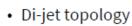


University of Bari PhD in Physics XXXVIII cycle

XXXIV International School "Francesco Romano" on Nuclear, Subnuclear and Astroparticle Physics

Donato Troiano


23 September 2023

Glossary

- > AK8 (AK4) jets: Jets clustered with the anti-kT algorithm using a distance parameter of 0.8 (0.4).
- > Soft-drop mass (m_{SD}): The groomed jet mass obtained from the "soft drop" algorithm with $\beta = 0$ and $z_{cut} = 0.1$.
- ParticleNet-MD (PN-MD): A mass-decorrelated particle identification algorithm designed for identifying hadronic decays of highly Lorentz-boosted particles (e.g., X→bb, X→cc, X→qq).
 - PN-MD_BBvsQCD = $p(X \rightarrow bb) / [p(X \rightarrow bb) + p(QCD)]$

AK8 heavy-flavour X→bb tagger activity

Z→bb jet is the handle to check the X→bb score

Recoil

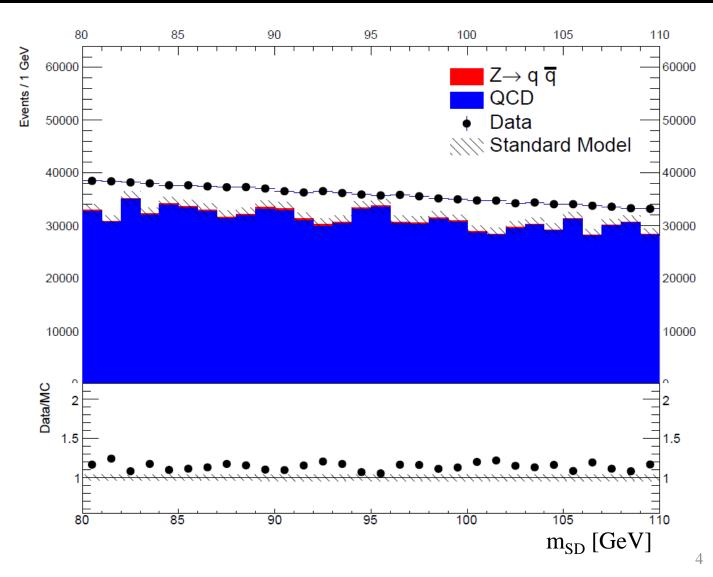
- Z mass constraint to suppress QCD events
- compare data/MC on high X→bb/ cc score region: excess over QCD events should be from Z(bb/ cc)+jets events (or W+jets)

- Goal: isolating the Z+jet contribution in Data from the overwhelming QCD backgrounds, comparing with the MC modelling of Z+jets
 - PN-MD not commissioned since CMS Run 2

Trigger selection: PFHT1050, PFJet500, AK8PFJet500,

AK8PFJet400_TrimMass30, AK8PFJet420_TrimMass30, AK8PFHT800_TrimMass50 **Event selection:**

- ► Leading- p_T AK8 jet: $p_T > 450$ GeV $\land |\eta| < 2.4$
- Sub-leading- $p_T AK8$ jet: $p_T > 200 \text{ GeV } \land |\eta| < 2.4$
- \succ N_e = N_µ = 0
- No b-tagged AK4 jet: $p_T > 30 \text{ GeV} \land |\eta| < 2.4 \land \Delta R(AK4 \text{ jet, leading AK8 jet}) > 0.8$
 - DeepCSV P(b) + P(bb) > 0.4184 [1]

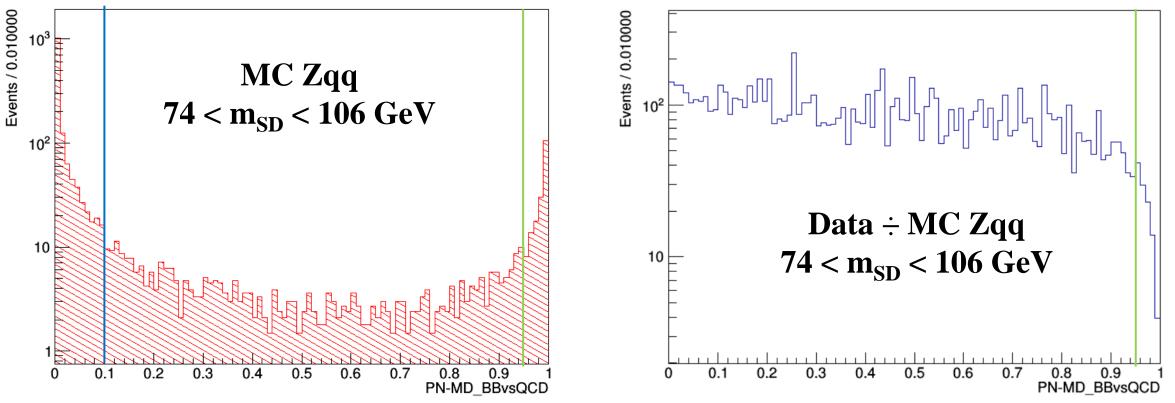

[1] https://github.com/BariGEMJetTau/Hcc/blob/main/HccAna/src/HccAna.cc#L937

Comparison Data-MC: m_{SD} leading jet

SAMPLES

[1] DAS

- MC Zqq pre-Era E (preEE) produced privately
 [1]
 - $2x10^6$ events
- MC QCD preEE (Run3Summer22MiniAODv3)
 - 19×10^6 events
- ➢ Era C ReReco (5507 pb⁻¹)
- \succ Era D ReReco (3417 pb⁻¹)
- MC QCD samples are unsuitable to describe Data:
 - Bad Data-MC agreement;
- QCD must be estimated with Data-driven techniques.



QCD Data-driven estimation phase space MC Zqq m_{SD} ranges from 50 to 150 GeV. \succ GeV 70 $0.95 < PN-MD_BBvsQCD \le 1$ Events / 2 m_{SD} bin width chosen: 2 GeV. \succ 60 Signal region from 74 to 106 GeV. \succ 50 MC Z peak almost fully contained within the signal region. 40 Signal Sideband Sideband region 30 20 10 60 150 50 70 80 90 100 110 120 130 140 m_{SD} [GeV]

5

PN-MD_BBvsQCD score regions

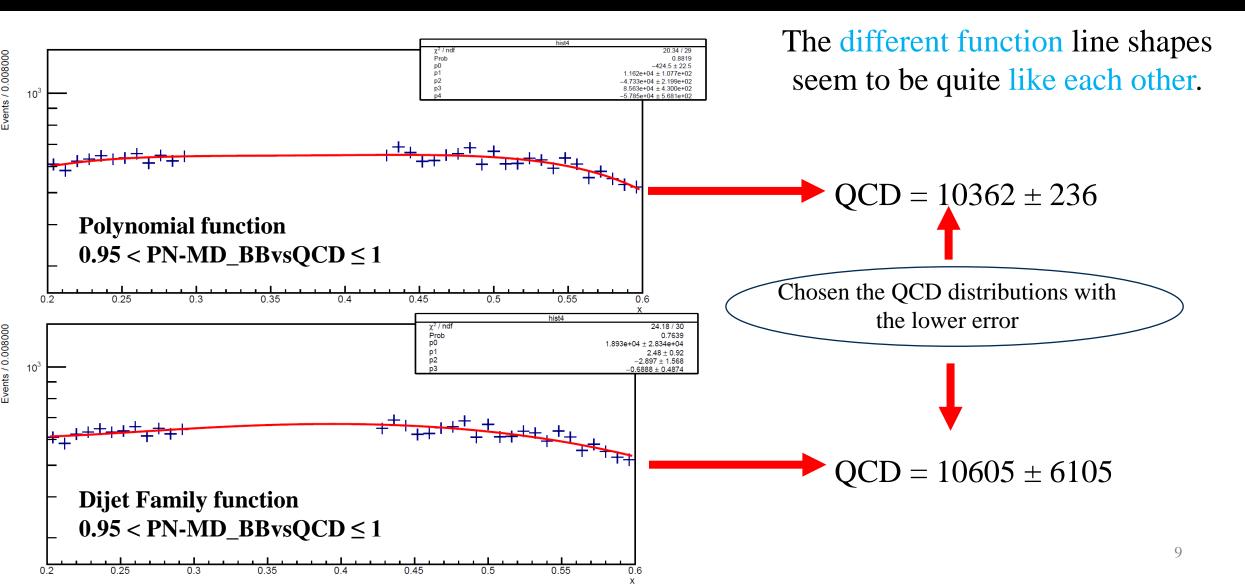
- ➢ PN-MD_BBvsQCD score regions: 0-0.1 || 0.1-0.26 || 0.26-0.65 || 0.65-0.95 || 0.95-1;
 - Up to 74% located in the region PN-MD_BBvsQCD < 0.1
 - The ratio Data-MC Zqq distribution has a drop at PN-MD_BBvsQCD = 0.95.
 - From 0.1 to 0.95, score regions defined in order to have an equal number of events in each MC Zqq peak region.

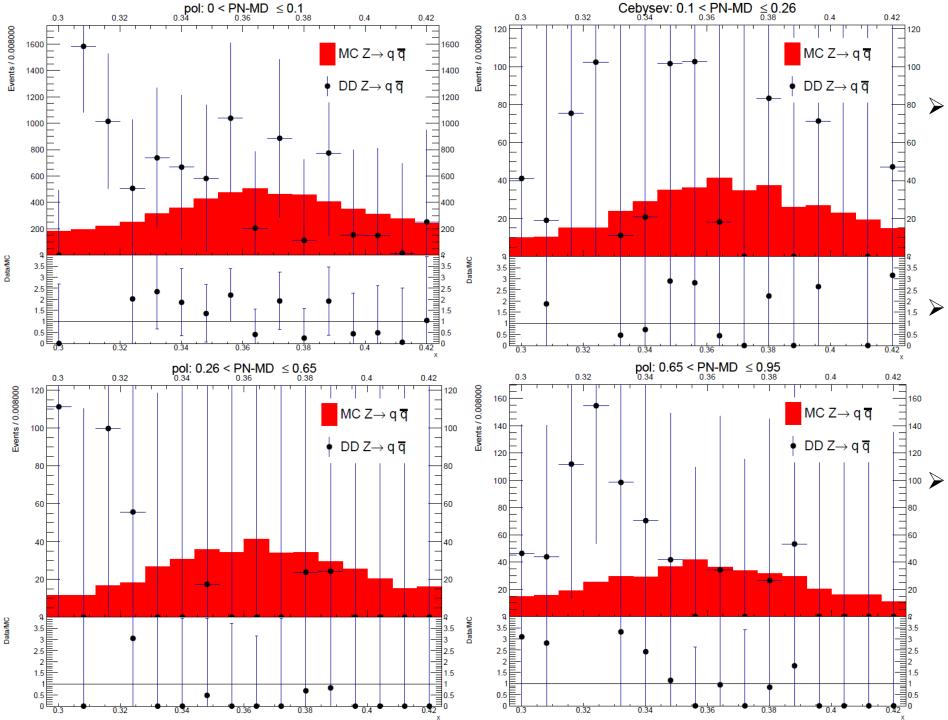
QCD Data-driven estimation technique

Data Plotting, in each PN-MD_BBvsQCD region, 1. GeV 700 the full Data m_{SD} distribution covering the Events / 2 signal region. 600 Data in the sideband regions are mainly QCD events. 500 Fitting the m_{SD} distribution with several 2. 400 functions. $0.95 < PN-MD BBvsQCD \le 1$ 300 Extrapolating in the signal region the QCD 3. m_{SD} distribution from each of the fitting 200 functions. 100 Choosing the "best" one. 70 80 50 60 90 100 110 120 130 140 150

4.

m_{SD} [GeV]

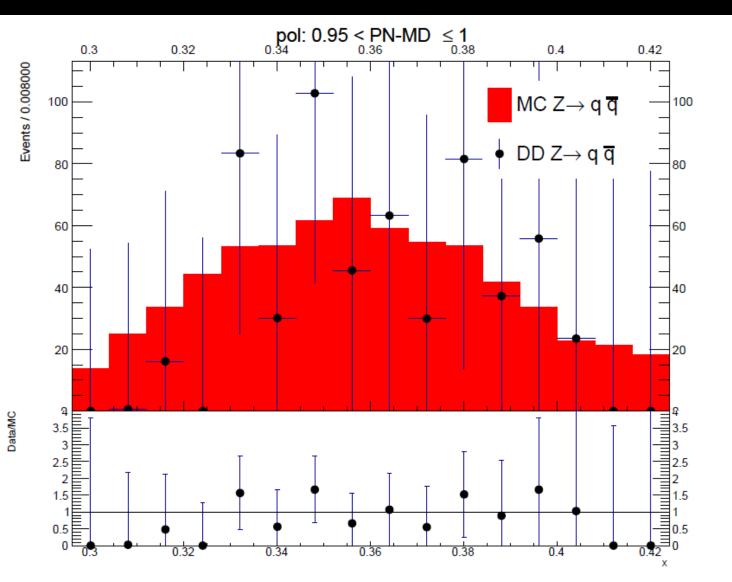

Fitting functions


- Several fitting functions adopted:
 - 1. Polynomials
 - 2. Chebyshev polynomials
 - 3. CMS empirical fit function (on the right) [1]
- Number of parameters obtained with the Fisher test (CL of 5%).
- Fit variable $x = m_{SD}/250$ GeV.
- "Best" function: m_{SD} QCD distribution with the smallest propagated error.

	Number of Parameters	Definition
	Dijet Family	
	3	$p^0(1-x)^{p_1}x^{-p_2}$
	4	$p^0(1-x)^{p_1}x^{-(p_2+p_3\log(x))}$
	5	$p^0(1-x)^{p_1}x^{-(p_2+p_3\log(x)+p_4\log^2(x))}$
	6	$p^{0}(1-x)^{p_{1}}x^{-(p_{2}+p_{3}\log(x)+p_{4}\log^{2}(x))+p_{5}\log^{3}(x)}$
	Modified Dijet Family	
t	3	$p^0((1-x)^{1/3})^{p_1}x^{-p_2}$
-	4	$p^{0}((1-x)^{1/3})^{p_{1}}x^{-(p_{2}+p_{3}\log(x))}$
	5	$p^{0}((1-x)^{1/3})^{p_{1}}x^{-(p_{2}+p_{3}\log(x)+p_{4}\log^{2}(x))}$
	6	$p^{0}((1-x)^{1/3})^{p_{1}}x^{-(p_{2}+p_{3}\log(x)+p_{4}\log^{2}(x))+p_{5}\log^{3}(x)}$
Polynomial Power Family		
	3	$p^0(1+p_1x)^{-p_2}$
	4	$p^0(1+p_1x+p_2x^2)^{-p_3}$
	5	$p^{0}(1+p_{1}x+p_{2}x^{2}+p_{3}x^{3})^{-p_{4}}$
	Polynomial Extension Family	
	5	$p^{0}(1-x)^{p_{1}}(1+p_{4}x)x^{-(p_{2}+p_{3}\log(x))}$
	6	$p^{0}(1-x)^{p_{1}}(1+p_{4}x+p_{5}x^{2})x^{-(p_{2}+p_{3}\log(x))}$
	UA2/ATLAS Family	
	4	$p^0 \exp{-(p_2 x + p_3 x^2) x^{-p_1}}$
	5	$p^{0} \exp -(p_{2}x + p_{3}x^{2} + p_{4}x^{3})x^{-p_{1}}$
	6	$p^{0} \exp -(p_{2}x + p_{3}x^{2} + p_{4}x^{3} + p_{5}x^{4})x^{-p_{1}}$

[1] https://indico.cern.ch/event/1275872/

Comparison of the fitting functions



The functions that suit most well in the different score regions are the polynomials, except in the 0.1-0.26 region where it is the Chebyshev polynomial.

- Data-driven (DD) Zqq estimated as difference between Data and QCD.
 - Bin filled with 0 if there are more QCD events.

➢ No Data-MC agreement.

PN-MD_BBvsQCD highest score region

- ➢ Fair Data-MC agreement.
- Fit function is not as accurate as it was expected since there are many more Data events (mostly QCD) than MC Zqq events.
 - m_{SD} bin Data ~ 600 events
 - m_{SD} bin MC Zqq ~ 60 events

Conclusions

- ➤ I have compared the Z+jet Data-driven estimation with the MC modelling for the 2022 preEE.
- ➤ Fair Data-MC agreement only at high scores.
- > The agreement is not completely fair since there are too much Data events respect to the MC Zqq ones.
- A possible solution to increase the Data-MC agreement is tightening the event selection to further reduce the Data-MC Zqq ratio.

Thanks for your attention