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Motivation

• It is thought that Rational 2d CFT are classified, at least
in principle.

• In fact, the integrable representations of specific chiral
algebras are classified [Belavin-Polyakov-Zamolodchikov 1984,

Knizhnik-Zamolodchikov 1985], and one can take cosets of these
[Goddard-Kent-Olive 1985] to get new theories.

• However this does not help us answer simple questions, for
example:

• What are all RCFTs that have just one primary 1?

= (1)CFT = no critical exponents = meromorphic vertex
operator algebras

• What are all RCFTs that have exactly p primaries
1,Φ1,Φ2, · · · ,Φp−1?

= (p)CFT = p− 1 critical exponents = vertex operator
algebras with p simple modules
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• There is no complete solution to these questions.

• However there was progress on them during 1984− 1992:

• Meromorphic CFT [Goddard-Olive 1984, Goddard 1988,

Schellekens 1992]

• Classification of CFT via Modular Linear Differential
Equations [Mathur-Mukhi-Sen 1988-89, Naculich 1989].

• These two developments appeared independent but
eventually converged [Gaberdiel-Hampapura- -Mukhi 2016].

• In the last decade there has been progress on both
questions, and here I will present some recent results.
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• The main result is the complete classification of unitary
CFT with c < 25 and two primaries 1, Φ [Mukhi-Rayhaun

2022].

• In mathematical terminology, this is the classification of
strongly regular VOAs with central charge c < 25 and two
simple modules.

• The result is a set of 123 theories.

• I will also briefly present:

• A new method to construct meromorphic CFTs with c ≥ 32
[Das-Gowdigere-Mukhi 2022a].

• The complete classification of three-character CFT with
vanishing Wronskian index [Das-Gowdigere-Mukhi 2022b].
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Introduction and Background

• Two-dimensional Conformal Field Theory has been
intensely studied since the classic work of [BPZ 1984, KZ 1985].

• It is a special class of QFT having infinitely many
symmetry generators Ln, L̄n satisfying the Virasoro
algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

and a similar one for L̄n.

• c is a central element that takes a fixed value, “the central
charge”, for a given CFT.

• Unitary CFTs have c real and > 0.
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• Physics motivations for 2d CFT:

• Critical systems in statistical physics

• World-sheet of relativistic strings

• Quantum/stringy version of AdS3/CFT2

• Anyons and the fractional quantum Hall effect

• Topological quantum computing

• Mathematical motivations for 2d CFT:

• Vertex operator algebras (VOA)

• Modular tensor categories (MTC)

• Vector-valued modular forms (VVMF)

• Moonshine modules for sporadic groups
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• CFT’s often have additional infinite-dimensional symmetry
algebras beyond the Virasoro algebra.

• The full symmetry algebra is called the chiral algebra, with
generators Aαn ∈ {Ln, Jan, · · · }.

• The Hilbert space decomposes into towers (modules) over
highest-weight states |φi〉 called primaries satisfying:

Aαn|φi〉 = Āαn|φi〉 = 0, n > 0, all α

• The remaining states in each tower are called descendants
and are spanned by:

Aα1
−n1

Aα2
−n2
· · ·Aαp−npĀ

ᾱ1
−m1

Āᾱ2
−m2
· · · Āᾱq−mq |φi〉

• The scaling dimensions of |φi〉, hi, h̄i, are the eigenvalues of
L0, L̄0. There is a distinguished primary |φ0〉 = |0〉 (the
vacuum) with h0 = h̄0 = 0.
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ᾱ1
−m1

Āᾱ2
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• For example, CFTs with a global symmetry under a Lie
algebra g are invariant under a Kac-Moody (KM) algebra:

[Jan, J
b
m] = ifabcJcn+m +

k

2
nδn+m,0

where the central element k is called the level.

• The primaries of such theories fall into representations of g.

• At any positive integral level k, only finitely many
representations are allowed, these are called integrable
representations.
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• From KM generators one can make a set of Virasoro
generators as bilinears:

Ln =
1

2(k + g)

∑
m∈Z

:Jan−mJ
a
m:

where g is the dual Coxeter number.

• The Virasoro central charge is determined by the KM level:

c =
k dimg

k + gg

• When the Virasoro generators are entirely determined as
such bilinears, we say the CFT is pure Sugawara or the
KM algebra is complete.

• CFTs containing all integrable representations of a KM
algebra are called Wess-Zumino-Witten (WZW) or affine
theories.
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• If the number n of primaries |φi〉 is finite then we have a
Rational Conformal Field Theory (RCFT).

• This is equivalent to the statement that c, hi are rational
numbers [Anderson-Moore 1988].
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Meromorphic CFT

• Meromorphic CFT have just the identity primary 1.

• Their partition function has the form:

Z(τ, τ̄) = |χ(τ)|2

where χ(τ), the character, counts the degeneracies under
the holomorphic the chiral algebra.

• The partition function must be modular invariant:

Z
(
aτ+b
cτ+d ,

aτ̄+b
cτ̄+d

)
= Z(τ, τ̄),

(
a b
c d

)
∈ SL(2,Z)

• It follows that χ(τ) must be modular invariant upto a
phase, and hence is a function of the Klein j-invariant:

j(q) = q−1 + 744 + 196884q + 21493760q2 + · · ·
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• Meromorphic CFT can only exist for c a multiple of 8.

• Some examples:

c = 8 : χ(τ) = j(τ)
1
3 E8,1 (unique)

c = 16 : χ(τ) = j(τ)
2
3 E8,1 × E8,1, D

+
16,1

c = 24 : χ(τ) = j(τ) +N Niemeier lattices

c = 32 : χ(τ) = j(τ)
1
3

(
j(τ) +N

)
Even unimodular 32d lattices

where Xr,k = KM algebra X of rank r and level k.

• These examples correspond to “lattice theories”: c free
bosons compactified on a torus Rc/Γ, where Γ is an even,
unimodular lattice.

• Starting from c ≥ 24, there are more general (non-lattice)
possibilities.
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• The most general allowed character at c = 24 is:

χ(τ) = j(τ) +N

where N is any integer ≥ −744, but there are just 71
CFT’s [Schellekens 1992].

• These include 24 lattice theories and a finite number of
generalisations involving orbifolding etc.

• Examples:

• Schellekens #59: A11,1D7,1E6,1(lattice theory)

• Schellekens #34: A3,1D7,3G2,1(non-lattice theory)

• These are special modular invariant combinations
(“extensions”) of characters for the given non-simple KM
algebras.
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• 70 of the 71 Schellekens theories are meromorphic
extensions of non-simple KM algebras.

• This means we treat some primaries of integer dimension
as chiral generators of higher spin, which then organises
the theory into a smaller number of primaries.

• The 71st Schellekens theory is also a meromorphic
extension, not of KM algebras, but of (Ising model)48.

• This extension is called the Monster CFT.

• At c = 32 there are around ∼ 109 even, unimodular lattices
(and an unknown number of non-lattice theories), so
complete classification seems very difficult.
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The MLDE approach

• Let us now try to classify theories by the number p of
primaries.

• Note that multiple primaries can have the same character,
for example if Φ is complex then Φ, Φ̄ have the same
character.

• Thus:

number n of independent characters ≤
number p of independent primaries

• So it is more convenient to classify theories by the number
n of independent characters:

Z(q, q̄) =
n−1∑
i=0

χi(q)χ̄ī(q̄)

where χi(q) = tri q
L0− c

24 is the trace over holomorphic
descendants of φi.
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• Modular invariance of Z ⇐⇒ characters go into linear
combinations of themselves under SL(2,Z):

χi

(
aτ+b
cτ+d

)
=

n−1∑
j=0

%ij

(
a b
c d

)
χj(τ), %†% = 1

• Such objects are called vector-valued modular functions or
VVMF (of weight 0).

• % is an n-dimensional representation of SL(2,Z), the
modular representation of the characters.
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• A holomorphic modular bootstrap method was proposed in
[Mathur-Mukhi-Sen (1988)] to find candidate VVMFs.

• These should have an expansion in q ≡ e2πiτ :

χi(q) = qαi
(
a

(i)
0 + a

(i)
1 q + a

(i)
2 q2 + · · ·

)
, i = 0, 1, · · · , n− 1

with non-negative integer coefficients a
(i)
m – the

degeneracies of descendant states.

• But generic VVMFs do not have positive or integral
coefficients. One needs to isolate the admissible ones, for
which:

a(i)
m ∈ Z≥0 (potentially giving degeneracies)

a
(0)
0 = 1 (non-degenerate vacuum state)

• Then one has to verify which of these admissible characters
correspond to actual CFT.

17 / 50



• A holomorphic modular bootstrap method was proposed in
[Mathur-Mukhi-Sen (1988)] to find candidate VVMFs.

• These should have an expansion in q ≡ e2πiτ :

χi(q) = qαi
(
a

(i)
0 + a

(i)
1 q + a

(i)
2 q2 + · · ·

)
, i = 0, 1, · · · , n− 1

with non-negative integer coefficients a
(i)
m – the

degeneracies of descendant states.

• But generic VVMFs do not have positive or integral
coefficients. One needs to isolate the admissible ones, for
which:

a(i)
m ∈ Z≥0 (potentially giving degeneracies)

a
(0)
0 = 1 (non-degenerate vacuum state)

• Then one has to verify which of these admissible characters
correspond to actual CFT.

17 / 50



• A holomorphic modular bootstrap method was proposed in
[Mathur-Mukhi-Sen (1988)] to find candidate VVMFs.

• These should have an expansion in q ≡ e2πiτ :

χi(q) = qαi
(
a

(i)
0 + a

(i)
1 q + a

(i)
2 q2 + · · ·

)
, i = 0, 1, · · · , n− 1

with non-negative integer coefficients a
(i)
m – the

degeneracies of descendant states.

• But generic VVMFs do not have positive or integral
coefficients. One needs to isolate the admissible ones, for
which:

a(i)
m ∈ Z≥0 (potentially giving degeneracies)

a
(0)
0 = 1 (non-degenerate vacuum state)

• Then one has to verify which of these admissible characters
correspond to actual CFT.

17 / 50



• A holomorphic modular bootstrap method was proposed in
[Mathur-Mukhi-Sen (1988)] to find candidate VVMFs.

• These should have an expansion in q ≡ e2πiτ :

χi(q) = qαi
(
a

(i)
0 + a

(i)
1 q + a

(i)
2 q2 + · · ·

)
, i = 0, 1, · · · , n− 1

with non-negative integer coefficients a
(i)
m – the

degeneracies of descendant states.

• But generic VVMFs do not have positive or integral
coefficients. One needs to isolate the admissible ones, for
which:

a(i)
m ∈ Z≥0 (potentially giving degeneracies)

a
(0)
0 = 1 (non-degenerate vacuum state)

• Then one has to verify which of these admissible characters
correspond to actual CFT.

17 / 50



• Thus the classification of RCFT involves two steps:

I. Classify admissible characters.

II. Within this set, search for actual CFT.

• There has been some kind of folklore that most often,
I ≡ II, i.e. each set of admissible characters describes a
unique CFT.

• As we will see, this is wrong in two ways:

• Most admissible characters do not describe any CFT,

• Some admissible characters describe multiple CFT.
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• Starting point: every VVMF χi(q) can always be written
as the n independent solutions of a Modular-invariant
Linear Differential Equation (MLDE) in τ .

• So we write the most general MLDE and scan it for
admissible solutions. For n = 2 this is:(

D2
τ + φ2(τ)Dτ + φ4(τ)

)
χ(τ) = 0

where

Dτ ≡ 1
2πi

∂
∂τ −

k
12E2(τ) : Mk →Mk+2

is the Ramanujan-Serre derivative (a covariant derivative in
τ), k is the weight of the modular form on which it acts,
and E2(τ) is a certain Eisenstein series.

• If the coefficient functions φ2, φ4 are modular of weight 2, 4
respectively then the equation is modular-invariant.
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• Suppose we are given a VVMF χ0, χ1. A general linear
combination of them, χ, satisfies the following equation:∣∣∣∣∣∣

χ0 χ1 χ

Dτχ0 Dτχ1 Dτχ

D2
τχ0 D2

τχ1 D2
τχ

∣∣∣∣∣∣ = 0

• Expanding by the last column, we get:∣∣∣∣ χ0 χ1

Dτχ0 Dτχ1

∣∣∣∣D2
τχ−

∣∣∣∣ χ0 χ1

D2
τχ0 D2

τχ1

∣∣∣∣Dτχ+

∣∣∣∣Dτχ0 Dτχ1

D2
τχ0 D2

τχ1

∣∣∣∣χ = 0

• Hence:

φ2 = −

∣∣∣∣ χ0 χ1

D2
τχ0 D2

τχ1

∣∣∣∣∣∣∣∣ χ0 χ1

Dτχ0 Dτχ1

∣∣∣∣ , φ4 =

∣∣∣∣Dτχ0 Dτχ1

D2
τχ0 D2

τχ1

∣∣∣∣∣∣∣∣ χ0 χ1

Dτχ0 Dτχ1

∣∣∣∣
• Both φ2, φ4 can have poles wherever the denominator,

which we call the Wronskian W , has zeroes.
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• The number of such poles in the interior of moduli space is
denoted `

6 , where ` = 0, 2, 3, 4 · · · .

• The factor of 1
6 arises because moduli space has special

points ρ ≡ e
2πi
3 , i. At these points we can have fractional

poles of order 1
2 ,

1
3 respectively.

• ` is called the Wronskian index.

• With two characters it can be shown that ` is even:
` = 0, 2, 4, · · · [Naculich 1989].

• For any given ` there is a finite basis of functions of E4, E6

from which φ2, φ4 are built. Thus the MLDE has a finite
number of parameters that grows with `.

• For future reference, the Riemann-Roch theorem gives us
the useful relation:

` =
c

2
− 6h+ 1
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• Now we fix ` to various small values and scan the
parameter space to look for solutions that are admissible
characters.

• In order of simplicity we start with ` = 0. Then φ2 = 0 and
φ4(τ) = µE4(τ), where E4 is an Eisenstein series and µ is a
real parameter.

• This leads to the “MMS equation”:(
D2
τ + µE4(τ)

)
χ = 0

• The single parameter µ completely determines the
solutions up to overall normalisations.
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• The leading terms in the solutions are denoted qα0 , qα1

where α0, α1 are the critical indices or exponents.

• We write:
α0 = − c

24 , α1 = − c
24 + h

If the solutions describe a CFT then (c, h) will be its
central charge and conformal dimension.

• Next we solve the MLDE recursively by the Frobenius
method to sufficiently high orders.

• Let’s look at two examples.
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• MMS equation with µ = − 119
3600 gives admissible characters:

χ0(q) = q−7/60(1 + 14q + 42q2 + 140q3 + 350q4 + 850q5

+ 1827q6 + 3858q7 + 7637q8 + 14756q9 + · · · )
χ1(q) = q17/60(1 + 34

7 q + 17q2 + 46q3 + 117q4 + 266q5

+ 575q6 + 1174q7 + 2311q8 + 4380q9 + · · · )

c = 14
5 , h = 2

5 . Normalising second character by 7, it
becomes admissible. These characters can be identified
with the CFT G2,1.

• MMS equation with µ = − 143
4800 gives non-admissible

characters:

χ0(q) = q−13/120(1 + 455
37 q + 121784

3589 q2 + 60836763
563473 q3 + 4525367613

17467663 q4

+ 2893074116179
4838542651 q5 + 2046920234847579

1630588873387 q6 + · · · )
χ1(q) = q11/40(1 + 363

83 q + 15849
1079 q

2 + 90512
2407 q

3 + 58528917
633041 q4

+ 128150964
633041 q5 + 102972265445

242454703 q6 + · · · )

Formally c = 13
5 , h = 23

60 , but clearly this is not a CFT.
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• We found a finite and very interesting set of admissible
characters, all with 0 < c < 8, and guessed their
identification with various known RCFT:

• This brings together several distinct level-1 KM characters,
and a few curious entries that have negative fusion rules.
Today I will ignore those (they are now called Intermediate
Vertex Operator Algebras or IVOA).
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• From now on we will restrict to unitary CFT with exactly
two primaries.

• Thus we must discard:

• One primary: E8,1

• More than two primaries: A2,1,D4,1,E6,1. For example A2,1

has three primaries 1, 3 and 3̄ but the latter two have the
same character.

• This leaves just four theories with (p, `) = (2, 0), which we
identified with the affine theories:

A1,1,G2,1,F4,1,E7,1 “MMS set”

with:
c = 1, 14

5 ,
26
5 , 7 respectively.

• Recently this identification was shown to be unique
[Mason-Nagatomo-Sakai 2018].
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Meromorphic cosets and classification

• We finished classifying ` = 0 so we move to the next case,
` = 2. The MLDE is now:(

D2
τ + E6

3E4
Dτ + µE4(τ)

)
χ = 0

and φ2 has a pole at τ = e2πi/3.

• This was solved in [Naculich 1989, Hampapura-Mukhi 2015] and
four admissible two-primary VVMF’s were found, with
central charges:

17, 94
5 ,

106
5 , 23

• These four solutions have central charges 24− c and
conformal dimensions 2− h relative to the MMS set. Very
suggestive!

• For nearly three decades it remained unclear whether these
admissible characters were really CFT’s. It was finally
resolved in [Gaberdiel-Hampapura-Mukhi 2016].
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• We used a variant of the coset construction of RCFT’s
[Goddard-Kent-Olive 1984,1985].

• The cosets in the physics literature are typically of the
form:

V1

V2

where V1,V2 are both WZW theories.

• For example:

A1,k ⊗ A1,1

A1,k+1
=M(k + 2, k + 3) (unitary minimal models)

• These are defined by embedding the KM algebra of the
denominator in that of the numerator, satisfying certain
embedding conditions.

• One has ccoset = cnum − cdenom.

28 / 50



• We used a variant of the coset construction of RCFT’s
[Goddard-Kent-Olive 1984,1985].

• The cosets in the physics literature are typically of the
form:

V1

V2

where V1,V2 are both WZW theories.

• For example:

A1,k ⊗ A1,1

A1,k+1
=M(k + 2, k + 3) (unitary minimal models)

• These are defined by embedding the KM algebra of the
denominator in that of the numerator, satisfying certain
embedding conditions.

• One has ccoset = cnum − cdenom.

28 / 50



• We used a variant of the coset construction of RCFT’s
[Goddard-Kent-Olive 1984,1985].

• The cosets in the physics literature are typically of the
form:

V1

V2

where V1,V2 are both WZW theories.

• For example:

A1,k ⊗ A1,1

A1,k+1
=M(k + 2, k + 3) (unitary minimal models)

• These are defined by embedding the KM algebra of the
denominator in that of the numerator, satisfying certain
embedding conditions.

• One has ccoset = cnum − cdenom.

28 / 50



• We used a variant of the coset construction of RCFT’s
[Goddard-Kent-Olive 1984,1985].

• The cosets in the physics literature are typically of the
form:

V1

V2

where V1,V2 are both WZW theories.

• For example:

A1,k ⊗ A1,1

A1,k+1
=M(k + 2, k + 3) (unitary minimal models)

• These are defined by embedding the KM algebra of the
denominator in that of the numerator, satisfying certain
embedding conditions.

• One has ccoset = cnum − cdenom.

28 / 50



• We used a variant of the coset construction of RCFT’s
[Goddard-Kent-Olive 1984,1985].

• The cosets in the physics literature are typically of the
form:

V1

V2

where V1,V2 are both WZW theories.

• For example:

A1,k ⊗ A1,1

A1,k+1
=M(k + 2, k + 3) (unitary minimal models)

• These are defined by embedding the KM algebra of the
denominator in that of the numerator, satisfying certain
embedding conditions.

• One has ccoset = cnum − cdenom.

28 / 50



• However the cosets we need are actually simpler. They are
cosets of a meromorphic theory A by an affine theory V:

V ′ = A
V

[Moore-Seiberg 1988, Schellekens et al 1990, Frenkel-Zhu 1991, Fröhlich et al

2006].

• Such cosets can sometimes be defined by embedding the
KM algebra of the denominator in that of the numerator,
but they exist in greater generality.

• Since A is meromorphic, the denominator V and the coset
V ′ are both (p)CFTs for the same p and they satisfy a
holomorphic bilinear relation:

p−1∑
i=0

χVi (q)χV
′

i (q) = χA(q)

29 / 50



• However the cosets we need are actually simpler. They are
cosets of a meromorphic theory A by an affine theory V:

V ′ = A
V

[Moore-Seiberg 1988, Schellekens et al 1990, Frenkel-Zhu 1991, Fröhlich et al
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2006].

• Such cosets can sometimes be defined by embedding the
KM algebra of the denominator in that of the numerator,
but they exist in greater generality.

• Since A is meromorphic, the denominator V and the coset
V ′ are both (p)CFTs for the same p and they satisfy a
holomorphic bilinear relation:

p−1∑
i=0

χVi (q)χV
′

i (q) = χA(q)

29 / 50



• For example, recall #34 in Schellekens’ list with KM
algebra A3,1D7,3G2,1.

• As an affine theory this would have around 200 primaries,
but there is a one-primary extension that defines S#34.

• We can now take the quotient:

S#34

G2,1

by deleting G2,1 from the numerator. This leads to a
(2)CFT with algebra A3,1D7,3 and c = 24− 14

5 = 106
5 .

• Such “deleting” quotients can be shown to have Wronskian
index ` = 2. There are 15 such (2)CFT, with
c = 17, 94

5 ,
106
5 , 23, corresponding to the four MLDE

solutions.

• Thus the ` = 2 admissible solutions are all identified with
CFTs.
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• We can continue by taking cosets of meromorphic theories
with higher central charge and generating many CFTs with
increasing values of `.

• Remarkably this procedure is exhaustive: every theory
with two primaries arises by taking cosets of meromorphic
theories by the MMS set.

• Let’s see where this non-trivial statement comes from.
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• The idea is that the characters for any two CFTs V,V ′ with
mutually conjugate modular representations %, %′ satisfy a
bilinear relation to a modular invariant (up to a phase):

p−1∑
i=0

χVi (q)χV
′

i (q) = χA(q)

• This is a necessary condition for the CFTs to satisfy the
coset relation:

V ′ = A
V

• If this condition is also sufficient then all V ′ transforming
in the conjugate representation %′ will arise as cosets in this
way.
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• Now a CFT is associated to a Modular Tensor Category
(MTC), that provides the topological information of a
CFT: the modular representation %, the braiding and fusing
matrices B,F , central charge mod 8 and a few other data.

• The rank of an MTC is the number of primaries of the
associated CFT.

• If the MTCs for two CFTs are mutually conjugate (i.e.
they pair up to the trivial MTC) then it follows that the
bilinear relation on the previous page is a relation between
CFTs, not just characters.
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• Now in rank 2 (and also 3), the MTC associated to a CFT
is uniquely specified by its modular representation
[Rowell-Stong-Wang 2007]. (Otherwise a given modular
representation could correspond to multiple braiding and
fusing data, for example).

• The result then follows: all CFT with exactly two
primaries are the MMS set, or cosets of a meromorphic
theory by the MMS set.
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• So we simply take all meromorphic CFTs of central charge
c and construct all possible cosets by a member of the
MMS set:

A1,1, G2,1, F4,1, E7,1

c = 1 14
5

26
5 7

• But the classification of “all meromorphic CFTs of central
charge c” exists only up to c = 24, and beyond that it is
impractical.

• So the best we can do is classify all (2)CFT with c < 24.
The possible central charges we will get in this way are:

c = cM − 1, cM − 14
5 , cM −

26
5 , cM − 7

with cM = 8, 16, 24. The maximum value is 23.
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• A small trick allows us to stretch this range a little bit.

• The minimum and maximum central charges of the MMS
set are 1, 7.

• So meromorphic theories at cM = 24, 32 gives
maximum/minimum central charges of 23, 25 respectively.

• Hence there is no (2)CFT with 23 < c < 25. So we can
push our upper limit to 25.
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• From the Riemann-Roch theorem:

` = c
2 − 6h+ 1

unitary theories with 0 < c < 25 can only have Wronskian
index 0, 2, 4, 6, 8, 10, 12.

• We already classified ` = 0, 2 to get 4 + 15 theories.

• From the allowed modular representations one can show
there are no admissible characters in this range for
` = 6, 10, 12.

• That only leaves ` = 4, 8. These arise from embeddings of
the MMS set in meromorphic theories of c = 16, 24
respectively.
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• Finally one computes all possible such embeddings.

• This is a complicated exercise involving Dynkin and
embedding indices, so I will skip the details.

• The result is a set of 6 + 98 theories at ` = 4, 8 respectively.

• As an example, for the Schellekens theory with chiral
algebra A3,1 D7,3 G2,1, we can embed A1,1 in two ways:

A1,1 ↪→ A3,1, A1,1 ↪→ G2,1

• We cannot embed A1,1 into D7,3 because the level of the
embedding algebra has to be ≥ the level of the numerator.
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• In total we found 123 CFT’s with two primaries and
c < 25, and 100 of these were not previously known.

• Some features of the final table:

• Wronskian indices ` = 0, 2, 4, 8 arise.

• Some theories have complete KM algebras and others have
incomplete ones together with minimal models, the latter
being one of c = 7

10 ,
4
5 ,

1
2 ⊕

7
10 (not the case in Schellekens

theories).

• Some theories have both non-Abelian and Abelian factors
(not the case in Schellekens theories).

• There are theories with the same c but different conformal
dimension h, and also multiple theories with the same
(c, h). For example we find:

2 theories with (c, h) =
(
106
5 , 85

)
27 theories with (c, h) =

(
106
5 , 35

)
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• The partition functions of each theory is in principle
determined by the coset construction.

• However if we want to construct the characters explicitly,
an alternate approach is helpful because MLDE become
hard to solve for ` ≥ 6.

• Fortunately we can use a result of [Chandra-Mukhi 2018]. We
simply insert the critical exponents and the value of `
(both easily determined by the coset construction) into the
formulae there to get the characters.

• Thus we know exactly the characters and partition
function of all the 123 theories. We can also find their
correlators using techniques developed in [Mathur-Mukhi-Sen

1988,1989] and [Muralidhara-Mukhi 2018].
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• Some subtleties we encountered:

(i) Possible inequivalence of embeddings into different copies of
the same factor.

• The problem arises when there are multiple copies of one
factor. For example many Schellekens theories have factors
of Am1,1 for m ≥ 2. When taking a coset by A1,1, does it
matter which of the numerator factors we delete?

• This was resolved in [Betsumiya-Lam-Shimakura 2022] and
private communication with the authors. One example is:

D6,5A1,1A
′
1,1

A1,1
6=

D6,5A1,1A
′
1,1

A′1,1

• However this happens in just two cases. In the remaining
ones, the multiple copies are permuted by outer
automorphisms of the algebra and in this case the two
embeddings are equivalent.
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private communication with the authors. One example is:

D6,5A1,1A
′
1,1

A1,1
6=

D6,5A1,1A
′
1,1

A′1,1

• However this happens in just two cases. In the remaining
ones, the multiple copies are permuted by outer
automorphisms of the algebra and in this case the two
embeddings are equivalent.

41 / 50



• Some subtleties we encountered:

(i) Possible inequivalence of embeddings into different copies of
the same factor.

• The problem arises when there are multiple copies of one
factor. For example many Schellekens theories have factors
of Am1,1 for m ≥ 2. When taking a coset by A1,1, does it
matter which of the numerator factors we delete?

• This was resolved in [Betsumiya-Lam-Shimakura 2022] and
private communication with the authors. One example is:

D6,5A1,1A
′
1,1

A1,1
6=

D6,5A1,1A
′
1,1

A′1,1

• However this happens in just two cases. In the remaining
ones, the multiple copies are permuted by outer
automorphisms of the algebra and in this case the two
embeddings are equivalent.

41 / 50



(ii) Linear equivalence vs equivalence of embeddings.

• We computed linearly inequivalent embeddings using
suitable software. However in some specific cases, linear
equivalence does not imply equivalence.

• The complete set of conditions when this can happen were
described in [Minchenko 2006]. We were able to check that for
all our cases, linear equivalence corresponds to equivalence
of embeddings.
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A close-up of a few entries:
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Three character case, in brief

• The three-character case has been studied for ` = 0 in
several papers [Mathur-Mukhi-Sen 1989, Hampapura-Mukhi 2015,

Gaberdiel-Hampapura-Mukhi 2016, Franc-Mason 2020, Mukhi-Poddar-Singh

2020] but very little is known for ` > 0.

• Last year three independent groups completed the
classification of admissible characters for this case
[Kaidi-Lin-Parra-Martinez 2021, Das-Gowdigere-Santara 2021,

Bae-Duan-Lee-Lee-Sarkis 2021].

• Following this, in [Das-Gowdigere-Mukhi 2022b] we were finally
able to identify all the actual CFT within this set.

• This completes the classification of three-character CFT
with vanishing Wronskian index (no restriction on central
charge).
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• We also found a nice trick that produces new non-lattice
meromorphic theories at c ≥ 32 [Das-Gowdigere-Mukhi 2022a].

• This uses the uniqueness of rank-3 MTCs together with
transitivity.

• Suppose χM is a modular invariant admissible character
with, potentially, c = 32. If it cannot be identified with an
even selfdual lattice we have no way of knowing if it is
actually a CFT.

• However if we can find two known three-character CFTs
V,V ′ whose characters χi, χ

′
i satisfy a bilinear relation:∑

i

χi(τ)χ′i(τ) = χM (τ)

then it follows that χM must describe a CFT.

• In this way we wrote down entire families of new
(non-lattice) meromorphic CFT at c = 8N for arbitrarily
large N .
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Discussion

• With two primaries, can we go beyond the c < 25 bound?
Some c = 25 theories are known [Chandra-Mukhi 2019] as cosets
of c = 32 lattice theories by E7,1, can we complete this?

• To get c = 25 we must take cosets of a meromorphic theory
at c = 32 by the E7,1 WZW theory. The problem is that we
don’t know all c = 32 meromorphic theories.

• However it may be possible to find all c = 32 theories
having an E7,1 factor, a much smaller set.

• An construction based on generalised Hecke operators
[Harvey-Wu 2018] gave an alternate way to find admissible
characters. It would be useful to compare it with our
construction.

• Relation to penumbral moonshine – relation between
VVMF’s and certain types of finite groups
[Duncan-Harvey-Rayhaun 2021].
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Thank you
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