

Marco Regis

Which solution?

- Modified Gravity
- New Particle beyond the Standard Model
- Baryonic Dark Matter

MODIFIED GRAVITY

Remarkable successes on galactic scales Difficult to make it working on larger scales

MODIFIED GRAVITY

Remarkable successes on galactic scales Difficult to make it working on larger scales

NEW PARTICLE BEYOND the STANDARD MODEL

some "gastrophysics" is needed to make it fully working at small scales

CUSP-CORE

MISSING SATELLITES (too-big-to-fail)

BARYONIC DARK MATTER

needs to be decoupled before BBN

- very compact primordial objects: primordial black holes
- new composite states made of standard model particles

Production mechanism?

DM fundamental properties

A successful DM candidate:

- Dark and dissipationless (usually neutral)
- Collisionless (or with $\sigma/m < cm^2/g$)
- Cold (or Warm)
- Stable or long lived (lifetime > age of the U. ~ 13 Gyr)
- Produced in the early Universe
- Not too light / not too heavy

DM fundamental properties - mass

Not too light - Not too heavy but still quite a wide range of possibilities!

ALP dark matter

ALPs (Axion-Like Particles)

(pseudo-)scalar particles mainly pseudo-Nambu-Goldstone bosons (QCD axion, many "stringy" axions, ...)

assumption:

ALPs constitute (a fraction of) the DM content in the Universe

photon coupling:

ALP-photon coupling described by the low-energy effective Lagrangian:

$$\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} \, a \, F_{\mu\nu} \tilde{F}_{\mu\nu}$$

→ decay/conversion
 into photon(s)
 → "monochromatic"
 emission

ALP phenomenology (photons)

The ALP-photon coupling \rightarrow phenomenology related to

Or inverse processes (γ -ray tansparency, stellar cooling, ...)

Bounds on ALPs

Outline

Looking for a photon monochromatic emission at $E_{\gamma} \sim m_{\rm a}/2$ given by ALP decay from regions with high dark-matter density

For a good story: Who? What? When? Where? Why?

Outline

Looking for a photon monochromatic emission at $E_{\gamma} \sim m_{\rm a}/2$ given by ALP decay from regions with high dark-matter density

For a good story: Who? What? When? Where? Why?

... let's take a journey across different mass ranges and astrophysical targets to see current bounds and near-future prospects

MeV ALPs (gamma-rays)

COSI telescope

Compton Spectrometer and Imager (COSI)

wide-FOV telescope designed to survey the γ -ray sky at 0.2-5 MeV \rightarrow Imaging with high-resolution spectroscopy (Δ E/E \sim few x 10⁻³)

selected by NASA in October 2021, to be launched in 2027

COSI sensitivity to MeV ALPs

Projected sensitivity compared to current bounds

kev ALPs (X-rays)

X-rays and ALPs

eROSITA [0.2-8 keV] data from Dec. 2019 to Feb. 2022 (about half-way)

Line Intensity Mapping

ALP decay \rightarrow photons at $E_e = m_a/2$ in the rest frame If the ALP is at redshift z_e , we see $E_{obs} = m_a/2/(1+z_e)$

The ALP emission should show a correlation with large-scale structures at redshift $z = z_e$ and no correlation with LSS at $z \neq z_e$.

If DM is made of ALPs

→ line intensity mapping competing with lensing, galaxy counts, etc.. in cosmological searches

ev ALPs (optical)

ALP signal

To observe photons from ALP decays we need an experiment with:

- good frequency resolution
- decent FoV
- good angular resolution
- good sensitivity
- ... and observing the DARKNESS!

on the VLT at Paranal Observatory (ESO)

 λ = 465-930 nm ang. res. < 1 arcsec spectr. res. Δ E/E < 10⁻³

MUSE observations

MUSE observations of five dwarf spheroidal galaxies:

Example: LeoT

Right Ascension (J2000)

Bounds on ALPs

NIRB and Axion-like Particles

Excess in the NIRB autocorrelation angular power spectrum (0.6-4.5 µm)

ALP interpretation of the NIRB excess **revisited**:

→ more from JWST

fen mer ALPs (far infrared)

MeV ALPs (radio)

ALP stimulated decay

Stimulated decay

$$2 f = \frac{\text{stimulated emission}}{\text{spontaneous emission}}$$

$$f_{\gamma} = \frac{\pi^2 \rho_{\gamma}}{E_{\gamma}^3}$$

Decay rate:
$$\Gamma_a \equiv g_{a\gamma\gamma}^2 m_a^3/(64\pi)$$

Flux:
$$S_{\text{decay}} = \frac{\Gamma_a}{4\pi\Delta\nu} \int d\Omega d\ell \, \rho_a(\ell,\Omega) \left[1 + 2f_{\gamma}(\ell,\Omega,m_a)\right]$$

ALP stimulated decay - projected limits

Stimulated emission within the source

Caputo, MR,+ JCAP2019

ALP stimulated decay - echo

The ALP stimulated decay can be used to listen for the echo of a powerful radio beam (i.e. faint radio line traveling in the ~opposite direction)

$$S_g = \frac{g_{a\gamma\gamma}^2}{16} S_{\nu,0}(\nu_a) \int \rho(x_d) \, \mathrm{d}x_d$$

ALP stimulated decay - axion echo

Stimulated emission from a beam going through the Milky Way halo

(Sun+ PRD2022, Buen-Abad+ PRD2022)
Source: Galactic SN remnants

ALP conversion

ALPs may convert to radio-frequency electromagnetic radiation in the strong magnetic fields around **neutron stars**

Very promising technique but with quite uncertain predictions.

$$\frac{d\mathcal{P}}{d\Omega} \simeq 5.7 \times 10^{9} \text{ W} \left(\frac{g_{a\gamma\gamma}}{10^{-12} \text{ GeV}^{-1}} \right)^{2} \left(\frac{r_{\text{NS}}}{10 \text{ km}} \right)^{5/2} \left(\frac{m_{a}}{\text{GHz}} \right)^{4/3} \\
\times \left(\frac{B_{0}}{10^{14} \text{ G}} \right)^{5/6} \left(\frac{P}{\text{sec}} \right)^{7/6} \left(\frac{\rho_{\text{DM}}^{\infty}}{0.45 \text{ GeV cm}^{-3}} \right) \left(\frac{M_{\text{NS}}}{M_{\odot}} \right)^{1/2} \\
\times \left(\frac{200 \text{ km s}^{-1}}{v_{0}} \right) \frac{3 \left(\hat{\mathbf{m}} \cdot \hat{\mathbf{r}} \right)^{2} + 1}{\left| 3 \cos \theta \, \hat{\mathbf{m}} \cdot \hat{\mathbf{r}} - \cos \theta_{\text{m}} \right|^{7/6}},$$

Summarizing

It is a period with no strong bias concerning the particle dark matter mass

→ multi-wavelength approach

Searching for ALP decays in the sky will likely play a crucial role in shaping the allowed fraction of the ALP

parameter space

ALP stimulated decay - projected limits

A "golden era" for radio astronomy has been starting with the SKAO and its precursors

SKA1-Low: 100 hours @ 100 MHz \rightarrow 180 μ Jy/beam (line sensitivity for $\Delta v/v=10^{-4}$)

Simulated decay inside The source
$$S \simeq 100 \text{ pt Jy} \left(\frac{9a88}{10^{-11} \text{ gV}^{-1}}\right)^2 \left(\frac{10^{-4}}{\text{T}}\right) \left(\frac{m_a}{\text{peV}}\right)^{3-1} \frac{2f}{10^7} \frac{D}{10^{13} \text{ geV}}$$