealing — PRD 106 (2022) 9, 094016

$$\frac{PROJECT EVENT ACTION $\hat{r}_i = \vec{p}_i / |\vec{p}_i|$$$

Transverse thrust

- Transverse Thrust is an extremely well-understood event shape in *pp* collisions.
 - Quantifies how "back-to-back" an event is.
 - **Small values:** back-to-back
 - Large values: 'Mercedes'
- Are Mercedes events isotropic?

WHAT ABOUT THIS EVENT?

DOES IT HAVE A LARGE OR SMALL THRUST VALUE?

Is it isotropic?

WHAT ABOUT THIS EVENT?

DOES IT HAVE A LARGE OR SMALL THRUST VALUE?

Is it isotropic?

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 37

Is it larger or smaller than this one? More or less isotropic?

THRUST PICKS OUT BACK-TO-BACK EVENTS, NOT ISOTROPIC ONES.

THRUST PICKS OUT BACK-TO-BACK EVENTS, NOT ISOTROPIC ONES.

TO ISOLATE ISOTROPIC CONFIGURATIONS, WE NEED A NEW TOOL:

Distance & QCD

DAD JOKE' FROM J. THALER

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 40

Distance & QCD

Jesse Thaler (MIT) — The Hidden Geometry of Particle Collisions

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 41

DAD JOKE' FROM J. THALER

Energy-Mover's Distance (EMD)

Komiske, Metodiev & Thaler, <u>PRL 123, 041801 (2019)</u>, <u>JHEP 07 (2020) 006</u>

- Need IRC-safe distance metric between collider radiation patterns.
 - EMD defined as the **minimum 'work'** required to re-arrange one event into another.
 - Corresponds to the *p*-Wasserstein class of metrics.

Interdisciplinary tool for QCD analysis!

- EMDs used often in **computer vision**: problems solved w/ **Optimal Transport** techniques.
 - Common tools/libraries... <u>1</u>, <u>2</u>, <u>3</u>
 - Some have been adapted for HEP! <u>4</u>, <u>5</u>

FIGURES + CARTOONS FROM KOMISKE ET AL.

A.K.A. EARTH-MOVER'S DISTANCE

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 42

ONE COMMON DEFINITION OF THRUST:

ONE COMMON DEFINITION OF THRUST:

$$\hat{r}(\mathcal{E}) = 2 \min_{\hat{n}} \sum_{i=1}^{M} \frac{|\vec{p}_i|(1 - |\vec{n}_i \cdot \hat{n}|)}{E_{\text{total}}} \quad \hat{n}_i = \vec{p}_i / |\vec{p}_i|$$

ENERGY ANGULAR MEASURE
$$f_{ij} = \frac{|\vec{p}_i|}{E_{\text{total}}} \quad \theta_{ij}^2 = 2n_i^{\mu} n_{j\mu} = 2(1 - |\vec{n}_i \cdot \hat{n}|)$$

ONE COMMON DEFINITION OF THRUST:

ONE COMMON DEFINITION OF THRUST:

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 47

Cesarotti & Thaler, JHEP 08 (2020) 084 **ATLAS** (incl. Cesarotti, STA) <u>ATLAS-STDM-2020-20</u>

Cesarotti & Thaler, JHEP 08 (2020) 084 **ATLAS** (incl. Cesarotti, STA) <u>ATLAS-STDM-2020-20</u>

Cesarotti & Thaler, JHEP 08 (2020) 084 **ATLAS** (incl. Cesarotti, STA) <u>ATLAS-STDM-2020-20</u>

Cesarotti & Thaler, JHEP 08 (2020) 084 **ATLAS** (incl. Cesarotti, STA) <u>ATLAS-STDM-2020-20</u>

• We measured 3 EMDs, per-event:

- Two most-distant 1D configurations conserving transverse momentum.
- 2D extension of isotropy into rapidity-phi space (**IsoCyl16**).
- Used *R*=0.4 PFlow jets (*p*_T > 60 GeV, |y| < 4.4) + recoil vector as inputs to EMD calculations.
- Measurements in inclusive bins of jet multiplicity and $H_{T2} = p_{T,1} + p_{T,2}$.

ATLAS (incl. Cesarotti, STA) <u>ATLAS-STDM-2020-20</u>

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 52

Different properties w/ different reference geometries...

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 53

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 54

Events that saturate IsoRing2 only have intermediate IsoRing128 values!

3-pronged configurations are not "isotropic" in the same way as a highmultiplicity multijet event.

Results: *I*_{Ring}² and *I*_{Ring}¹²⁸

ATLAS, ATLAS-STDM-2020-20

Run: 300687 Event: 1358542809 2016-06-02 18:19:05 CEST

1-IsoRing128 = 0.92 $N_{jets} = 12$

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 56

<u>ATLAS-STDM-2020-20</u>

Results: *I*_{Ring}¹²⁸ *VS. N*_{jets}

ATLAS, ATLAS-STDM-2020-20

Increase minimum jet requirement

Data/MC disagreement deteriorates at "dijetlike" end: soft activity in the event increases difficulty for MC generators

Events become more isotropic on-average as Njets is increased (expected scaling!)

Results: /_{Ring}¹²⁸ VS. H_{T2}

ATLAS ATLAS-STDM-2020-20

Increase minimum H_{T2} requirement

Data/MC disagreement improves at "dijet-like" end: events become more collimated with larger HT2, description is better despite large jet multiplicities.

Concluding remarks

- LHC Run3 does not give us any substantial increase in energy: but we will have more and more data;
- the theoretical focus is on making our tools better and better
 - This idea has already been exemplified in QCD studies with Run 2 data!
 - JSS programme demonstrates fruitful interplay of theory & experiment.
 - New QCD measurements of observables w/ novel properties resulting from direct collaboration between **ATLAS** and theory community.
 - Crucial to maintain this momentum!
 - Run 3 is a moment of **reflection and opportunity** before HL-LHC era ...
 - Keep asking each other :

Matt LeBlanc (Manchester) — Perspectives on Hadronic Final States — Università di Genova Seminar, 2023.05.27 — Slide 60

Comments by S. Marzani @ <u>2022.11.11 CERN QCD Seminar</u>

Cross-pollination: bring fieldspecific developments to the broader pheno community

Understanding new tools: ML algorithms are reshaping the way we think analyses and searches

WHAT SHOULD WE DO NEXT?

https://twiki.cern.ch/twiki/bin/view/ LHCPhysics/ .HCJetSubstructureMeasurements

Auxiliary material.

187 652 (178 308).

Calorimeter	Module Sampling (S_{calo})	N _{cells}	η -coverage	$\Delta\eta \times \Delta\phi$
Electromagnetic	EMB	109 568	$ \eta < 1.52$	
calorimeters	PreSamplerB	7 808	$ \eta < 1.52$	$0.025 \times \pi/32$
	EMB1		$ \eta < 1.4$	$0.025/8 \times \pi/32$
			$1.4 < \eta < 1.475$	$0.025 \times \pi/128$
	EMB2		$ \eta < 1.4$	$0.025 \times \pi/128$
			$1.4 < \eta < 1.475$	$0.075 \times \pi/128$
	EMB3		$ \eta < 1.35$	$0.050 \times \pi/128$
	EMEC	63 744	$1.375 < \eta < 3.2$	
	PreSamplerE	1 536	$1.5 < \eta < 1.8$	$0.025 \times \pi/32$
	EME1		$1.375 < \eta < 1.425$	$0.050 \times \pi/32$
			$1.425 < \eta < 1.5$	$0.025 \times \pi/32$
			$1.5 < \eta < 1.8$	$0.025/8 \times \pi/32$
			$1.8 < \eta < 2.0$	$0.025/6 \times \pi/32$
			$2.0 < \eta < 2.4$	$0.025/4 \times \pi/32$
			$2.4 < \eta < 2.5$	$0.025 \times \pi/32$
			$2.5 < \eta < 3.2$	$0.1 \times \pi/32$
	EME2		$1.375 < \eta < 1.425$	$0.050 \times \pi/128$
			$1.425 < \eta < 2.5$	$0.025 \times \pi/128$
			$2.5 < \eta < 3.2$	$0.1 \times \pi/128$
	EME 3		$1.5 < \eta < 2.5$	$0.050 \times \pi/128$
Hadronic calorimeters	Tile (barrel)	2 880	$ \eta < 1$	
	TileBar0/1			$0.1 \times \pi/32$
	TileBar2			$0.2 \times \pi/32$
	Tile (extended barrel)	2 304	$0.8 < \eta < 1.7$	
	TileExt0/1			$0.1 \times \pi/32$
	TileExt2			$0.2 \times \pi/32$
	HEC	5632	$1.5 < \eta < 3.2$	
	HEC0/1/2/3		$1.5 < \eta < 2.5$	$0.1 \times \pi/32$
			$2.5 < \eta < 3.2$	$0.2 \times \pi/16$
Forward calorimeters	FCAL	3 524	$3.1 < \eta < 4.9$	$\Delta x \times \Delta y$
	FCAL0		$3.1 < \eta < 3.15$	$1.5 \mathrm{cm} \times 1.3 \mathrm{cm}$
			$3.15 < \eta < 4.3$	$3.0\mathrm{cm} \times 2.6\mathrm{cm}$
			$4.3 < \eta < 4.83$	$1.5 \mathrm{cm} \times 1.3 \mathrm{cm}$
	FCAL1		$3.2 < \eta < 3.24$	$1.7 \mathrm{cm} \times 2.1 \mathrm{cm}$
			$3.24 < \eta < 4.5$	$3.3 \mathrm{cm} \times 4.2 \mathrm{cm}$
			$4.5 < \eta < 4.81$	$1.7 \mathrm{cm} \times 2.1 \mathrm{cm}$
	FCAL2		$3.29 < \eta < 3.32$	$2.7 \mathrm{cm} \times 2.4 \mathrm{cm}$
			$3.32 < \eta < 4.6$	$5.4 \mathrm{cm} \times 4.7 \mathrm{cm}$
			$4.6 < \eta < 4.75$	$2.7 \mathrm{cm} \times 2.4 \mathrm{cm}$

Table 1: The read-out granularity of the ATLAS calorimeter system [1], given in terms of $\Delta \eta \times \Delta \phi$ with the exception of the forward calorimeters, where it is given in linear measures $\Delta x \times \Delta y$, due to the non-pointing read-out geometry of the FCAL. For comparison, the FCAL granularity is approximately $\Delta \eta \times \Delta \phi = 0.15 \times 0.15 (0.3 \times 0.3)$ at $\eta = 3.5(4.5)$. The total number of read-out cells, including both ends of the calorimeter system, with (without) pre-samplers is

August 2021

Matt LeBlanc (CERN) — BNL Seminar 2023.03.27 — Slide 66

gFitter collab. 1803.01853

Soft-drop observables: calo vs. track response matrices

ATLAS, Phys. Rev. D 101, 052007 (2020), Phys. Rev. Lett. 121, 092001 (2018)

ATLAS Simulation √s= 13 TeV, 32.9 fb⁻¹ Calorimeter-based, anti- $k_{+} R = 0.8$ Soft Drop, $z_{cut} = 0.1$, $\beta = 0$ Pythia 8.186

Simulation ATLAS √s= 13 TeV, 32.9 fb⁻¹ Track-based, anti- $k_{+} R = 0.8$ Soft Drop, $z_{cut} = 0.1$, $\beta = 0$ Pythia 8.186

Detector-level p

Soft-drop observables: calo vs. track before unfolding

ATLAS, Phys. Rev. D 101, 052007 (2020), Phys. Rev. Lett. 121, 092001 (2018)

Soft-Drop Observables

ATLAS, Phys. Rev. D 101, 052007 (2020), Phys. Rev. Lett. 121, 092001 (2018)

"Groomed radius" $r_g = \Delta R(p_T^{j1}, p_T^{j1})$ (1 / σ) d σ / d log₁₀(r 3**⊨ ATLAS** Data √s= 13 TeV, 32.9 fb⁻¹ 2.5 Calorimeter-based, anti- $k_{+} R = 0.8$ × NLL Soft Drop, $z_{cut} = 0.1$, $\beta = 0$ $p_{\tau}^{\text{lead}} > 300 \text{ GeV}$ Nonperturbative Perturbative 1.5 0.5 Ratio to Data 1.5⊨ 0.5 $log_{10}^{-0.2}(r_{g})$ -1.2 -0.8 -0.6 -0.4 -1

Collinear (npQCD)

Wide-angled

