Validation of the CMS Barrel Timing Layer and searches for HH \rightarrow bb $\tau\tau$

XXXIV International School "Francesco Romano"

23 September 2023

Simona Palluotto for the CMS Collaboration

Table of contents

Introduction of MTD and BTL

BTL challenges

Optimization and performance validation

Searches for $HH \rightarrow bb\tau\tau$

Precision timing in CMS for High Luminosity LHC

- CMS is undergoing major upgrades to withstand such harsh conditions:
 - MIP Timing Detector will enable the measurement of the time of arrival of charged particles

• New High Luminosity phase of LHC

$$\rightarrow$$
 $\mathcal{L}_{\text{ultimate}}$ up to ~ 7 x 10³⁴ cm⁻² s⁻¹

- \Rightarrow higher vertex density (up to x5) will lead to increases in:
- O Radiation damage
- O Pileup

MTD design

Thin and hermetic detector ($|\eta|$ <3) between the tracker and the calorimeter with different specifications contingent on radiation dose

 \rightarrow employing diverse technologies to equip the barrel and the endcap areas of CMS:

- Endcap Timing Layer (ETL): modules of Low Gain Avalanche Detectors (LGADs)
- **Barrel Timing Layer** (BTL): arrays of LYSO crystal bars readout at both ends by SiPMs

BTL sensors

LYSO:Ce crystal

- large LY, fast scintillation rise time (<100 ps), short decay time (~40 ns)
- bar-like geometry: $3 \times 3 \times 52 \text{ mm}^3$

SiPM

- fast timing properties, magnetic field tolerant, compact and robust
- 15 µm cell size (initial design)

Module

- array of 16 crystal bars coupled to a pair of SiPMs through optical glue
- modules will be exposed to an accumulated radiation levels of 50 kGy of ionizing dose and a neutron fluence of $2 \times 10^{14} n_{eq}/cm^2$
 - O No other large area experiment has ever used SiPMs in such a harsh radiation environment

BTL performance

 $\sigma_{t}^{BTL} = \sigma_{t}^{clock} \oplus \sigma_{t}^{digi} \oplus \sigma_{t}^{ele} \oplus \sigma_{t}^{phot} \oplus \sigma_{t}^{DCR}$

Tackling Hi-Lumi challenges in BTL

Decreasing dark count rate

• *Thermo-Electric Coolers integration* on the SiPM packaging: lower operational temperature and higher annealing temperature

Reducing electronic noise contribution

• *SiPMs with a larger cell size*: increase in gain and PDE, faster rise time

Increase number of photoelectrons produced

• Increasing module thickness: increase in energy deposit (~25%)

 \rightarrow intense laboratory and test beam measurements focused on the validation of these studies

Larger cell size SiPMs

- Modules with larger cell sizes confirmed to achieve the best performance
 - O Good agreement between test beam and laboratory measurements
- Some SiPM arrays irradiated to the total radiation level expected at the end of HL-LHC operation (2 x 10^{14} n_{ed}/cm²)
 - O assembled with LYSO arrays into sensor modules and tested at various temperatures to emulate different points of HL-LHC lifetime in terms of DCR
- Time resolution of ~ 65 ps achieved with both modules, within the available power budget

Thickening

- Non-irradiated SiPMs with a cell size of 25 μ m were coupled to LYSO arrays
 - Significant enhancement in time resolution observed from type 3 to type 1
- When subjected to irradiation, SiPMs with larger active area exhibit high DCR and increased power consumption \rightarrow crucial to evaluate irradiated modules with different thicknesses
- Both T1 and T3 SiPMs, featuring a 25 μm cell size, underwent irradiation to half of the total radiation level (1 x 10^{14} n_{eq}/cm^2)
 - Enhanced performance of the thickest modules was validated also in the case of irradiated SiPMs

Validation

- BTL prototyping phase now concluded
- Innovations in sensors design:

TECs integration: reduced DCR \rightarrow improved performance

 \square 25 µm cell size SiPM: improved performance compared to 15 µm

Thickest module: better timing performance both at BoO and EoO

 Performance of the final prototypes aligned with the design target

Towards the assembly

Prototyping phase concluded, ready for production!

- *4 BTL Assembly Centers* (Milano-Bicocca, Caltech, U. Virginia and Peking U.)
- *Common tools* for module assembly (e.g. gluing tools and tester boards) are being finalized
- 2 trays/month production and testing @ each BAC, then shipment to CERN
- Tray integration @ Tracker Integration Facility + tray test
- *Final installation* in the BTL Tracker Support Tube by Summer *2025*

Impact of MTD on the CMS physics

- Reduced number of tracks from PU vertices that are incorrectly associated with the PV
 - O Improved reconstruction performance of ~ all physics objects and, thus, significance of some benchmark cases such as Higgs boson self coupling
 - O Since timing information not available until HL-LHC, now focusing on analysis of Run 2 data

35 ps BTL, 35 ps ETL						
Channel	No MTD	ETL Only	BTL Only	MTD		
bbbb	0.88	0.90	0.93	0.95		
bb au au	1.30	1.38	1.52	1.60		
$bb\gamma\gamma$	1.70	1.75	1.85	1.90		
Combined	2.31	2.40	2.57	2.66		

50 ps BTL, 50 ps ETLNo MTD ETL Only BTL Only Channel MTD bbbb 0.880.900.930.951.50 $bb\tau\tau$ 1.301.361.441.80 $bb\gamma\gamma$ 1.701.721.78Combined 2.312.372.472.53

70 ps BTL, 35 ps ETL						
Channel	No MTD	ETL Only	BTL Only	MTD		
bbbb	0.88	0.90	0.92	0.94		
bb au au	1.30	1.38	1.36	1.44		
$bb\gamma\gamma$	1.70	1.75	1.76	1.81		
Combined	2.31	2.40	2.41	2.51		

CMS Preliminary

signal

1.2

Preliminary studies on jet mass correction

- Traditional analysis reconstructed the jet mass through Soft Drop declustering
 - O which recursively removes soft wide-angle radiation from a jet
- Exploiting the jet mass correction, we achieve **improved precision** in terms of both **resolution** and **mass** values
 - O This allows both for a background reduction since we will be asking $m(jet) \sim m_H$ and, in perspective, an improved reconstruction of the mass resonance

Next step

- <u>MTD:</u>
 - O Final design validated
 - O Procedures for assembly and quality control are now being finalized
 - Ready for assembly

• <u>HH:</u>

- O ParticleNet information (already available in MiniAOD) now included in the production of big-ntuples
- O I am currently assessing the potential increase in significance by incorporating ParticleNet for b-tagging
- O Perspectives for Run 3, contributing to:
 - Inclusion of ParticleNet information for tau leptons tagging in NanoAOD
 - Development of a new framework

