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Introduction



Introduction

Black hole physics poses theoretical problems: singularity, loss of

unitarity...

It is believed that these problems should be resolved by quantum

corrections. This is of course hard to check.

Holography comes to help:

gravity in AdSd+1 = CFT on the d-dimensional boundary

G−1
N ∼ c ⇒ GN → 0 ∼ c →∞ ,

where c counts the number of degrees of freedom in the CFT.

Sharp reformulation in terms of CFT correlators.
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Introduction

A different philosophy (fuzzball proposal): what if there is a classical

solution?

That is, how inconsistencies are solved if black hole are regular geometries

(classical microstates), and the horizon emerges as an IR description?

We will present a 3d solution of the EOMs that looks like a black hole up

to the horizon scale and ends with a smooth cap.

Focusing on boundary 2d correlators, we will show that black hole

behavior indeed arises as an effective description of our smooth geometry.
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Plan of the talk



Plane of the talk

• Holography and boundary correlators

• Heavy states and black hole microstates

• An exact solution to wave equations

• An exact solution for boundary correlators
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Holography and boundary

correlators



Holography and boundary correlators

The boundary (2d) CFT is covariant under

[Lm, Ln] = (m − n)Ln+m +
c

12
(m3 −m)δm+n .

where c is the central charge. On (primary) fields

[Ln,O(z)] =
(
zn+1∂z + ∆(n + 1)zn

)
O(z) .

A special role is played by

L0 ∼ H , and L0O(0)|0〉 = ∆O(0)|0〉 .

O(0) on the vacuum creates a state of energy (scaling dimension) ∆.
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Holography and boundary correlators

We are interested in the large c limit of the theory. An operator is light if

∆L = O(c0) and heavy if ∆H = O(c1). Since

gravity in AdS3 = CFT on the 2d boundary ,

c ∼ G−1
N ,

states in large c CFT ∼ states in classical gravity (fields configurations).

|0〉 ∼ empty AdS3

OL|0〉 ∼ (scalar) field in AdS3

OH |0〉 ∼ ?

Since ∆H ∼ G−1
N , we can’t neglect backreaction on the AdS3 metric:

heavy states generates nontrivial backgrounds |H〉.
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Holography and boundary correlators

Playing with heavy state one can construct bulk geometries that differ

from black holes at the horizon state: a BH microstate.

A convenient way to understand its properties is to probe it with

perturbations.

response to perturbations ∼ 2 pt functions

So we are led to study the HHLL correlator

〈H|OL(1)OL(z , z̄)|H〉 = 〈OH(∞)OL(1)OL(z , z̄)OH(0)〉
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Holography and boundary correlators

Some generalities on CFT correlators:

The dependence of the position of insertions is fixed by conformal

invariance in 2 and 3 pt functions, e.g.

〈O1(1)O2(z , z̄)〉 =
1

|1− z |2∆2
δ∆1∆2 .

4 point functions are more complicated. A useful tool to study them is

the OPE:

O1(z)O2(0) =
∑
k

C12k

∑
n

cnz
∆k−∆1−∆2+nL−nOk(0) .
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Holography and boundary correlators

At fixed k

O1(z)O2(0) ⊃
∑
n

cnz
∆k−∆1−∆2+nL−nOk(0) .

The operator Ok(0) (+ descendants) contributes with a series in z : a

conformal block Vk(z). Then∑
k

C12kVk(z) .

k ∈ spectrum with weights C12k .

Vk(z) is universal, but the spectrum and the C12k ’s are not.

Back to HHLL:
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Holography and boundary correlators

We compute HHLL from the 3d bulk. The response to perturbations is

captured by the wave equation

�Hφ(τ, ρ, σ) = ∆L(∆L − 2)φ(τ, ρ, σ) ,

where ∆L(∆L − 2) is the squared mass of the perturbation.

We will discuss separable backgrounds, such that after Fourier

transforming

φ(τ, ρ, σ) =
1

(2π)2

∑
`∈Z

∫
dω e iωτ+i`σψ(ρ)

the wave equation reduces to an ODE for ψ(ρ).
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Holography and boundary correlators

If our geometry is regular we want our perturbation to be regular as well,

so we impose

ψ(ρ) = ρ|`|(1 +O(ρ))→ 0 , as ρ→ 0 .

Close to the AdS3 boundary (ρ→∞) we have

ψ(ρ) = A(ω, `)ρ∆L−2(1 +O(ρ−2)) + B(ω, `)ρ−∆L(1 +O(ρ−2)) .

The solution is a superposition of a non normalizable mode (source) and

a normalizable one (response). Normalizing by A:

1× ρ∆L−2 ∼ δ(σ)δ(τ)ρ∆L−2 perturbation

B/A ρ−∆L ∼ response
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Holography and boundary correlators

Then the holographic information is all encoded in A and B:

〈OH(∞)OL(1)OL(z , z̄)OH(0)〉 = N
∑
`

∫
dω e iωτ+i`σG (ω, `)

where

z = e i(τ+σ) = e iv , z̄ = e i(τ−σ) = e iu , G (ω, `) =
B(ω, `)

A(ω, `)

where u, v are the lightcone coordinates.

In other words, B/A is the correlator in momentum space.
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Holography and boundary correlators

The easiest example: OH = 1, that is, empty AdS3.

The wave equation is just the hypergeometric equation. The regular

solution at ρ = 0 is (x = ρ2/(1 + ρ2))

ψ(ρ) = (1− x)
∆
2 x

1+|`|
2 2F1

(
1

2
(|`| − ω + ∆),

1

2
(|`|+ ω + ∆), 1 + |`|, x

)
2F1(. . . , x) is given as a convergent series centered around x = 0 with

radius of convergence 1.

In order to compute the correlator a nontrivial analytic continuation is

needed.
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Holography and boundary correlators

In this easy case, the analytic continuation around x ∼ 1 is well known:

ψ(ρ) =
Γ (2−∆)

Γ
(
|`|−ω+∆

2

)
Γ
(
|`|+ω+∆

2

) (1− x)
∆
2 (1 + . . . ) +

+
Γ (∆− 2)

Γ
(
|`|−ω+2−∆

2

)
Γ
(
|`|+ω+2−∆

2

) (1− x)
1−∆

2 (1 + . . . )

,

and

G (ω, `) =
Γ (2−∆)

Γ (∆− 2)

Γ
(
|`|+ω+∆

2

)
Γ
(
|`|−ω+∆

2

)
Γ
(
|`|+ω+2−∆

2

)
Γ
(
|`|−ω+2−∆

2

) .
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Holography and boundary correlators

〈OL(1)OL(z , z̄)〉 ∝
∑
`

∫
dω e iωτ+i`σ Γ (2−∆)

Γ (∆− 2)

∏
±

Γ
(
|`|±ω+∆

2

)
Γ
(
|`|±ω+2−∆

2

) .
The Γ′s have poles on the real ω axis: we need to choose a iε

prescription to integrate.

Different choices define different correlators (retarded, Feynman...). To

make things explicit it’s useful to consider a dispersive representation.

From the Cauchy theorem (subtractions are needed: G (ω, `) ∼ ω2∆−2)

G (ω, `)

ω∆
=

1

2πi

∮
γω

1

ω∆

G (ω′, `)

ω′ − ω
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Holography and boundary correlators

Blowing up the contour at infinity we get

G (ω, `) =
∑
n

(
ω

ωn

)∆
Res(G , ωn)

ω − ωn
.

Now we can define

GF (ω, `) =
∑
ωn>0

(
ω

ωn

)∆
Res(G , ωn)

ω − ωn + iε
+
∑
ωn<0

(
ω

ωn

)∆
Res(G , ωn)

ω − ωn − iε
.

GR(ω, `) =
∑
n

(
ω

ωn

)∆
Res(G , ωn)

ω − ωn + iε
.
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Holography and boundary correlators

Here ωn = ±(|`|+ 2n + ∆L): these are the scaling dimensions of the

descendants of OL, that is the dimensions of the operators appearing in

OL(z , z̄)1(0) =
∑

cnz
n+`z̄n(∂∂̄)n∂`O(0) + c.c. .

Accordingly,∑
`

∫
dω e iωτ+i`σGF (ω, `) =

∑
`

∑
n

e iωnτ+i`σRes(G , ωn) =
1

|1− z |2∆L
.

All in all

ωn ∼ operators in the O × 1 OPE .

What is the bulk interpretation of these poles?
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Holography and boundary correlators

G (ω, `) has a pole every time A in

ψ(ρ) = A(ω, `)ρ∆L−2(1 +O(ρ−2)) + B(ω, `)ρ−∆L(1 +O(ρ−2))

vanishes.

When this happens ψ(ρ) becomes a normalizable wavefunction: these

poles corresponds to bound states in the gravitational background.

ωn ∼ excitations around the background .

In the geodesics approximation ∆L � 1, the ωn’s are the energies of

orbits around the heavy object.
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Holography and boundary correlators

Before moving on note that

ImGR(ω, `) =
∑
n

πRes(G , ωn)δ(ω − ωn) .

This captures the density of on-shell states exchanged in the OPE.

This is on the same ground of what happens in ordinary QFT:

G ∼ 1

p2 −m2 + iε
⇒ ImG ∼ δ(p2 −m2) .
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Holography and boundary correlators

Let us now consider a different example: a BTZ black hole.

A black hole is a finite-temperature object so the relevant boundary state

has to be a thermal ensemble.

The holographic presciption to compute the thermal two point function is

different as well. Instead of imposing regularity at ρ = 0,

ψ(ρ) = ψin(ρ) , as ρ ∼ ρ+ ,

and now

GR(ω, `) =
B(ω, `)

A(ω, `)
.
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Holography and boundary correlators

Poles of GR are now the QNMs of the black holes!

They appear at complex ωn’s. For example for extremal BTZ (still from

hypergeometrics)

GR = −(i(`− ω))∆−1 Γ(1−∆)

Γ(∆− 1)

Γ
(

1
2

(
∆− i `+ω2

))
Γ
(
1− 1

2

(
∆ + i `+ω2

)) .
This has poles at

ωn = −`− 2i(2n + ∆) .

Moreover ImGR is smooth on the real axis!

How can we interpret complex ωn’s and smooth ImGR in the boundary

CFT?
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Holography and boundary correlators

In QFT continuum of on shell states generate branch cuts on the real

axis, and resonances manifest as complex poles of the cut discontinuity1.

1Figure stolen from M. Serone notes on QFT.

21



Holography and boundary correlators

It is tempting to say that the BTZ ImGR captures the discontinuity along

this cut. However..

• The boundary of AdS3 is a sphere, and a CFT on a compact set

should have discrete spectrum. How did we end up with a cut?

• Real poles: 〈HHLL〉 ∼
∑

n e
iωnt but complex poles

〈HHLL〉 ∼
∫

dω e iωt ∼
∑
n

e−ωnt
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Holography and boundary correlators

Conjecturally this is an effect of the large c (small GN) limit.

As anticipated we investigate a different viewpoint: black holes are

regular geometries that look like black holes at long distances.

Still, one of these geometries is dual to pure |H〉, and HHLL should only

have a discrete set of real poles.

How can this approximate a continuum spectrum with complex

resonances?
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Heavy states and black hole

microstates



Heavy states and black hole microstates

To understand the various steps of the constructions one should dive into

the details of the (super-)gravity and its dual (D1D5) CFT. We won’t do

this, and instead we will just discuss the general ideas.

The simplest way to construct a heavy state is to bind together many

light states OH ∼ O
c
k

L for some k ∈ N.

The resulting operator creates a coherent state of light excitations.

This is clearly a very atypical microstate. As we will see it still captures

some generic features.
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Heavy states and black hole microstates

A concrete candidate is [Giusto-Moscato-Russo-...]

OH =
c∑

p=0

(1− η2)
p
2 ηc−p

(
Ln−1OL

)p
(1)c−p .

For large c the sum is peaked at p̄ = c(1− η2), and

∆H ∼ c(1− η2) .

Note that when η = 1 we get OH = 1, therefore its dual geometry will be

AdS3. On the other hand as η → 0

OH → (Ln−1OL)c .
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Heavy states and black hole microstates

One can prove that for η 6= 0

〈H|O′L|H〉 6= 0 ,

However

lim
η→0
〈H|O′L|H〉 = 0 ,

This is what should happen for the thermal ensamble since 1 pt functions

are averaged out to 0.

lim
η→0
|H〉 ∼ thermal ensemble .

Moreover |H〉 has the same charges of an extremal black hole.
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Heavy states and black hole microstates

In the bulk we need a metric that goes to empty AdS3 as η → 1 and to a

black hole as η → 0.

To find the exact metric is of course nontrivial, but it has been done

[Bena-Giusto-Russo-Shigemori-Warner]:

ds2
3 = G

dρ2

ρ2 + 1
− η2(ρ2 + η2) dτ 2 + η2ρ2 dσ2 + η2ρ2F (dτ + dσ)2

G = 1− 1− η2

ρ2 + 1

(
ρ2

ρ2 + 1

)n

, F =
1− η2

η2

[
1−

(
ρ2

ρ2 + 1

)n]
,

as η → 1, G → 1 and F → 0, and the resulting metric is just AdS3.

27



Heavy states and black hole microstates

As η → 0 this goes to

ds2
3 =

r2

(r2 − r2
0 )2

dr2 − (r2 − r2
0 )2

r2
dτ 2 + r2

(
dσ +

r2
0

r2
dτ

)2

for

r2 = η2ρ2 + n , r0 = n .

The n = 0 case is particularly easy, since the corresponding black hole

will have zero area (naked singularity).

For any n 6= 0, this is the metric of an extremal BTZ black hole.
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Heavy states and black hole microstates

The full geometry looks2 like BTZ, but has a smooth cap instead of the

horizon at ρ ∼ η2.

2Figure stolen from P. Heidmann’s PhD thesis. 29



Heavy states and black hole microstates

Let’s start with the easy case: n = 0. Again the wave equation reduces

to the hypergeometric ODE and we can write down an exact solution

[Bombini-Galliani-Giusto-Moscato-Russo]:

G (ω, `) =
Γ (1−∆L)

Γ (∆L − 1)

∏
±

Γ

(
∆L+|`|

2 ±
√
ω2−`2(1−η2)

2η

)
Γ

(
2−∆L+|`|

2 ±
√
ω2−`2(1−η2)

2η

) .

As in AdS3 G has poles on the real axis at

ωn = ±
√
η2 (|`|+ 2n + ∆L)2 + `2 (1− η2) .

For η = 1 they reduce to the same poles as in the AdS3 case.
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Heavy states and black hole microstates

These poles are to the energies of states appearing in the OPE

OL(z , z̄)OH(0) =
∑
n,`

CLH[HL]

∑
m

cmz
∆[HL]−∆L−∆H+mOL(∂∂̄)n∂`OH(0)+c.c.

OL(∂∂̄)n∂`OH(0) are the so called HL double twist, and correspond to

bound states of the perturbation and the background.

For η ∼ 1 they are evenly spaced, but when η → 0

ωn+1 − ωn =
2η2(|`|+ 2n + ∆)

ωn
= O

(
η2

ωn

)
.

As the geometry gets closer to a black hole, poles on the real axis get

more dense.
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Heavy states and black hole microstates

Let’s go back to the dispersive representation of G :

G (ω, `) =
∑
n

(
ω

ωn

)∆
Res(G , ωn)

ω − ωn
.

When the ωn become dense we can approximate the sum by an integral

G (ω, `) '
∫

dn

(
ω

ωn

)∆
Res(G , ωn)

ω − ωn
=

∫
dωn

ρ(ωn)

ω − ωn
.

Crucially

G (ω + iε, `)− G (ω − iε, `) = 2i ImGR = πρ(ω) .
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Heavy states and black hole microstates

A branch cut with discontinuity 2i ImGR formed on the real axis!

For any η 6= 0,

〈HHLL〉 ∼
∑
n

e iωnτ .

However if our resolution doesn’t allow us to separate the energy levels..

〈HHLL〉 ∼
∫

dn e iωnτ .

In this easy case the black hole approached as η → 0 doesn’t have

QNMS, and as a result

〈HHLL〉 ∼ τ−# .
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Heavy states and black hole microstates

Black hole like behavior emerges as an effective description of our energy

spectrum.

Everything happens at c =∞ (GN ' 0): the parameter that controls the

spectrum is now η.

Let us move to a more complicated example: n = 1.

The black hole approached in this case is a extremal BTZ black hole with

a nonvanishing horizon.
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Heavy states and black hole microstates

Let’s take a look at the corresponding wave equation:

ψ′′(ρ) +
1 + 3ρ2

ρ(1 + ρ2)
ψ′(ρ) +

ρ2(`− ω)
[
(`− ω) 1+η2ρ2

1+ρ2 − 2η2`
]
− η4`2

η4ρ2(1 + ρ2)2
ψ(ρ)

− ∆L(∆L − 2)

ρ2 + 1
ψ(ρ) = 0 .

This ODE is more complicated than the hypergeometric. The

prescription to compute G was

ψ(ρ) ' ρ|`| , as ρ→ 0 ,

' Aρ∆L−2 + Bρ−∆L , as ρ→∞
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Heavy states and black hole microstates

To read off A, B a nontrivial analytic continuation is needed.

We knew how to do it for the hypergeometric equation, but for more

complicated ODEs the problem is way more complicated.

This made quite difficult a quantitative study of perturbations in these

backgrounds, since the only available method was WKB

[Bena-Heidmann-Monten-Warner].

We now present a recently discovered method to deal with these ODEs,

that gives us better analytic control and allow us to understand the

analytic structure of G (ω, `).
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An exact solution to wave

equations



An exact solution to wave equations

Let’s take a closer look to the hypergeometric ODE. It can be rewritten

in Schrodinger form

(∂2
x + V (x))ψ(x) = 0 , x =

ρ2

1 + ρ2
.

The potential diverges quadratically at (WLOG) x = 0, 1,∞

V (x) ' #

(x − xi )2
.

The solution is given by

ψ(x) =
∑
n

cnx
n ∼ 2F1(. . . , x) ,

a series centered at x = 0.
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An exact solution to wave equations

Can we expand 2F1(.., x) close to x ∼ 1? Since the equation is 2nd order,

close to 1

ψ(x) = A f1(1− x) + B f2(1− x) .

It all boils down to compute A, B. These are the connection coefficients

of the ODE.

2F1 admits an integral representation

2F1(a, b, c , x) ∼
∫ 1

0

yb−1(1− y)c−b−1(1− xy)−a dy

that we can continue from x ∼ 0 to x ∼ 1,∞.
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An exact solution to wave equations

Going back to our case, the wave equation of the n = 1 geometry still

looks like

(∂2
x + V (x))ψ(x) = 0 , x =

ρ2

1 + ρ2

with

V (x) ' #

(x − xi )2
, xi = 0, 1

However close to infinity the divergence takes the form

V (x) ' #

(x − xi )3
.
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An exact solution to wave equations

This is an apparently minor change, but it has dramatic consequences.

This equation is better understood as an ODE with 4 (x − xi )
−2

singularities, where 2 singularities collided to produce a higher order one:

it is the so called (reduced confluent) Heun equation.

In this case no integral representation is known. Analytic continuation is

much harder.

We need a more sophisticated method.
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An exact solution to wave equations

General idea: we can compute CFT correlators doing OPE

〈. . .Oi (zi )Oj(zj) . . . 〉 =
∑
k

∑
n

cn(zi − zj)
αk+n .

We can do different OPEs in a given correlators. All the resulting

expression have to agree

〈. . .Ok(z`)Oi (zi )Oj(zj) . . . 〉 =
∑
k

∑
n

cn(zi−zj)αk+n =
∑
k

∑
n

cn(zi−z`)βk+n

This property is called crossing symmetry.
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An exact solution to wave equations

Crossing symmetry relates a series centered in zi = zj to a series at

zi = z`. It is a statement on analytic continuation of a series.

Can we find in CFT a correlator that satisfies the ODE we want to solve?

Can we use crossing symmetry to analytically continue the solution of the

ODE say from z ∼ 0 to z ∼ 1?

Yes, and yes! [Bonelli-CI-Panea-Tanzini].

Before going on: this CFT has nothing to do with the holographic one!

42



An exact solution to wave equations

Let’s consider the CFT state:

O2,1(0)|0〉 , ∆2,1 = −1

2
− 3

4
b2 ,

where c = 1 + 6(b + b−1)2. Then the combination

|(b−2L2
−1 + L−2)O2,1(0)|0〉|2 = 0

has zero norm. To preserve unitarity we need correlators involving this

zero norm state to vanish:

〈O1(z1)O2(z2) . . . (b−2L2
−1 + L−2)O2,1(z)〉 = 0 .
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An exact solution to wave equations

Since

[Ln,O(z)] =
(
zn+1∂z + ∆(n + 1)zn

)
O(z) ,

this turns into a 2nd order differential equation:

(∂2
z + V (z , zi ))〈O1(z1)O2(z2) . . .O2,1(z)〉 = 0 .

Each insertion produces a singularity. Playing with the insertions we can

produce any singularity we want.

Primary fields produce (z − zi )
−2 singularities. We can collide them to

excite higher order singularities as the one we encountered.

44



An exact solution to wave equations

OPE of O2,1(z) with other fields computes local behavior of solutions of

the ODE as z ∼ zi .

O2,1(z)Oi (zi ) =
∑
±

C±
∑
n

cn(z − zi )
∆±−∆2,1−∆i+nL−nO±(zi ) .

The ± accounts for the two linearly independent solutions of the ODE.

We’ve said that the constants C± are theory dependent. Let’s specialize

to a theory where they are known exactly: Liouville CFT.

Now doing different OPEs we can construct local solutions close to

various singularities.
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An exact solution to wave equations

Crossing symmetry tells us

〈O1(z1)O2(z2) . . .O2,1(z)〉 =
∑
±n

c±(i)
n (z − zi )

α
(i)
±+n =

∑
n

c(j)
n (z − zj)

α
(j)
±+n

This is a statement on the analytic continuation of the solution of the

ODE.

Having full control on the normalization of the series we can track down

the analytic continuation from one singularity to the other.
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An exact solution to wave equations

This allows us to compute connection coefficients of the ODE, the A and

B we needed.

With this method we can compute them as convergent series expansions

in the various zi .

They admit convenient combinatorial expressions that allow us to

compute them very efficiently to high orders with a laptop.

This method is quite efficient, in fact it has already been applied to

various backgrounds [Grassi-Aminov-Hatsuda-CI-Bonelli-Panea-Tanzini-

Zhiboedov-Dodelson-Bianchi-Morales-Fucito-...]
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An exact solution for boundary

correlators



An exact solution for boundary correlators

We can now write down an exact expression for A and B. This will look

very different depending whether η ∼ 1 or η ∼ 0, since in the two regimes

the ODE has a different structure.

Let’s start with η ∼ 1:

G (ω, `) =
Γ (−2a1) Γ

(
1
2 + a0 + a1 + a

)
Γ
(

1
2 + a0 + a1 − a

)
Γ (2a1) Γ

(
1
2 + a0 − a1 + a

)
Γ
(

1
2 + a0 − a1 − a

) e−∂a1
F ,

a0 =
|`|
2
, a1 =

∆− 1

2
, L =

i(`− ω)
√

1− η2

η2
,

u =
`2(1− η2) + η2 − ω2

4η2
.
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An exact solution for boundary correlators

F (a0, a1, a, L) =
∑
n

cnL
2n

is a special function (NS partition function) that admits a combinatorial

expression. The last bit of information is contained in a:

u =
1

4
− a2 +

1

2
L∂LF (a0, a1, a, L) .

This is the Matone relation. a will be given as a whole series in

L2 ∼ 1− η2.

G has poles when Γ’s in the numerator blow up, that is when

1

2
+ a0 + a1 ± a = −n .
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An exact solution for boundary correlators

This happens when

ωn = ±(|`|+ 2n + ∆) + γn`(1− η2) + . . .

Poles of these expressions are real and approximatively evenly spaced.

Let’s now take a look at the η ∼ 0 expression:

G (ω, `) = (iL)2a1e−∂a1
FD

Γ (−2a1)

Γ (2a1)

(4L)
g
2 eL+∂g FD

Γ( 1−g
2 −a1)

+ (−4L)−
g
2 e−L−∂g FD

Γ( 1+g
2 −a1)

(4L)
g
2 eL+∂g FD

Γ( 1−g
2 +a1)

+ (−4L)−
g
2 e−L−∂g FD

Γ( 1+g
2 +a1)

.

(g ,FD) take the role of (a,F ), now expanded in L−1 ∼ η2.
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An exact solution for boundary correlators

The structure of G as η → 0 looks more complicated. Let’s look at its

poles:
(4L)

g
2 eL+∂gFD

Γ
(

1−g
2 + a1

) +
(−4L)−

g
2 e−L−∂gFD

Γ
(

1+g
2 + a1

) = 0

with

L ∼ i
`− ω
η2

, p ∼ −i(`+ ω)

We find

ωn ' `− (nη2)π +O(η4)

Again poles become dense in the η → 0 limit!

ωn+1 − ωn ∼ πη2 .
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An exact solution for boundary correlators

Going back to the dispersive representation we find

G (ω, `) '
∫

dωn
ρ(ωn)

ω − ωn
.

Again this has a cut on the real axis, with discontinuity

ρ(ω) ∝
(
`− ω
η2

)∆−1
2

(
Γ
(

1
2

(
∆− i `+ω2

))
Γ
(
1− 1

2

(
∆ + i `+ω2

)) − Γ
(

1
2

(
∆ + i `+ω2

))
Γ
(
1− 1

2

(
∆− i `+ω2

))) .

This is precisely the ImGR of an extremal BTZ black hole we encountered

before!
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An exact solution for boundary correlators

Now ρ(ω) ∝ ImGR has poles at the QNMs of the BTZ black hole

approached as η → 0:

ωn = −`− 2i(2n + ∆) +O(η2) .

This confirms our expectations:

black hole QNMs appear in boundary correlators as resonances behind

the cut!

Again, the black hole behavior emerges as an effective description.

53



An exact solution for boundary correlators

To clarify this point: in position space for any η 6= 0

〈HHLL〉 ∼
∑
n

e iωnt .

For small η, destructive interference produces exp decay for small times.

Fitting this small time behavior with∑
n

e−|ω̃n|t

we will get

ω̃n = −`− 2i(2n + ∆) +O(η2) .

This is the same result we get approximating the spectrum with a

continuum.
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An exact solution for boundary correlators

Of course this approximation breaks down at late times: what do QNMs

resonances decay into?

It appears that in this framework loss of unitarity in BH physics arises as

a result of our inability to resolve the discreteness of the spectrum.

A similar mechanism should be at work when considering quantum

corrections to black holes. The energy spacing should scale with

∆En ∼ e−S .
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Conclusions and further

directions



Conclusions..

• BH-like behavior emerges as a result of approximating the spectrum

of the boundary theory with a continuum.

• This is in line with general expectation of what should happen in

quantum gravity (finite c). However here everything happened

according to the fuzzball proposals.

• We discussed a powerful method to find solutions of Fuchsians

ODEs.
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..and further directions

• What if we include finite c corrections in our analysis?

• Any connection with chaos?

• A late time calculation more precise than the wkb one?

• Higher dimensional or non extremal microstates?
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Thank you for the attention!
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