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Highlights
● Dual formulation of elasticity with vector gauge fields

– We fully exploit the fact that elasticity is a low-energy EFT admitting a dual formulation in terms of 
emergent gauge fields. 

– These gauge the dipole-symmetry algebra realized in the internal material space
– The internal space is identified with the external space through spontaneous symmetry breaking to 

the diagonal internal/external translations.

● Mobility constraints for elastic defects from gauge invariance
– Elastic defects encoded in the singularities of the displacement fields are the sources of the 

emergent gauge fields.

● EFT for dipole-charged fields and spontaneous breaking of dipole symmetry

Caddeo, Hoyos, Musso PhysRevD.106.L111903

Afxonidis, Caddeo, Hoyos, Musso (to appear)



  

Key-concepts for the talk
● EMERGENT

Related to a symmetry of a low-energy effective description, which 
might be spoiled at higher energies.

● SPACE-DEPENDENT INTERNAL SYMMETRY

Such as charge dipole symmetry or subsystem symmetries. They 
are real symmetries (not redundancies) which act on the states of the 
Hilbert space. 



  

Origins
The quest for building robust memories for quantum computation spurred research in lattice model with 
immobile excitations. 

There is no local operator in the theory which can move the excitation without creating other exitations. 
These are fractons.

The reason for this behavior can be traced back to the presence of subsystem symmetries.

It is challenging to find field theories describing the continuum limit of such lattice models.

Seiberg Shao SciPost Phys. 10 2

Vijay, Sagar; Haah, Jeongwan; Fu, Liang Physical Review B. 92 (23): 235136



  

Dipole symmetry
Theories for charged matter that conserve the dipole moment give rise to fractons: isolated charged 
cannot move. Pretko Radzihovsky Phys.Rev.Lett. 120 (2018) 19, 195301

A dipole transformation represents a shift in momentum, again we have UV/IR mixing. Possible relations 
with Galilean boosts and Galileons.

Simplest dipole-covariant combination implies no Gaussian theory. 
The action depends only on the difference among momenta.

Pretko Phys. Rev. B 98, 115134 (2018)
Afxonidis, Caddeo, Hoyos, Musso (to appear)



  

Motivations
●►Accepting the “fractonic” challenges to the standard QFT paradigm:

Mobility constraints, UV/IR mixing, large vacuum degeneracy, ...

●►Seeking new exotic phases of matter, with suppressed relaxation properties (e.g. subdiffusion). 

●►Systematizing and generalizing the elastic theory

Elastic defect dynamics in standard solids, in amorphous media (e.g. discompressions), in media with 
lower symmetry (e.g. broken rotational invariance).

●►Fracton coupled to a background geometry

Obstruction to define tensor gauge fields in curved space and possible gauge anomalies. Possibility to 
geometrize multipole symmetries in a suitable internal space, thus formulating the theory in terms of 
standard vector gauge fields which can circumvent the obstruction. 

●►Generalization of “low-energy theorem”

Goldstone counting for spacetime symmetries and evading Coleman

Glorioso Guo Rodriguez-Nieva Lucas Nature Physics 18 8 
Grosvenor Hoyos Peña-Benítez Surówka Frontiers in Physics 9

Jain Jensen SciPost Phys. 12, 142 
Bidussi Hartong Have Musaeus Prohazka SciPost Phys. 12, 205
Peña-Benitez 2107.13884 [cond-mat.str-el]

Gaa Palle Fernandes Schmalian Phys. Rev. B 104

Seiberg Shao SciPost Phys. 10 2



  

Motivations
●►Relations with gravity

- Theories with dipole symmetry are typically realized through a gauge theory with a two-index, symmetric 
tensorial gauge field

- Natural relation with linearized general relativity

- Constructive realization of Mach’s principle

- Analogy with models adopted in cosmology (e.g. Galileons) 

●►Relations with higher-spin theories  

- Multipole symmetries can be formulated in terms of higher tensorial gauge fields

- Borrowing old results (e.g. Aragone-Deser)

Pretko Phys.Rev.B 96 (2017) 3, 035119

Blasi, Maggiore Phys.Lett.B 833 (2022) 137304
Bertolini, Maggiore Phys.Rev.D 106 (2022) 12, 125008

Pretko Phys. Rev. D 96, 024051 (2017)



  

Particle-vortex duality
A 2 + 1 superfluid admits a low-energy effective description in terms of an emergent (dual) dynamical 
gauge field.

Low-energy EFT in terms of the Goldstone boson

Low-energy EFT in terms of the Goldstone boson and a vector 
auxiliary field. Integration with respect to the auxiliary fields brings us 
back to the original Lagrangian.

Equation of motion for the Goldstone

Ansatz in terms of a dual gauge field

Density of the dual magnetic flux

The emergent gauge field couples to vortices 
(i.e. singular configurations of the Goldstone field)



  

Fracton-elasticity duality (a sketch)

Momentum conservation equation / Equation of motion for the Goldstone (phonons)

Ansatz in terms of dual gauge fields

Pretko Radzihovsky Phys. Rev. Lett. 120
Gromov Surówka Sci Post Phys 8 4 065

Ansatz for standard elasticity

Gauge variation

• Particle-vortex duality for superfluids is a particular case of Hubbard-Stratonovich duality.

• For elasticity, the duality maps the stress tensor to the field strength of tensor gauge fields.

• In ordinary rotation-invariant elasticity, due to the symmetry of the energy-momentum tensor, the spatial 
components of the dual fields can be expressed in terms of a scalar field and a symmetric rank-two tensor.

• Disclinations map to charged particles. They are immobile due to dipole moment conservation.



  

Dipole moment conservation

The higher-derivative continuity equation implies both charge and dipole moment conservation.

Gauge variation of the gauge connections

Continuity equation derived from gauge invariance 
(Ward-Takahashi identity)



  

Limitations
● We need a more generic theory of elasticity to describe interesting incommensurate and/or lower-

symmetry systems.

– Quasi-crystals, non-rotationally-invariant systems, twisted bilayer graphene …

● Non-Gaussian EFT for fields charged under dipole

● When the background geometry is not flat, we generically encounter an incompatibility between 
gauge symmetry and general covariance.

– The Chern-Simons action for tensor gauge fields with covariantized derivatives is not gauge-
invariant when the space is curved.

– The field strength for the Pretko scalar model is not gauge-invariant when space is curved

Similar story in (old) higher-spin literature: when covariantizing the derivatives, in the action for a 
gauge field with spin greater than 2 there appear terms proportional to the Riemann tensor, this 
breaks the gauge invariance (Aragone-Deser argument).

Jensen SciPost Phys. 12, 142 (2022)

Gromov Phys. Rev. B 122



  

Material coordinates

● The fields                 map the physical spacetime into the material target space.

● The elastic medium arises from the spontaneous breaking of external,                       , 
and internal,                          , translations to the diagonal subgroup.

● The symmetry breaking induces an identification among internal and external space.

The displacement fields are the Nambu-Goldstone fields of 
the diagonal symmetry breaking locking internal and external 
space.



  

Elastic Modes
Non-relativistic low-energy elastic 
Lagrangian in the presence of point-
forces.

“spin” projectors

Dispersion relations for the transverse and 
longitudinal elastic modes, respectively

Elastic tensor



  

Elastic dual (Hubbard-Stratonovich)
One introduces auxiliary fields corresponding to the momentum density and stress tensor

Integrating the auxiliary fields, one recovers the original elastic action. Instead, the equation of 
motion for the (regular part of) the displacement field gives

Energy-momentum 
conservation equation in the 
presence of point forces



  

Monopole-Dipole-Momentum 
Algebra (MDMA)

0-th moment
generator

2-nd moment
generator

1-st moment
generator

The MDMA algebra admits the following representation on functions:

The dipole algebra is a nilpotent algebra 
of order 3. 

It contains a central extension of the 
Heisenberg algebra.



  

Gauging the dipole algebra
gauge connection

field strength

gauge parameter

gauge transformation (implicit form)

gauge transformation of the 
connection fields (explicit form)

Gauge invariant quantitities which 
generalize the electric and magnetic 
fields



  

Ansatz
The dual gauge fields are introduced to the purpose of defining an automatically conserved stress 
tensor:

An explicit analysis of the fluctuation spectrum reveals that the dual 
theory reproduces the dispersion relations of the elastic modes. ✔

The conservation of the stress tensor 
corresponds to the Bianchi identities for the 
generalized electro-magnetic fields.



  

Global symmetries
In the dual formulation, there are emergent global symmetries corresponding to the gauge 
transformations of the charge and its higher moments, which leave the gauge potentials invariant:

gauge variation of the gauge potentials

For each global symmetry, there is a conserved current.

Note that global symmetries require specific mixed 
combinations of the local symmetries. 



  

Defect currents
The mixed action expressed in terms of the desplacement fields and the auxiliary fields 
at zero external force (before integration):

We split the displacement fields in a singular and a regular 
part:

We then integrate the regular part, thus obtaining the dual action:

Integrating by parts, we can re-organize the dual action as follows:   



  

Dislocation and disclinations

Explicit integration by parts yields:

The dipole current is trivial, the singular configurations of the displacement field do not provide any 
intrinsic dipole degree of freedom.

The second moment current corresponds to a volume defect.

Kleinert doi.org/10.1142/0356 



  

Local Ward identities & continuity 
relations for global currents

Asking invariance with respect to the generic gauge variation, we get the local Ward identities:

Appropriately improved local currents satisfy the 
same dipole continuity equation already seen 
in Pretko’s model 

The global currents associated to the “rigid” gauge transformations are:

The Ward identities imply the continuity relations for the global currents.



  

Mobility constraint from gauge invariance
When the dipole moment is conserved, an individual charge is constrained to be immobile.

coupling between a charge and the 
monopole gauge field

● Invariant under monopole gauge transformation 
(same argument as in standard EM).

● Generically NOT invariant under dipole gauge transformations.

For a rigid dipole transformation, the variation coincides with the change in the dipole 
moment as the charge moves along the worldline.

To have dipole gauge invariance, the worldline should be directed along the time 
direction, this corresponding to an immobility constraint.



  

Intrinsic dipole charge

We can couple a point-like object with intrinsic dipole charge to the gauge fields as follows:

with

For a static world-line and time-independent gauge fields, the dipole charge couples to 
the monopole gauge field as 



  

Mobility constraint for dipoles

gauge variations reminder

Dislocation mobility constraint

The action is invariant under both monopole and dipole gauge variations. 

Enforcing second moment gauge invariance leads to a mobility constraint allowing movement only along the 
orthogonal direction to the dipole moment (to be identified with the Burgers vector of a dislocation)



  

Defects

Disclination

Deficit or excess angle, conical defect.

Dislocation

Dislocation seen as a dipole of disclinations. Namely two conical defects of 
opposite sign.

images taken from Kleinert doi.org/10.1142/0356 



  

Dislocations and Burgers vector

Dipole “arm”

Burgers vector

Dislocation seen as a dipole of disclinations.

A movement along the Burgers vector 
needs only a local rearrangment of atoms.

A movement along the dipole direction 
needs the rearrangment of a whole line of 
atoms.

Dislocation mobility constraint



  

MDMA scalar theory

Simple MDMA algebra (without second moment)

Transformation of a scalar field 
charged under monopole and 
dipole charges.



  

Internal space realization
An infinite collection of scalar fields 
parametrized by the internal spatial 
coordinates. Momentum generates an 
internal shift.

Covariant derivative for the internal transformations and gauge 
variations for the gauge fields associated to the monopole, 
dipole and internal translations



  

Discretizing the internal space

Discrete covariant derivative recovering the continuum result in the limit of infinitely 
fine discretization:

The form of the logarithms in terms of field bilinears is convenient in view of working 
with Hubbard-Stratonovich auxiliary fields.



  

Simple Mexican-hat Lagrangian

To keep the analysis as simple as possible, we 
focus on the case with zero background for the 
monopole and dipole gauge fields. 



  

Classical SSB and Goldstone
Polar parametrization of the scalar 
field with a coordinate-independent 
modulus. 

The minima of the potential

are given by

The classical SSB gives rise to a 
standard Nambu-Goldstone mode 
with linear dispersion relation



  

Quantum case
To study a quantum case we adopt a Hubbard-Stratonovich strategy.

To this purpose it is useful to modify the model to include up to quartic terms in the field 
bilinears. 

We consider only positive masses, so the classical model is in this case stable without 
breaking the monopole/dipole symmetries. In fact, we seek to obtain slight simmetry-
breaking effects through quantum corrections.



  

Hubbard-Stratonovich
The Hubbard-Stratonovich fields are introduced by means of Lagrange multipliers which fix 
them to the field bilinears

Covariant derivative in terms of the 
Hubbard-Stratonovich fields



  

Internal space homogeneity
Ansatz independent from n

The action is quadratic in the original fields, hence we can adopt standard effective field 
theory methods (heat kernel) to obtain a low-energy effective action for the Hubbard-
Stratonovich fields and the associated Lagrange multipliers. 

The cut-off of the low-energy theory is the mass of the fields phi that we are integrating 
away.



  

Nambu-Goldstone

The resulting low-energy Lagrangian for the Nambu-Goldstone field is non-standard: 

In Fourier space the lowest frequency solution of the 
dispersion equation

Gives a “fractonic” dispersion relation

We found a locally stable solution with non-trivial chi field. This is charged under 
the dipole charge but not on the monopole. So we break only the former.

We don’t worry about metastability because the large-N limit suppresses tunneling 
to other possible vacua.



  

Avoiding Coleman
Spontaneous symmetry breaking requires 
a stable order parameter against quantum 
fluctuations.

Relying upon the cluster-decomposition 
principle:

The presence of SSB is associated to

The dipole-symmetry Nambu-Goldstone mode satisfies this criterion independently of 
the large-N limit.



  

Conclusions ✔& future prospects ★
Elastic fractons can be described in terms of a gauged dipole symmetry formulated in terms 
of ordinary vector connections ✔

- Mobility constraints arise from gauge invariance ✔
- Possibility to couple the theory to coupled backgrounds ★

Emergent fractons are a convenient way to describe generalized elastic theories at low 
energy, with the possibility of accounting for the defect dynamics ✔

- They encompass crystalline and amorphous media, with or withour rotational symmetry ✔ 
- Description of the defects’ dynamics ★

We worked out an explicit dynamical model breaking spontaneously the dipole symmetry 
while preserving the monopole symmetry ✔

- Coupling the elastic gauge fields to the scalar model and possible descriptions of dynamical 
defects ★
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Recovering Pretko’s theory
● When external forces are present, the conservation equation reduces to:

which represents a constraint that can be implemented at the level of the effective 
action through a Lagrange multiplier. It makes the gauge field        non-dynamical. 

● When external forces are absent:

● Imposing a symmetric energy-momentum tensor

Pretko’s scalar and 
symmetric tensor gauge 
fields



  

Gradient Mexican hat
Consider the following higher-derivative scalar Lagrangian where all the coefficients are positive:

static potential

time-independent vacuum Ansatz vacuum solutions

fluctuation Ansatz

Competition between a quadtratic unstable term and a quartic stabilizer.

Musso Eur.Phys.J.C 79 12



  

Fractonic dispersion relations
transverse and longitudinal momentum

Gapless Nambu-Goldstone mode for broken translations 
(phonon) featuring a Seiberg-Shao fractonic dispersion 
relation with UV/IR mixing. For trivial G, it reduces to a non-
propagating (immobile) mode.

Gapped Higgs mode.

Can these models provide a UV-completion of Seiberg-Shao and tame the UV/IR 
mixing by means of the scale of the symmetry-breaking? ?
Similar, scale-invariant Ginzburg-Landau models feature fractonic modes with either subdimensional 
propagation (e.g. lineons) or no propagation at all. They are related to an emergent symmetry under 
higher moment charges, leading to the trivialization of some elastic coefficients.

Argurio, Hoyos, Musso, Naegels Phys.Rev.D 104 10

Seiberg Shao SciPost Phys. 10 2



  

Partial gauge fixing

The constraint is satisfied for:

We can partially fix the gauge asking:

The remaining gauge freedom consists in: This coincides with 
the gauge freedom 
of Pretko’s model



  

Gauging the dipole algebra (details)

field strength decomposed on 
the algebra generators

coefficients of the field 
strength given in terms of the 
gauge fields



  

Global current J1



  

Improvements
Improved currents

with

Through the improving terms we can ask:



  

Dislocation as a disclination dipole

Thus, in the absence of vacancies/insertions,

The dislocation density is 
proportional to the Burgers 
vector.



  

Particle with second moment charge
We can couple a point-like object with second moment charge to the gauge fields as follows:

with

Evaluating the action for a static particle shows explicitly that the particle acts as a point-like 
source for the second moment of the charge, in fact it couples to
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